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Abstract

Phylogeny reconstruction is the process of inferring evolutionary relationships from
molecular sequences, and methods that are expected to accurately reconstruct trees
from sequences of reasonable length are highly desirable. To formalize this concept,
the property of fast-convergence has been introduced to describe phylogeny recon-
struction methods that, with high probability, recover the true tree from sequences
that grow polynomially in the number of taxa n. While provably fast-converging
methods have been developed, the Neighbor-Joining (NJ) algorithm of Saitou and
Nei remains one of the most popular methods used in practice. This algorithm is
known to converge for sequences that are exponential in n, but no lower bound for
its convergence rate has been established. To address this theoretical question, we
analyze the performance of the NJ algorithm on a type of phylogeny known as a
“caterpillar tree.” We find that, for sequences of polynomial length in the number
of taxa n, the variability of the NJ criterion is sufficiently high that the algorithm is
likely to fail even in the first step of the phylogeny reconstruction process, regardless
of the degree of polynomial considered. This result demonstrates that, for general
n-taxa trees, the exponential bound cannot be improved.
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1 Introduction

Phylogeneticists employ evolutionary models to interpret observed molecular

sequence data as a series of divergences from unknown ancestral sequences. A

variety of methods and algorithms have been developed to implement these

models, and researchers are left with a wealth of options in choosing the phy-

logenetic method that best suits their needs with respect to modelling com-

plexity, computational efficiency, and interpretability. There are advantages

and disadvantages to each of the major classes of methods, and no particu-

lar algorithm has emerged as a clear “winner” in the phylogenetic research

community. However, there are certain properties that are considered to be

important attributes for any phylogeny reconstruction method: computational

efficiency, consistency, and robustness. And, because biologists are often lim-

ited in the amount of sequence data that is available for their studies, methods

that are expected to reconstruct trees accurately from sequences of practical

length are highly desirable.

The distance-based Neighbor-Joining (NJ) algorithm, introduced by Saitou

and Nei in 1987 [1], offers an intuitive, computationally efficient process for

phylogeny reconstruction. It is easy to implement and runs quickly on large

datasets, making it a popular choice for practicing biologists. In addition, the

method is known to be consistent, meaning that, in the limit as the observed

sequence length tends to infinity, the NJ criterion will always be minimized for

a pair of neighboring leaves (see Durbin et. al [2] for a proof of this theorem).

Atteson [3] has established conditions under which NJ will perform well from a

matrix of estimated distances: if the difference between the true and estimated

distances is bounded by half the length of the shortest edge in a tree T , then NJ
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will correctly reconstruct the topology of T . But how long must sequences be

to guarantee that the estimated distances will, with high probability, meet this

criterion? Atteson also briefly addressed this question, deriving a bound that

guarantees the accurate reconstruction of general n-taxa trees from sequences

that are of exponential length in the maximum distance between any two

leaves in the tree.

In 1999, Huson et al. [4] introduced a new standard for evaluating the con-

vergence rates of phylogeny reconstruction algorithms. The authors defined a

method to be fast-converging under a model of evolution if the method could,

with high probability, accurately recover the topology of any model tree from

sequences that grow only polynomially in the number of leaves. Huson et al.

described an approach for creating fast-converging algorithms from existing

distance methods known as the Disk-Covering Method (DCM) [4, 5, 6], proving

that “DCM-boosted” methods were fast-converging under the Jukes-Cantor

model. Additional research refined DCM by developing methods which meet

a more general criterion known as absolute fast-convergence [7, 8].

After introducing these fast-converging methods, the researchers performed

simulations to evaluate the performance of DCM-boosted algorithms rela-

tive to NJ and other popular methods. While finding that the provably fast-

converging methods out-performed NJ for some trees, Nakhleh et al. [8] also

reported that, in some cases, NJ offered significant improvements in accu-

racy over fast-converging methods, and other studies reported minimal differ-

ences between NJ and fast-converging methods on large subsets of the tree

space [9, 4, 10]. While none of these simulation studies evaluated sufficiently

long sequences to realistically compare polynomial and exponential conver-

gence rates, these experimental results led to the suggestion that Atteson’s
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exponential convergence bound for NJ was “probably loose” [4]. However,

because no immediate extension of the proof of fast-convergence of DCM-

boosted methods was applicable to NJ, the question remained: Is the original

Neighbor-Joining algorithm a provably fast-converging method?

To address this issue, we investigate the performance of the NJ algorithm

for sequences of polynomial length, analyzing the asymptotic behavior of the

method on a phylogeny known as a “caterpillar tree.” Our approach focuses on

the first step of the caterpillar reconstruction process, comparing the variabil-

ity of the NJ criterion to its expected value. We find that this signal-to-noise

ratio converges to 0, demonstrating that polynomial length sequences are in-

sufficient to guarantee accurate performance of the NJ algorithm. In Section 2

we provide necessary background, in Section 3 we summarize our findings, and

we close the paper with a discussion of the theoretical and practical implica-

tions of this analysis in Section 4. Detailed proofs of the Theorems in Section 3

are provided in the Appendix.

2 Background

We begin with necessary definitions and background to motivate and sup-

port our analysis. We provide a brief overview of distance-based methods and

the Jukes-Cantor model for sequence evolution, and then review the NJ algo-

rithm. Finally, we introduce the “caterpillar tree” and discuss our approach

for analyzing the performance of the NJ method using this model tree.
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2.1 Distance-based methods and the Jukes-Cantor Model

The term “distance-based” describes a class of methods that reconstruct phy-

logenies from a matrix of pairwise distances dij, where dij denotes the distance

between leaves i and j. Phylogenetic researchers employing distance-based

methods must assume that the matrix of pairwise distance estimates provides

sufficient information for the accurate reconstruction of the evolutionary re-

lationships among the taxa considered. This is a strong assumption, and it is

clear that the choice of distance estimation method will have a considerable

impact on the resulting phylogeny. There are several methods for estimating

distances, some of which allow for the differential weighting of certain types of

substitutions in general DNA sequences [11, 12], and others that specifically

model the evolution of protein coding regions [13, 14]. The appropriateness

of various assumptions has been evaluated using some known or experimen-

tally generated phylogenies [15, 16, 17], and several statistical procedures

have been introduced for choosing among evolutionary models in practice (see

Posada and Buckley [18] for a recent overview of these methods). Most theo-

retical analyses, however, focus on the Jukes-Cantor [19] model. The central

assumptions of the model are as follows:

(i) The equilibrium frequency of each of the four nucleotides {A,C, G, T} is

equal to 1
4
.

(ii) Every type of substitution is equally likely.

(iii) The rate of substitution does not vary by time or position.

(iv) Mutations at each position occur independent of mutations at every other

position.
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With these assumptions, the model is fully described by the following instan-

taneous rate matrix R:

A C G T

A −3r r r r

C r −3r r r

G r r −3r r

T r r r −3r

For a random variable X representing a nucleotide evolving according to the

Jukes-Cantor model, we have, for any specified time t,

pt = P (Xt 6= X0) =
3

4

(
1− e−

4
3
rt

)
. (1)

For any pair of sequences Si and Sj of length L, the proportion of positions

at which the two sequences differ is given by the Hamming distance

L∑

l=1

(Si,l 6= Sj,l)

L
.

Under the Jukes-Cantor model, this proportion provides an estimate for the

expected Hamming distance p = pt for any position along the sequence. Inter-

preting the product of substitution rate and time as a measure of “distance”

(that is, d = rt) and inverting Equation 1, we have

d = −3

4
log

(
1− 4

3
p
)

. (2)

As p approaches the value of 3
4

(the expected probability of observing a differ-

ence between completely unrelated sequences at any position), the distance d

between the two sequences becomes infinitely large.
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While most short distances can be easily estimated under this model, it is

clear that, for any pair of sequences with estimated Hamming distance p̂ ≥ 3
4
,

the Jukes-Cantor distance estimate d̂ will be undefined. This issue presents

practical problems for researchers attempting to construct distance estimates

from limited amounts of DNA, since most distance-based phylogeny recon-

struction algorithms will fail to produce a tree when even a single pairwise

distance estimate is undefined for a set of sequences. While one would ideally

avoid this problem by acquiring enough sequence data to compute extremely

precise distance estimates, sufficiently long sequences are often not available

for distantly related taxa. For this reason, undefined Jukes-Cantor distances

are typically “corrected” and assigned a large value. This value is generally at

least as large as the maximum well-defined distance estimate observed for the

set of sequences, and may be determined either as a function of the observed

estimates (known as a “fix factor” [20]) or simply arbitrarily assigned [21].

2.2 The Neighbor-Joining Algorithm

The Neighbor-Joining (NJ) algorithm reconstructs a phylogeny from n se-

quences by iteratively joining the pairs of leaves i and j which minimize the

criterion

Dij = dij − 1

n− 2

(
n∑

k=1

dik +
n∑

k=1

djk

)
,

where dij is the distance between sequences i and j. Once a pair of leaves is

selected to join, a node m connecting this pair is added to the tree. For all

nodes k 6= {i, j}, the distance dmk is then defined to be

dmk =
1

2
(dik + djk − dij) ,
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and the distances dim and djm are given by

dim =
1

2

(
dij +

1

n− 2

(
n∑

k=1

dik −
n∑

k=1

djk

))
and djm = dij − dim.

The leaves i and j are subsequently removed from the distance matrix and

replaced with the new node m, and the NJ criterion matrix D is recomputed

for the new set of n − 1 leaf nodes. The algorithm continues to join pairs of

leaves until only two leaves i and j remain, and these are connected with edge

length dij to complete the phylogeny.

2.3 The Caterpillar Tree

The term “caterpillar tree” is used to describe a phylogeny in which n taxa

are connected to a single spine (see Figure 1.a). If we consider a simplified

“legless” caterpillar in which the n taxa are connected in sequence by edges

of equal length de, then the distance between a pair of taxa i and j on a

caterpillar tree is simply given by |j − i|de, the number of edges separating

the pair (see Figure 1.b). Since the longest pairwise distance d1,n = (n −
1)de, Atteson’s bound would require sequence lengths to be exponential in

n to guarantee asympototic convergence. For this reason, the caterpillar tree

provides a useful model for exploring the performance of the NJ method for

sequences of polynomial length.

2.4 Method for analyzing the asymptotic stability of NJ

It is clear from the structure of the caterpillar tree that there are only two pairs

of leaves that are separated by a single node, leaves 1 and 2 and leaves n− 1
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and n. Thus, the only way that the NJ algorithm can correctly reconstruct the

caterpillar is by joining either of these two pairs of leaves on the first step of

the process. On subsequent steps, the algorithm must continue to work its way

in towards the center of the caterpillar until the tree is fully reconstructed. If,

at any time, a pair of non-neighboring leaves are joined, then the NJ algorithm

will fail. To illustrate this concept, consider a simple caterpillar tree with 4

leaves. Leaf 1 is a neighbor to leaf 2, and leaf 3 is a neighbor to leaf 4, but

leaf 2 is not a neighbor to leaf 3. There are four ways to correctly reconstruct

the tree, all of which begin by either joining leaves 1 and 2 or leaves 3 and 4

on the first step (see Figure 2).

For general caterpillar trees with n leaves, the first step of the neighbor-joining

process will incorrectly join a pair of non-neighboring leaves unless the NJ cri-

terion D̂ij is minimized by either D̂1,2 or D̂n−1,n. By symmetry, D̂1,2 and D̂n−1,n

are identically distributed random variables, and so we focus our attention on

the behavior of D̂1,2. For the NJ criterion to be minimized for the neighboring

sequences S1 and S2, we must have D̂1,2 ≤ D̂i,j for all pairs of non-neighboring

sequences Si and Sj. Thus, if we consider a single pair of non-neighboring se-

quences Sgn and Sgn+1, the probability that the NJ criterion is not minimized

by D̂1,2 will clearly be at least as large as the probability that D̂1,2 > D̂gn,gn+1.

Choosing gn to be sufficiently large that the estimates p̂1k and p̂gn,k are nearly

independent for all k (that is, gn = nγ for any γ ∈
(
0, 1

2

)
), we analyze the

asymptotic properties of the random variable Dn =
(
D̂gn,gn+1 − D̂1,2

)
.
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2.5 Modelling details

To further simplify the analysis, we reduce the complexity of observed se-

quences to consist of binary strings, so that the relationship between the

expected Hamming distance and the Jukes-Cantor distance now becomes

dij = −1
2
log(1 − 2pij), pij ∈ [0, 1

2
) (this is known as the Cavender-Farris

model [22, 23]). For this additive model, the true distance between taxa i and

j, i < j, is given by (j − i)de, and thus the expected Hamming distance will

be equal to 1
2
(1− (1− 2pe)

j−i) where pe is the true probability of observing a

mutation on a single edge.

In this setting, it is clear that for distant sequences (where j is much larger

than i), the expected Hamming distance pij will approach the critical value of 1
2

exponentially fast as j−i increases. On the other hand, for observed sequences

that are only polynomially long, a calculation with the Binomial distribution

shows that the variance of p̂ij approaches 0 at most only polynomially fast. A

Normal approximation to the Binomial then shows that, for pairs of taxa (i, j)

separated enough so that j−i
log n

→∞, the probability P{p̂ij > 1
2
} converges to

1
2
. That is, with probability approaching 1

2
for each distantly separated pair

of sequences, the standard distance estimate will be undefined.

Thus, we can easily conclude that if one does not allow for the correction of

undefined distance estimates, NJ will fail to reconstruct the caterpillar tree for

large values of n. The question of whether correction of undefined distances

can enable NJ to succeed is more subtle. To address this, we allow for the

correction of such values by assigning the maximum observable value for the

sequence length Ln to any undefined distance. Assume, for definiteness, that
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Ln is an even integer. We define the value of corrected distances to be d?,

where

d? = −1

2
log

(
1− 2

(
1

2
− 1

Ln

))
=

1

2
log

(
Ln

2

)
. (3)

We note that our results do not depend upon this particular choice, although

we do assume that any “corrected” distance values will be at least as large

as the maximum well-defined pairwise distance estimate for a given set of

sequences.

3 Results

To analyze the behavior of the random variable Dn, we derive bounds for its

expectation and variance. We find that, for sequences of polynomial length

in n, the signal-to-noise ratio of Dn asympotically approaches 0: that is, the

standard deviation of the distribution of Dn grows more quickly that its mean.

This implies that, in the limit, observed values of Dn are equally likely to be

positive or negative, and in the latter case the algorithm would incorrectly

join the pair of non-neighboring leaves. Detailed proofs of the expectation and

variance bounds are provided in the Appendix.

3.1 Derivation of an upper bound for the expectation of Dn

Let the notation d̂i. =
∑n

k=1 d̂i,k. For any value gn, the expectation of Dn =

D̂gn,gn+1 − D̂1,2 is equal to

11



E
(
d̂gn,gn+1 − 1

n− 2

(
d̂gn. + d̂gn+1.

)
− d̂12 +

1

n− 2

(
d̂1. + d̂2.

))

= E
(
d̂gn,gn+1 − d̂12

)
+

1

n− 2

(
E

(
d̂1. − d̂gn.

)
+ E

(
d̂2. − d̂gn+1.

))
, (4)

and, because we have defined d1,2 = de = dgn,gn+1, the above expression reduces

to

E
(
D̂gn,gn+1 − D̂1,2

)
=

1

n− 2

(
E

(
d̂1. − d̂gn.

)
+ E

(
d̂2. − d̂gn+1.

))
. (5)

Let ∆k =
(
d̂1,k − d̂gn,k

)
and ∆′

k =
(
d̂2,k − d̂gn+1,k

)
. If sufficiently long se-

quences were available to guarantee accurate estimation of the distances d1,k

and dgn,k for all values of k, then the expectation of the sums of differences

∆k would approach

n∑

k=1

(d1,k − dgn,k) = (n− gn)(gn − 1)de,

where de denotes the length of a single edge on the caterpillar tree. However,

for sequences of polynomial length, we find that the expectation of the sums

of differences ∆k and ∆′
k will be significantly smaller.

To bound this expectation, we divide the sums into three segments. The first

includes those terms for which k ≤ gn +1, the second includes terms for which

k is greater than (but relatively close to) gn + 1, and the remaining segment

includes the terms for which k is significantly larger than gn. We denote the

length of the middle segment by bn and let bn = nβ for some β ∈
(
0, 1

2

)
. With

this approach, we derive the following bound:
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Theorem 1 For n sequences of length L = ns for any fixed s,

E(D̂gn,gn+1 − D̂1,2) ≤ ln(n)

n− 2

(
snβ + o(n−1)

)

for gn > 2 and β ∈ (0, 1
2
).

3.2 Derivation of a lower bound for the variance of Dn

By definition,

Var(Dn) = Var
[(

d̂gn,gn+1 − d̂1,2

)
+

1

n− 2

((
d̂1. − d̂gn.

)
+

(
d̂2. − d̂gn+1.

))]
.

(6)

To analyze this expression, we first show that, because d1,2 = de = dgn,gn+1

can be estimated with great precision by sequences of polynomial length, the

variance of
(
d̂gn,gn+1 − d̂1,2

)
converges to 0 for sequences of length Ln = ns. It

follows from this result that the covariance terms involving
(
d̂gn,gn+1 − d̂1,2

)

also converge to 0 for polynomial length sequences (see Lemma 14). Therefore,

we focus our attention on the expression

Var
((

d̂1. − d̂gn.

)
+

(
d̂2. − d̂gn+1.

))

=Var

(
n∑

k=1

∆k

)
+ Var

(
n∑

k=1

∆′
k

)
+ 2Cov

(
n∑

k=1

∆k,
n∑

k=1

∆′
k

)
(7)

where

Var

(
n∑

k=1

∆k

)
=

n∑

k=1

Var (∆k) + 2
n−1∑

k=1

n∑

l=k+1

Cov (∆k, ∆l) . (8)

When k is significantly larger than gn, both p1,k and pgn,k are so close to 1
2

that the true proportion of differences between sequences 1 and k cannot be
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accurately estimated by Ln = ns positions (in other words, we have 1
2
− 1

ns <

pgn,k < p1,k < 1
2
). In this case, where gn = nγ for any γ ∈

(
0, 1

2

)
, the estimates

d̂1,k and d̂gn,k are likely to be “corrected” to the value d? with probability

close to 1
2
, and, because gn is large, the estimates d̂1,k and d̂gn,k are nearly

independent. Because of this inability to precisely estimate the parameters p̂1,k

and p̂gn,k when k is large, the variability of the difference terms
(
d̂1,k − d̂gn,k

)

is considerable, and Theorem 2 provides a lower bound for the variance of

each term:

Theorem 2 For k > gn and for n sequences of length L = ns for any fixed s,

if gn = nγ for any γ ∈
(
0, 1

2

)
, then

Var(d̂1,k − d̂gn,k) ≥
(

1

4
− δgn,k

2
− o(n−1)

) (
s

4
− 1

2
− s

n

)2

(ln(n))2

with δgn,k = P
(
p̂gn,k < 1

2

)
− 1

2
.

With this result, for k > gn + bn we have

Var
(
d̂1,k − d̂gn,k

)
≥ cβ,s,n (ln(n))2

where cβ,s,n =
(

1
4
− δgn,k

2
− o(n−1)

) (
s
4
− 1

2
− s

n

)2 → 1
4

(
s
4
− 1

2

)2
as n → ∞,

and therefore

n∑

k=1

Var
(
d̂1,k − d̂gn,k

)
>

(
n−

(
nγ + nβ

))
cβ,s,n (ln(n))2 and

n∑

k=1

Var
(
d̂2,k − d̂gn+1,k

)
>

(
n−

(
nγ + nβ

))
cβ,s,n (ln(n))2 . (9)

Now we consider the covariance terms in Equations (7) and (8). If we assume

that the contribution of the covariance terms is positive, then we may eas-
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ily bound the standard deviation of Dn using Inequality (9). However, given

that the covariance terms may be negative, thereby reducing the variance,

we derive bounds for these terms which account for their largest possible

impact. We find upper and lower bounds for the covariance of each pair of

distances in Lemma 9, establishing that for all sequences Si, Sj, Sk, and Sl,

Cov
(
d̂i,j, d̂k,l

)
≥ 0. We recognize, then, that each covariance term is bounded

below:

Cov (∆k, ∆l)≥−
(
Cov

(
d̂1,k, d̂gn,l

)
+ Cov

(
d̂gn,k, d̂1,l

))

Cov (∆′
k, ∆

′
l)≥−

(
Cov

(
d̂2,k, d̂gn+1,l

)
+ Cov

(
d̂gn+1,k, d̂2,l

))

and Cov (∆k, ∆
′
l)≥−

(
Cov

(
d̂1,k, d̂gn+1,l

)
+ Cov

(
d̂gn,k, d̂2,l

))
(10)

We employ this fact to derive bounds for the covariance terms in Theorem 3

and Corollary 4.

Theorem 3

n∑

k=1

n∑

l=1

Cov (∆k, ∆
′
l) ≥ −

(
1

2
ln

(
Ln

2

))2 [
g2

n + o
(
n−1

)]

Corollary 4

n−1∑

k=1

n∑

l=k+1

Cov (∆k, ∆l) ≥ −
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]

and
n−1∑

k=1

n∑

l=k+1

Cov (∆′
k, ∆

′
l) ≥ −

(
1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]

These inequalities demonstrate that, even in the most extreme case, the con-

tribution of the covariance terms is negligible relative to the overall variance.

Aggregating the preceding results, we derive the following lower bound:
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Theorem 5 For β ∈ (0, 1), γ ∈
(
0, 1

2

)
and sequences of length Ln = ns,

Var(Dn) ≥
(

ln(n)

n− 2

)2 [
2

(
n−

(
nγ + nβ

))
cβ,s,n − s2n2γ − o

(
n−1

)]

3.3 Relationship between expectation and variance results

Reviewing the inequalities derived Sections 3.1 and 3.2, we see that, for any

β ∈ (0, 1) and for any γ ∈
(
0, 1

2

)
,

E(Dn) ≤ ln(n)

n− 2

(
snβ + o

(
n−1

))

for sequences of polynomial length ns, while

Var(Dn) ≥
(

ln(n)

n− 2

)2 [
2

(
n−

(
nγ + nβ

))
cβ,s,n − s2n2γ − o

(
n−1

)]
.

Ignoring constants and those terms which converge to 0, we take the ratio of

the expectation inequality and the standard deviation inequality:

E(Dn)

SD(Dn)
≤ nβ

√
n− (nγ + nβ + n2γ)

=
1

n
1
2
−β

√
1− (n−(1−γ) + n−(1−β) + n−(1−2γ))

. (11)

This ratio will approach 0 in the limit as n → ∞ for any β, γ ∈
(
0, 1

2

)
,

indicating that, for a wide range of possible values of gn, the variability of the

difference
(
D̂gn,gn+1 − D̂1,2

)
is increasing much more rapidly than its expected

value. Furthermore, if we assume that the distribution of Dn is reasonably
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well-behaved, then

lim
n→∞P (Dn < 0) = lim

n→∞P

(
Dn − E(Dn)

σDn

<
−E(Dn)

σDn

)
=

1

2
. (12)

4 Discussion

By analyzing the random variable Dn =
(
D̂gn,gn+1 − D̂12

)
, we have shown that

the NJ criterion is likely to be minimized by a pair of non-neighboring leaves

when polynomial length sequences are considered. Our results demonstrate

the vulnerability of the method to the impact of large numbers of imprecise

distance estimates, as reflected in the asymptotic behavior of the signal-to-

noise ratio of Dn. It is therefore apparent that polynomial length sequences

will be insufficient to guarantee phylogenetic accuracy for at least one class of

trees, and that Atteson’s exponential bound cannot be improved in general.

Our theoretical result should not necessarily be perceived as an indictment of

the value of NJ as a practical phylogeny reconstruction method. The caterpillar

tree considered here represents an extreme case, rarely (if ever) encountered in

a realistic biological setting. As demonstrated by numerous simulation studies

that have considered more typical trees (including [24, 25, 26, 27]), NJ does

in fact perform quite well with reasonably short sequence lengths.

The difficulties in phylogeny reconstruction demonstrated by the present anal-

ysis are not simply a failing of the NJ algorithm but rather arise from an in-

teraction between the NJ algorithm and the “fast convergence” criterion. The

criterion of fast convergence requires consideration of trees whose number of

taxa tends to infinity while maintaining a fixed positive lower bound on the
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edge lengths in the tree. This in turn forces the existence of ever more remotely

separated pairs of taxa. More natural alternative asymptotic formulations of

the process of biologists collecting data on more and more species might as-

sume a bounded time since the root of the tree, in which case the minimum

branch length of the tree would approach 0 as n → ∞. Characterizing the

performance of algorithms including NJ in such a framework is an area for

further research.

More practically, the results presented in this analysis demonstrate the prob-

lems that can arise when sequence lengths are insufficiently long to estimate

large distances with precision. For any phylogeny involving very distantly re-

lated taxa, it is to be expected that a significant number of pairwise distance

estimates will be inaccurate or undefined, and our analysis demonstrates that

NJ is highly susceptible to these errors. The insights drawn from this study are

therefore not restricted to the artificial special case of the caterpillar topology,

but rather can be extended to a much larger class of phylogeny reconstruction

problems.

A Proofs for Expectation and Variance Bounds

The following Lemma is employed in the Proof of Theorem 1.

Lemma 6

n∑

k=gn+bn+1

E
((

d̂1,k − d̂gn,k

)
+

(
d̂2,k − d̂gn+1,k

))
<

ln(n)

pe

sns(1− 2pe)
bn .
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Proof of Lemma 6 For integers i ∈ [0, Ln], let d(i) denote the distance

function

d(i) =





−1
2
ln(1− 2i

Ln
), 0 ≤ i < Ln

2
,

d? = 1
2
ln

(
Ln

2

)
, i ≥ Ln

2

Then for any k > gn, we have

E(d̂1,k − d̂gn,k)

=
Ln∑

i=0

Ln∑

j=0

P
(
p̂1,k =

i

Ln

, p̂gn,k =
j

Ln

) [
(d(i)− d(j))

{
i, j <

Ln

2

}

+ (d? − d(j))
{
i ≥ Ln

2
, j <

Ln

2

}
+ (d(i)− d?)

{
i <

Ln

2
, j ≥ Ln

2

}]

=
Ln−1∑

i=0

Ln∑

j=i+1

(
P

(
p̂1,k =

j

Ln

, p̂gn,k =
i

Ln

)
− P

(
p̂1,k =

i

Ln

, p̂gn,k =
j

Ln

))
×

[(
−1

2
ln

(
Ln − 2j

Ln − 2i

)) {
i, j <

Ln

2

}
+ (d? − d(i))

{
i <

Ln

2
, j ≥ Ln

2

}]

≤ d?
Ln−1∑

i=0

Ln∑

j=i+1

(
P

(
p̂1,k =

j

Ln

, p̂gn,k =
i

Ln

)
− P

(
p̂1,k =

i

Ln

, p̂gn,k =
j

Ln

))
.

(A.1)

For a single position r, let Y1k,r = 1 if S1,r 6= Sk,r, 0 otherwise, and let Ygnk,r = 1

if Sgn,r 6= Sk,r, 0 otherwise. It follows that Y1k,r and Ygnk,r are dependent

Bernoulli(p1,k) and Bernoulli(pgn,k) random variables. For 1 ≤ l ≤ Ln, define

X
(l)
1k =

∑l
r=1 Y1k,r, and X

(l)
gnk =

∑l
r=1 Ygnk,r. We note that

Ln−1∑

i=0

Ln∑

j=i+1

(
P

(
p̂1,k =

j

Ln

, p̂gn,k =
i

Ln

)
− P

(
p̂1,k =

i

Ln

, p̂gn,k =
j

Ln

))

=
Ln−1∑

i=0

Ln∑

j=i+1

(
P (X

(Ln)
1k = j, X

(Ln)
gnk = i)− P (X

(Ln)
1k = i,X

(Ln)
gnk = j)

)

<
Ln∑

i=0

Ln∑

j=0

∣∣∣P (X
(Ln)
1k = j,X

(Ln)
gnk = i)− P (X

(Ln)
1k = i, X

(Ln)
gnk = j)

∣∣∣ , (A.2)
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and, by properties of the total variation distance (see Section A.1),

Ln∑

i=0

Ln∑

j=0

∣∣∣P (X
(Ln)
1k = j, X

(Ln)
gnk = i)− P (X

(Ln)
1k = i,X

(Ln)
gnk = j)

∣∣∣

≤ (Ln)
1∑

i=0

1∑

j=0

|P (Y1k,r = j, Ygnk,r = i)− P (Y1k,r = i,Xgnk,r = j)| . (A.3)

Let p1k,gnk(i, j) = P (Y1k,r = i, Ygnk,r = j), and let q1k,gnk(i, j) = P (Y1k,r =

j, Ygnk,r = i) for i, j ∈ 0, 1. Assume, without loss of generality, that se-

quence S1,r = 0 for all positions r. We bound the distance
∑

i,j |p1k,gnk(i, j)−
q1k,gnk(i, j)|. Because p1k,gnk(i, i) = q1k,gnk(i, i), we need only evaluate one

of the two cases where i 6= j (by symmetry, |p1k,gnk(1, 0) − q1k,gnk(1, 0)| =

|p1k,gnk(0, 1)−q1k,gnk(0, 1)|). The probability p1k,gnk(1, 0) = P (Y1k,r = 1, Ygnk,r =

0) is given by

p1k,gnk(1, 0) = P (S1,r = 0, Sgn,r = 1, Sk,r = 1) = p1,gn(1− pgn,k), (A.4)

and the probability q1k,gnk(1, 0) = P (Y1k,r = 0, Ygnk,r = 1) is given by

q1k,gnk(1, 0) = P (S1,r = 0, Sgn,r = 1, Sk,r = 0) = p1,gnpgn,k. (A.5)

It follows that

|p1k,gnk(1, 0)− q1k,gnk(1, 0)| = p1,gn(1− 2pgn,k) <
1

2
(1− 2pe)

k−gn , (A.6)
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and with this bound we have, for each k,

E(d̂1,k − d̂gn,k)

≤ d?
Ln−1∑

i=0

Ln∑

j=i+1

(
P

(
p̂1,k =

j

Ln

, p̂gn,k =
i

Ln

)
− P

(
p̂1,k =

i

Ln

, p̂gn,k =
j

Ln

))

< Ln(1− 2pe)
k−gn

(
1

2
ln

(
Ln

2

))
. (A.7)

Summing over all of the terms, we find

E




n∑

k=gn+bn+1

d̂1,k − d̂gn,k


 =

Ln

2
ln

(
Ln

2

) n∑

k=gn+bn+1

(1− 2pe)
k−gn

=
Ln

2
ln

(
Ln

2

)
(1− 2pe)

bn+1
n−(gn+bn+1)∑

k=0

(1− 2pe)
k

=
Ln

2
ln

(
Ln

2

)
(1− 2pe)

bn+1

(
1− (1− 2pe)

n−(gn+bn)

1− (1− 2pe)

)

<
ln(n)

2pe

sns(1− 2pe)
bn (A.8)

for sequences of length Ln = ns. To bound the expectation of the sum of

differences
(
d̂2,k − d̂gn+1,k

)
, we note that for any k > gn + 1

E
(
d̂2,k − d̂gn+1,k

)
= E

(
d̂1,k−1 − d̂gn,k−1

)
, (A.9)

and so we also find

E




n∑

k=gn+bn+1

(
d̂2,k − d̂gn+1,k

)

 <

ln(n)

2pe

sns(1− 2pe)
bn (A.10)

as above. 2
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Proof of Theorem 1 By definition, for any gn > 2, the expectation of

D̂gn,gn+1 − D̂12 is equal to

E
(
d̂gn,gn+1 − 1

n− 2

(
d̂gn. + d̂gn+1.

)
− d̂12 +

1

n− 2

(
d̂1. + d̂2.

))

=
1

n− 2

(
E

(
d̂1. − d̂gn.

)
+ E

(
d̂2. − d̂gn+1.

))
(A.11)

by the equality of d12 and dgn,gn+1.

To derive the result, we divide the terms into three regions. The first region is

defined for k ∈ [1, gn + 1], the second region is defined by k ∈ [gn + 2, gn + bn]

where bn = nβ for any β ∈
(
0, 1

2

)
, and the final region includes those terms

for which k > gn + bn.

For the first region we find that

gn+1∑

k=1

E
((

d̂1,k − d̂gnk

)
+

(
d̂2,k − d̂gn+1,k

))
= 0, (A.12)

an intuitive result that is easily verified by direct calculations.

For the remaining terms, we first consider those terms for which k is relatively

close to gn, with k ∈ [gn +2, gn + bn]. In this region, the mutation probabilities

p1k = 1
2

(
1− (1− 2pe)

k−1
)

> 1
2
(1− (1− 2pe)

gn), and because gn = nγ it is

clear that, for sequences of polynomial length, many estimates p̂1,k and p̂2k

will be greater than or equal to 1
2
. However, some of the mutation probabilities

pgn,k will not be large in this region, and we can expect, for k close to gn, that

the distance estimates d̂gn,k and d̂gn+1,k will be well-defined and, therefore,

less than the maximum value d?. To account for this behavior in our analysis,

we bound the expectation by assuming that all estimates d̂1,k and d̂2,k are
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assigned the maximum value d? = 1
2
log

(
Ln

2

)
, while all estimates d̂gn,k and

d̂gn+1,k are well-defined. It follows that, for sequences of length Ln = ns for

any s > 1,

gn+bn∑

k=gn+2

E
((

d̂1,k − d̂gn,k

)
+

(
d̂2,k − d̂gn+1,k

))

<
gn+bn∑

k=gn+2

((
d? − E(d̂gn,k)

)
+

(
d? − E(d̂gn+1,k)

))
< 2bnd

? < bns ln(n). (A.13)

In the region for which k > gn + bn, the distances d1k and dgn,k are both suffi-

ciently large that, for sequences of polynomial length, the distributions of p̂1,k

and p̂gn,k are nearly identical. We find that the expectation of the differences
(
d̂1,k − d̂gn,k

)
and

(
d̂2,k − d̂gn+1,k

)
is negligible in this region, decreasing to 0

with n as established in Lemma 6. Aggregating these results, an overall upper

bound is given by

E(D̂gn,gn+1 − D̂12) ≤ ln(n)

n− 2

(
sbn +

sns(1− 2pe)
bn

pe

)
, (A.14)

and, for bn = nβ for any β ∈
(
0, 1

2

)
and pe > 0, ns(1− 2pe)

bn = o(n−1). 2

Lemmas 7 and 8 are employed in the Proof of Theorem 2.

Lemma 7 For any distance estimate d̂ij with p̂ij < 1
2
,

E
(
d̂ij

)
<

(
s

4
+

1

2
+

s

n

)
ln(n)− 1

2
ln(2).
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Proof of Lemma 7 To establish this result, we first show that P
(
p̂ij ≥ 1

2
− 1

n
√

Ln

)
<

2
n
. Note that, for any well-defined estimate p̂ij,

P

(
p̂ij ≥ 1

2
− 1

n
√

Ln

)
= P

(
p̂ij ∈

[
1

2
− 1

n
√

Ln

,
1

2

))
. (A.15)

Let p̂ij = 1
Ln

Xij, where Xij =
∑Ln

r=1(Si,r 6= Sj,r) ∼ B (Ln, pij) . Assume, with-

out loss of generality, that Ln is an even integer. Then

P

(
Ln

2
−
√

Ln

n
≤ Xij <

Ln

2

)
< P

(
Ln

2
−

⌈√
Ln

n

⌉
≤ Xij <

Ln

2

)
, (A.16)

where
⌈√

Ln

n

⌉
denotes the smallest integer greater than

√
Ln

n
. Let X ′ be a bino-

mial random variable with size Ln and probability p′ = 1
2
− 1

Ln

⌈√
Ln

n

⌉
. Of all

binomial random variables with size Ln and probability p ∈
[

1
2
− 1

Ln

⌈√
Ln

n

⌉
, 1

2

)
,

the distribution of X ′ has the smallest variance. Thus, the maximum value of

the probability mass function of X ′, which is achieved at its expected value,

is greater than the maximum value achieved by any other binomial random

variable of size Ln on the interval
[

Ln

2
−

⌈√
Ln

n

⌉
, Ln

2

)
. It follows that

P

(
Ln

2
−

[√
Ln

n

]
≤ Xij <

Ln

2

)
< P

(
X ′ =

Ln

2
−

[√
Ln

n

]) (√
Ln

n

)
. (A.17)

By Stirling’s approximation, L! ∼ √
2πL(L+ 1

2)e−L. Then for any B(L, p) ran-

dom variable X for which Lp is an integer,

P (X = Lp) =
L!

(Lp)!(L(1− p))!
pLp(1− p)L(1−p)

∼ LL+ 1
2√

2π(Lp)Lp+ 1
2 (L(1− p))L(1−p)+ 1

2

(
pLp(1− p)L(1−p)

)

= (2πLp(1− p))−
1
2 . (A.18)
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With this result, we have

P

(
X ′ =

Ln

2
−

⌈√
Ln

n

⌉)
∼

(
2πLn

(
1

2
− 1

Ln

⌈√
Ln

n

⌉) (
1

2
+

1

Ln

⌈√
Ln

n

⌉))− 1
2

≤

2πLn

(
1

2
− 1

Ln

⌈√
Ln

n

⌉)2


− 1

2

<
2√
Ln

(A.19)

for all s ≥ 1 and n ≥ 4, and it follows directly that

P

(
p̂ij ≥ 1

2
− 1√

Lnn

)
< P

(
X ′ =

Ln

2
−

⌈√
Ln

n

⌉) (√
Ln

n

)
<

2

n
. (A.20)

By definition, d̂ij = −1
2
ln(1 − 2p̂ij) for all p̂ij < 1

2
. Then, for even integers

Ln, the maximum possible value for d̂ij = d? = −1
2
ln

(
1− 2

(
1
2
− 1

Ln

))
=

1
2
ln

(
Ln

2

)
, and so we may conservatively bound the expectation of d̂ij with the

expression

E(d̂ij)≤−1

2
ln

(
1− 2

(
1

2
− 1

n
√

Ln

)) (
1− 2

n

)
+

1

2
ln

(
Ln

2

) (
2

n

)

=
(

1

2
− 1

n

)
ln

(
n
√

Ln

2

)
+

(
1

n

)
ln

(
Ln

2

)
. (A.21)

The final result follows from simplifying the expression for sequences of length

Ln = ns. 2

Lemma 8 If gn = nγ for any γ ∈
(
0, 1

2

)
, then

P
(
p̂1,k <

1

2
, p̂gn,k ≥ 1

2

)
>

1

4
− 1

2

(
δgn,k + o(n−1)

)
,

where δgn,k = P
(
p̂gn,k < 1

2

)
− 1

2
.
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Proof of Lemma 8 For any k > gn, the probability P
(
p̂1,k < 1

2

)
= 1

2
+ δ1k,

with δ1k → 0 as k → ∞, and, similarly, P
(
p̂gn,k < 1

2

)
= 1

2
+ δgnk. Letting

X1k = Lnp̂1,k and Xgnk = Lnp̂gn,k, we have

P
(
p̂1,k <

1

2
, p̂gn,k ≥ 1

2

)
= P

(
X1k <

Ln

2
, Xgnk ≥ Ln

2

)
.

Because X1k and Xgnk will be nearly independent for large k, we derive a bound

by analyzing the difference between the joint probability and the product of

the marginal probabilities,

∣∣∣∣P
(
X1k <

Ln

2
, Xgnk ≥ Ln

2

)
− P

(
X1k <

Ln

2

)
P

(
Xgnk ≥ Ln

2

)∣∣∣∣

=
∣∣∣∣P

(
X1k <

Ln

2

) [
P

(
Xgnk ≥ Ln

2

∣∣∣∣X1k <
Ln

2

)
− P

(
Xgnk ≥ Ln

2

)]∣∣∣∣

≤
Ln
2
−1∑

i=0

P (X1k = i)
Ln∑

j=0

|P (Xgnk = j |X1k = i)− P (Xgnk = j)| . (A.22)

By Lemma 11,

Ln∑

j=0

|P (Xgnk = j |X1k = i)− P (Xgnk = j)| ≤ Ln(1− 2pe)
gn+1

1− (1− 2pe)2
, (A.23)

and thus

P
(
X1k <

Ln

2
, Xgnk ≥ Ln

2

)

≥P
(
X1k <

Ln

2

) [
P

(
Xgnk ≥ Ln

2

)
− Ln(1− 2pe)

gn+1

1− (1− 2pe)2

]

=
(

1

2
+ δ1k

) (
1

2
− δgnk − Ln(1− 2pe)

gn+1

1− (1− 2pe)2

)

>
1

4
− 1

2

(
δgnk +

Ln(1− 2pe)
gn+1

1− (1− 2pe)2

)
, (A.24)
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where, for sequences of length Ln = ns and gn = nγ for γ ∈
(
0, 1

2

)
,

Ln(1− 2pe)
gn+1

1− (1− 2pe)2
= cns(1− 2pe)

nγ

= o
(
n−1

)
(A.25)

for all pe > 0. 2

Proof of Theorem 2 For any pair of observations d̂1,k and d̂gn,k, let the

variable Yk be defined as follows:

Yk =





RR if p̂1,k < 1
2

and p̂gn,k < 1
2

RF if p̂1,k < 1
2

and p̂gn,k ≥ 1
2

FR if p̂1,k ≥ 1
2

and p̂gn,k < 1
2

FF if p̂1,k ≥ 1
2

and p̂gn,k ≥ 1
2

(A.26)

Conditioning on Yk, we have

Var(d̂1,k − d̂gn,k) = E(Var(d̂1,k − d̂gn,k|Yk)) + Var(E(d̂1,k − d̂gn,k|Yk))

≥Var(E(d̂1,k − d̂gn,k|Yk)). (A.27)

We recall Inequality(A.7) in the proof of Lemma 6 which states that, for

sequences of length Ln = ns for any integer s, for k > gn,

E
(
d̂1,k − d̂gn,k

)
≤ sns(1− 2pe)

k−gn ln(n),

and, since d1k ≥ dgnk for all gn > 1, E
(
d̂1,k − d̂gn,k

)
≥ 0. By definition,

Var(E(d̂1,k − d̂gn,k|Yk))

=
∑

i∈{FF,FR,RF,RR}
P (Yk = i)

(
E(d̂1,k − d̂gn,k|Yk = i)− E(d̂1,k − d̂gn,k)

)2

≥P (Yk = RF )
((

E
(
d̂1,k

∣∣∣∣p̂1,k <
1

2

)
− d?

)
− E(d̂1,k − d̂gn,k)

)2

. (A.28)
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Because E(d̂1,k − d̂gn,k) ≥ 0 and E(d̂1,k|p̂1,k < 1
2
)− d? ≤ 0, it is clear that

P (Yk = RF )
((

E
(
d̂1,k

∣∣∣∣p̂1,k <
1

2

)
− d?

)
− E(d̂1,k − d̂gn,k)

)2

≥P (Yk = RF )
(
E

(
d̂1,k

∣∣∣∣p̂1,k <
1

2

)
− d?

)2

. (A.29)

By Lemma 7,we have, for d? = 1
2
ln

(
Ln

2

)
= s

2
ln(n)− 1

2
ln(2),

∣∣∣∣
(
E

(
d̂1,k

∣∣∣∣p̂1,k <
1

2

)
− d?

)∣∣∣∣ ≥
(

s

4
− 1

2
− s

n

)
ln(n). (A.30)

Substituting this inequality into (A.29), it follows that

Var(E(d̂1,k − d̂gn,k|Yk)) ≥ P (Yk = RF )
((

s

4
− 1

2
− s

n

)
ln(n)

)2

. (A.31)

Theorem 2 follows directly from this result and Lemma 8. 2

Lemmas 9, 11, 12, and 13 are employed in the Proof of Theorem 3 and Corol-

lary 4.

Lemma 9 For any four sequences Sa, Sb, Sc,, and Sd with a 6= b and c 6= d,

0≤Cov(d̂ab, d̂cd)

≤
(

1

2
ln

(
Ln

2

))2

max
0≤i≤Ln

Ln∑

j=0

∣∣∣∣P
(
p̂cd =

j

Ln

∣∣∣∣p̂ab =
i

Ln

)
− P

(
p̂cd =

j

Ln

)∣∣∣∣ .
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Proof of Lemma 9 We first establish the upper bound. Define the distance

function d(i) as in the Proof of Lemma 6. Then

Cov(d̂ab, d̂cd)

=
Ln∑

i=0

P
(
p̂ab =

i

Ln

)
d(i)

Ln∑

j=0

d(j)
[
P

(
p̂cd =

j

Ln

∣∣∣∣p̂ab =
i

Ln

)
− P

(
p̂cd =

j

Ln

)]
.

(A.32)

Bounding d(i) and d(j) by d? = 1
2
ln(Ln

2
) for all i and j, we have

Cov(d̂ab, d̂cd)

≤
Ln∑

i=0

P
(
p̂ab =

i

Ln

) (
1

2
ln

(
Ln

2

))2 Ln∑

j=0

∣∣∣∣P
(
p̂cd =

j

Ln

∣∣∣∣p̂ab =
i

Ln

)
− P

(
p̂cd =

j

Ln

)∣∣∣∣

≤
(

1

2
ln

(
Ln

2

))2

max
0≤i≤Ln

Ln∑

j=0

∣∣∣∣P
(
p̂cd =

j

Ln

∣∣∣∣p̂ab =
i

Ln

)
− P

(
p̂cd =

j

Ln

)∣∣∣∣ .

The lower bound follows from Proposition 10.

Proposition 10 For any sequence length Ln and any sequences Sa, Sb, Sc,

and Sd with a ≤ b ≤ c ≤ d,

(i) Cov
(
d̂ac, d̂bd

)
≥ 0.

(ii) Cov
(
d̂ad, d̂bc

)
≥ 0.

Proof of Proposition 10 To establish this result, we apply a classic result

from Lehmann [28].

Definitions:

(1) A pair of random variables X and Y are said to be positively quadrant
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dependent if P (X ≥ x, Y ≥ y) ≥ P (X ≥ x)P (Y ≥ x) for all x, y. Let F1

denote the family of all distributions F satisfying this property.

(2) Two real-valued functions r and s of n arguments are said to be concor-

dant for the ith coordinate, if, considered as functions of the ith coor-

dinate (with all other coordinates held fixed), they are monotone in the

same direction.

We state the relevant portion of Lehmann’s results:

Theorem[28]. Let (X1, Y1), . . . (Xn, Yn) be independent pairs of random vari-

ables with joint distributions F1, . . . Fn. Let r and s be functions of n variables

and let

X = r(X1, . . . , Xn), Y = s(Y1, . . . , Yn).

Then (X, Y ) ∈ F1 if, for each i, F1 ∈ F1 and r, s are concordant for the

ith coordinate. Furthermore, provided the expectations E(X) and E(Y ) exist,

(X,Y ) ∈ F1 ⇒ E(XY ) ≥ E(X)E(Y ).

For each position i in sequences Sa and Sb, let Xab,i = I(Sa,i 6=Sb,i). Let

r(Xab,1, . . . , Xab,Ln) =





−1
2
ln

(
1− 2

∑Ln
i=1

Xab,i

Ln

)
,

∑Ln
i=1 Xab,i < Ln

2
− 1,

1
2
ln

(
Ln

2

)
,

∑Ln
i=1 Xab,i ≥ Ln

2
− 1

We first establish that (Xac,i, Xbd,i) ∈ F1 and (Xad,i, Xbc,i) ∈ F1. For binary

random variables X and Y , we need only check that P (X = 1, Y = 1) ≥
P (X = 1)P (Y = 1) to establish that (X, Y ) ∈ F1. In the first case, we have

P (Xac,i = 1, Xbd,i = 1) = (1− pab)(pbc)(1− pcd) + (pab)(1− pbc)(pcd)
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while

P (Xac,i = 1)P (Xbd,i = 1) = pacpbd.

Taking the difference and simplifying, we find that

P (Xac,i = 1, Xbd,i = 1)− P (Xac,i = 1)P (Xbd,i = 1)

=(1− 2pab)pbc(1− pbc)(1− 2pcd) ≥ 0 (A.33)

since 0 ≤ pij < 1
2

for all sequences Si and Sj. And in the second case, we have

P (Xad,i = 1, Xbc,i = 1)− P (Xad,i = 1)P (Xbc,i = 1)

=(1− 2pab)pbc(1− pbd − pcd) ≥ 0. (A.34)

Noting that the concordance condition is trivially satisfied, it follows from

Lehmann’s Theorem that

(r(Xac,1, . . . , Xac,Ln), r(Xbd,1, . . . , Xbd,Ln)) ∈ F1 and

(r(Xad,1, . . . , Xad,Ln), r(Xbc,1, . . . , Xbc,Ln)) ∈ F1.

And since d̂ij = r(Xij,1, . . . , Xij,Ln) for all sequences Si and Sj, we see that

(d̂ac, d̂bd) ∈ F1 and (d̂ad, d̂bc) ∈ F1 to complete the proof. 2

Lemma 11 (Total Variation Distance bounds) For three sequences Sa, Sb,

and Sc with a < b < c,

(i) max
0≤i≤Ln

Ln∑

j=0

∣∣∣∣P
(
p̂ac =

j

Ln

∣∣∣∣p̂ab =
i

Ln

)
− P

(
p̂ac =

j

Ln

)∣∣∣∣ ≤ 2Ln(1− 2pe)
c−b

(ii) max
0≤i≤Ln

Ln∑

j=0

∣∣∣∣P
(
p̂bc =

j

Ln

∣∣∣∣p̂ac =
i

Ln

)
− P

(
p̂bc =

j

Ln

)∣∣∣∣ ≤
Ln(1− 2pe)

b−a

1− (1− 2pe)2
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For four sequences Sa, Sb, Sc, and Sd with a < b < c < d,

(iii) max
0≤i≤Ln

Ln∑

j=0

[
P

(
p̂bd =

j

Ln

∣∣∣∣p̂ac =
i

Ln

)
− P

(
p̂bd =

j

Ln

)]
≤ Ln(1− 2pe)

d−c+b−a

1− (1− 2pe)2

(iv) max
0≤i≤Ln

Ln∑

j=0

[
P

(
p̂bc =

j

Ln

∣∣∣∣p̂ad =
i

Ln

)
− P

(
p̂bc =

j

Ln

)]
≤ Ln(1− 2pe)

d−c+b−a

1− (1− 2pe)2

Sketch of Proof of Lemma 11 For a single position r, let Yij,r = I{Si,r 6=Sj,r}

for all sequences Si and Sj It follows that, for i ≤ j ≤ k, Yij,r, Yik,r, and Yjk,r

are dependent Bernoulli random variables with respective success probabilities

pij, pik, and pjk. By Properties 1 and 2 of the total variation distance for

functions of independent and identically distributed random variables, if Y =

∑n
i=1 Yi and X =

∑n
j=1 Xj for (X1, . . . , Xn) ∼ Bernoulli(p) and (Y1, . . . , Yn) ∼

Bernoulli(q), then

max
i∈{0,...,n}

n∑

j=0

∣∣∣∣P
(
p̂ =

j

n

∣∣∣∣q̂ =
i

n

)
− P

(
p̂ =

j

n

)∣∣∣∣

≤(n) max
i∈{0,1}

1∑

j=0

|P (X1 = j |Y1 = i)− P (X1 = j)| . (A.35)

It therefore suffices to establish bounds for a single position r in each case.

We provide the details of the calculation for Inequality(i) to illustrate the

approach. In this case, we wish to bound

max
i

∑

j

|P (Yac,r = j |Yab,r = i)− P (Yac,r = j)|

for i, j ∈ {0, 1}. We first note that

P (Yac,r = 1|Yab,r = 0) =
(1− pa,b)pb,c

(1− pa,b)
= pb,c =

pa,bpb,c

pa,b

= P (Yac,r = 0|Yab,r = 1)
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and P (Yac,r = 0|Yab,r = 0) = 1− pb,c = P (Yac,r = 1|Yab,r = 1).

With these calculations,

1∑

j=0

|P (Yac,r = j |Yab,r = 0)− P (Yac,r = j)|

= |(1− pb,c)− (1− pa,c)|+ |pb,c − pa,c| = 2(pa,c − pb,c) (A.36)

and

1∑

j=0

|P (Yac,r = j |Yab,r = 1)− P (Yac,r = j)|

= |pb,c − (1− pa,c)|+ |(1− pb,c − pa,c| = 2(1− pa,c − pb,c). (A.37)

Since pa,c < 1
2
, we have

2(pa,c−pb,c) ≤ 2(1−pa,c−pb,c) = (1−2pe)
c−b

(
1 + (1− 2pe)

b−a
)
≤ 2(1−2pe)

c−b.

(A.38)

2

Lemma 12

(i)
gn+1∑

k=1

k−1∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)
<

(
1

2
ln

(
Ln

2

))2
[
g2

n

4
+

Lngn(1− 2pe)
gn
2

pe (1− (1− 2pe)2)

]

(ii)
n∑

k=gn+2

gn∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)
≤

(
1

2
ln

(
Ln

2

))2
[
g2

n

4
+

Lngn(1− 2pe)
gn
2

pe (1− (1− 2pe)2)

]

Proof of Lemma 12 When 1 ≤ l < k ≤ gn + 1, the distance estimates d̂1,k

and d̂l,gn+1 will be highly correlated when l is small (close to 1) and k is close

to gn + 1. To account for these terms, we first derive a conservative bound

for those terms for which l < gn

c
and k > (c−1)gn

c
for some positive constant
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c < gn:

gn+1∑

k=
(c−1)gn

c
+1

gn
c
−1∑

l=1

Cov
(
d̂1,k, d̂l,gn+1

)

<
(

gn

c
+ 1

) (
gn

c
− 1

) √
Var

(
d̂1,k

)√
Var

(
d̂l,g+n+1

)

<
(

gn

c

)2 (
1

2
ln

(
Ln

2

))2

(A.39)

where the final inequality stems from the fact that the maximum value for

d̂1,k = d? = 1
2
ln

(
Ln

2

)
. For the remaining terms, we have

(c−1)gn
c∑

k=1

k−1∑

l=1

Cov
(
d̂1,k, d̂l,gn+1

)
+

gn+1∑

k=
(c−1)gn

c
+1

k−1∑

l= gn
c

Cov
(
d̂1,k, d̂l,gn+1

)

<
(

1

2
ln

(
Ln

2

))2
(

Ln

1− (1− 2pe)2

)
×




(c−1)gn
c∑

k=1

k−1∑

l=1

(1− 2pe)
gn−k+l +

gn+1∑

k=
(c−1)gn

c
+1

k−1∑

l= gn
c

(1− 2pe)
gn−k+l


 (A.40)

by Lemmas 9 and 11. To simplify the preceding inequalities, we bound the

sums over l so that the remaining terms may be written as geometric series in

k. It follows that

(c−1)gn
c∑

k=1

k−1∑

l=1

(1− 2pe)
gn−k+l <

(c− 1)gn

c

(c−1)gn
c∑

k=1

(1− 2pe)
gn−k+1

=
(c− 1)gn

c
(1− 2pe)

gn
c

+1

(c−1)gn
c

−1∑

k=0

(1− 2pe)
k

<
(c− 1)gn

2cpe

(1− 2pe)
gn
c (A.41)
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and, by the same approach,

gn+1∑

k=
(c−1)gn

c
+1

k−1∑

l= gn
c

(1− 2pe)
gn−k+l <

(c− 1)gn

2cpe

(1− 2pe)
gn
c . (A.42)

Combining Inequalities (A.39), (A.41), and (A.42), we have

gn+1∑

k=1

k−1∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)
<

(
1

2
ln

(
Ln

2

))2
[(

gn

c

)2

+
Lngn(1− 2pe)

gn
c

pe(1− (1− 2pe)2)

]

(A.43)

For the second inequality, we consider terms for which 1 ≤ l < gn + 1 < k.

We follow the identical approach, first deriving a conservative bound for those

terms for which l ≤ gn

c
and k ≥ (c−1)gn

c
and then simplifying the remaining

terms to derive the inequality

n∑

k=gn+2

gn∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)

<
(

1

2
ln

(
Ln

2

))2
[(

gn

c

)2

+

(
(c− 1)gn

c
+ gn

)
Ln(1− 2pe)

gn
c

2pe (1− (1− 2pe)2)

]

<
(

1

2
ln

(
Ln

2

))2
[(

gn

c

)2

+
Lngn(1− 2pe)

gn
c

pe (1− (1− 2pe)2)

]
. (A.44)

Since Inequalities A.43 and A.44 hold for any integer c ∈ [2, gn−1], we choose

c = 2 for convenience to derive the final results. 2

Lemma 13

n∑

k=gn+2

n∑

l=gn+1

Cov
(
d̂1,k, d̂gn+1,l

)
≤

(
1

2
ln

(
Ln

2

))2 2Ln(n− gn)2(1− 2pe)
gn

1− (1− 2pe)2

Proof of Lemma 13 We first consider the terms in the summation for which

1 < gn + 1 < k ≤ l. In this region, the distances d1k and dgn+1,l partially
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overlap, and some correlation between the distance estimates is expected. Ap-

plications of Lemmas 9 and 11 give the inequality

n∑

k=gn+2

n∑

l=k

Cov
(
d̂1,k, d̂gn+1,l

)
≤

n∑

k=gn+2

n∑

l=k

(
1

2
ln

(
Ln

2

))2 Ln(1− 2pe)
l−k+gn

1− (1− 2pe)2

≤ (n− gn)2
(

1

2
ln

(
Ln

2

))2 Ln(1− 2pe)
gn

1− (1− 2pe)2
.

(A.45)

We now consider the terms with 1 < gn + 1 ≤ l < k. In this region, the

correlations between estimates d̂1,k and d̂gn+1,l are weakened by the large dis-

tance between sequences S1 and Sgn . Again applying Lemmas 9 and 11 and

bounding as above, we derive the inequality

n∑

k=gn+2

k−1∑

l=gn+1

Cov
(
d̂1,k, d̂gn+1,l

)
< (n− gn)2

(
1

2
ln

(
Ln

2

))2 Ln(1− 2pe)
gn

1− (1− 2pe)2
.

(A.46)

2

Proof of Theorem 3 From Lemma 9,

n∑

k=1

n∑

l=1

Cov
(
d̂1,k − d̂gn,k, d̂2l − d̂gn+1,l

)

≥−
n∑

k=1

n∑

l=1

[
Cov

(
d̂1,k, d̂gn+1,l

)
+ Cov

(
d̂gn,k, d̂2l

)]
. (A.47)

The proof then consists of deriving the following bounds:

n∑

k=1

n∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)
≤

(
1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]
(A.48)

and
n∑

k=1

n∑

l=1

Cov
(
d̂gn,k, d̂2l

)
≤

(
1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]
. (A.49)
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To establish the first inequality, we divide the sum into sections and bound

each case. Because the derivation of Inequality (A.49) is nearly identical to

that of Inequality (A.48), the result is stated without proof.

In the first region, we consider terms with either 1 ≤ k ≤ gn + 1 ≤ l or

1 ≤ k ≤ l ≤ gn + 1. The distance estimates d̂1,k and d̂gn+1,l are independent

in either case, and thus

gn+1∑

k=1

n∑

l=k

Cov
(
d̂1,k, d̂gn+1,l

)
= 0 (A.50)

We bound the remaining regions in Lemmas 12 and 13. These results, in

combination, cover all of the n2 terms in the sum
∑n

k=1

∑n
l=1 Cov

(
d̂1,k, d̂gn+1,l

)
,

and so we derive the overall bound:

n∑

k=1

n∑

l=1

Cov
(
d̂1,k, d̂gn+1,l

)

<
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+

2Lngn(1− 2pe)
gn
2

pe (1− (1− 2pe)2)
+

2Ln(n− gn)2(1− 2pe)
gn

1− (1− 2pe)2

]

=
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]

for gn = nγ with γ > 0. 2

Sketch of Proof of Corollary 4 We summarize the result for the first

inequality. By Lemma 9,

n−1∑

k=1

n∑

l=k+1

Cov (∆k, ∆l) ≥ −
n−1∑

k=1

n∑

l=k+1

Cov
[(

d̂1,k, d̂gn,l

)
+ Cov

(
d̂gn,k, d̂1,l

)]

(A.51)
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For this first term,

n−1∑

k=1

n∑

l=k+1

Cov
(
d̂1,k, d̂gn,l

)
=

n−1∑

k=gn+1

n∑

l=k+1

Cov
(
d̂1,k, d̂gn,l

)
(A.52)

by the independence of d̂1,k and d̂gn,l for k < gn < l and k < l < gn. And

following the proof of Lemma 13, we find that

n−1∑

k=gn+1

n∑

l=k+1

Cov
(
d̂1,k, d̂gn,l

)
≤ (n−gn)2

(
1

2
ln

(
Ln

2

))2 Ln(1− 2pe)
gn

1− (1− 2pe)2
. (A.53)

For the second term, we note that

n−1∑

k=1

n∑

l=k+1

Cov
(
d̂gn,k, d̂1,l

)
=

n∑

k=2

k−1∑

l=1

Cov
(
d̂1,k, d̂gn,l

)

=
gn∑

k=2

k−1∑

l=1

Cov
(
d̂1,k, d̂gn,l

)
+

n∑

k=gn+1

gn∑

l=1

Cov
(
d̂1,k, d̂gn,l

)
+

n∑

k=gn+1

k−1∑

l=gn+1

Cov
(
d̂1,k, d̂gn,l

)
.

(A.54)

For the first two summations in Equation (A.54), we follow the proof of

Lemma 12 to establish that

gn∑

k=2

k−1∑

l=1

Cov
(
d̂1,k, d̂gn,l

)
+

n∑

k=gn+1

gn∑

l=1

Cov
(
d̂1,k, d̂gn,l

)

≤
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+

2Lngn(1− 2pe)
gn
2

pe (1− (1− 2pe)2)

]
, (A.55)

and for the third summation, we follow the proof of Lemma 13 to obtain

n∑

k=gn+1

k−1∑

l=gn+1

Cov
(
d̂1,k, d̂gn,l

)
≤ (n− gn)2

(
1

2
ln

(
Ln

2

))2 Ln(1− 2pe)
gn

1− (1− 2pe)2
.

(A.56)
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Combining these results, we have

n−1∑

k=1

n∑

l=k+1

Cov
[(

d̂1,k, d̂gn,l

)
+ Cov

(
d̂gn,k, d̂1,l

)]

<
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+

2Lngn(1− 2pe)
gn
2

pe (1− (1− 2pe)2)
+

2Ln(n− gn)2(1− 2pe)
gn

1− (1− 2pe)2

]

=
(

1

2
ln

(
Ln

2

))2
[
g2

n

2
+ O

(
n−1

)]
(A.57)

2

Lemmas 14 and 15 are employed in the Proof of Theorem 5.

Lemma 14

Var (Dn) =
(

1

n− 2

)2

Var
((

d̂1. − d̂gn.

)
+

(
d̂2. − d̂gn+1.

))
+ O

(
n
−(s−1)

2 ln(n)
)

.

Proof of Lemma 14 Beginning with the variance of
(
d̂gn,gn+1 − d̂12

)
, we

see that, because the random variables d̂gn,gn+1 and d12 are independent and

identically distributed,

Var
(
d̂gn,gn+1 − d̂12

)
= Var

(
d̂gn,gn+1

)
+ Var

(
d̂12

)
= 2Var

(
d̂12

)
.

Define X12 to be a random variable which counts the number of observed

differences between sequences 1 and 2. Then X12 follows a Binomial distri-

bution with size Ln and probability p12, and, for large values of Ln, the pro-

portion of differences p̂12 will be approximately normally distributed with

mean p12 and variance p12(1−p12)
Ln

. Because p12 = pe and Ln = ns, it is clear

that Var (p̂12) = 1−(1−2pe)2

4ns → 0 as n → ∞ for any constant value pe. Since

d̂12 = −1
2
ln (1− 2p̂12), by straightforward Taylor series calculations in the
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neighborhood of p12 we have Var
(
d̂12

)
∼ 1−(1−2pe)2

4ns(1−2pe)2
→ 0, and it follows that

Var
(
d̂gn,gn+1 − d̂12

)
= O (n−s).

For the covariance terms, we have

∣∣∣Cov
(
d̂gn,gn+1 − d̂12, d̂1. − d̂gn.

)∣∣∣ ≤
√

Var
(
d̂gn,gn+1 − d̂12

)√
Var

(
d̂1. − d̂gn.

)

(A.58)

and

∣∣∣Cov
(
d̂gn,gn+1 − d̂12, d̂2. − d̂gn+1.

)∣∣∣ ≤
√

Var
(
d̂gn,gn+1 − d̂12

)√
Var

(
d̂2. − d̂gn+1.

)
.

(A.59)

Because Var
(
d̂gn,gn+1 − d̂12

)
= O(n−s), we need only show that the variance of

(
d̂1. − d̂gn.

)
and

(
d̂2. − d̂gn+1.

)
is not growing at a rate greater than or equal

ns to establish the overall convergence of the covariance terms. To bound

Var
(
d̂1. − d̂gn.

)
, we see that

Var

(
n∑

k=1

∆k

)
=

n∑

k=1

Var
(
d̂1,k

)
+

n∑

k=1

Var
(
d̂gn,k

)
− 2

n∑

k=1

n∑

l=1

Cov
(
d̂1,k, d̂gn,l

)

≤
n∑

k=1

Var
(
d̂1,k

)
+

n∑

k=1

Var
(
d̂gn,k

)

by the positivity of the covariance of all pairs of distances as established in

Lemma 9. Bounding each variance term by the largest possible value (d?)2, we

have

Var

(
n∑

k=1

∆k

)
≤ 2n (d?)2 =

n

2

(
ln

(
Ln

2

))2

<
s2n

2
(ln(n))2 = O(n(ln(n))2),
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and it follows that

∣∣∣Cov
(
d̂gn,gn+1 − d̂12, d̂1. − d̂gn.

)∣∣∣ =
∣∣∣∣
√

O (n−s)×O(n(ln(n))2)
∣∣∣∣ = O

(
n
−(s−1)

2 ln(n)
)

.

2

Lemma 15

Var

(
n∑

k=1

∆k

)
+Var

(
n∑

k=1

∆′
k

)
> 2 (ln(n))2

[
(n− (gn + bn))cβ,s,n − g2

ns2

4
− o

(
n−1

)]
.

Proof of Lemma 15 Expanding the first term in the expression, we have

Var
(
d̂1. − d̂gn.

)
=

n∑

k=1

Var (∆k) + 2
n−1∑

k=1

n∑

l=k+1

Cov (∆k, ∆l) (A.60)

Beginning with the variance terms, we consider only those values of k for which

k ≥ gn+bn, where bn = nβ for some β ∈
(
0, 1

2

)
. In this region, both the distance

estimates d̂1,k and d̂gn,k are likely to be “corrected” to the value d? with nearly

equal probability, since, for sequences of polynomial length, the true mutation

probabilities p̂1,k and p̂gn,k will both be greater than p? =
(

1
2
− 1

Ln

)
. And,

because gn is large, the random variables p̂1,k and p̂gn,k are nearly independent.

Thus, for any pair of distance estimates
{
d̂1,k, d̂gn,k

}
, the probability that either

estimate is corrected to the value d? will approach 1
2

for large values of k. By

Theorem 2, this behavior results in the inequality

Var(d̂1,k − d̂gn,k) ≥
(

1

4
− δgnk

2
− o

(
n−1

)) (
s

4
− 1

2
− s

n

)2

(ln(n))2,
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where δgnk = P
(
p̂gn,k < 1

2

)
− 1

2
→ 0 as k → ∞. Applying this inequality to

the terms for which k > gn + bn, we have

n∑

k=gn+bn

Var
(
d̂1,k − d̂gn,k

)

>(n− (gn + bn))

(
1

4
− δgn,gn+bn

2
− o

(
n−1

)) (
s

4
− 1

2
− s

n

)2

(ln(n))2

=(n− (gn + bn))cβ,s,n (ln(n))2 (A.61)

where cβ,s,n →
(

1
4

) (
s
4
− 1

2

)2
as n → ∞. And for the covariance terms in

Equation(A.60),

n−1∑

k=1

n∑

l=k+1

Cov
(
d̂1,k − d̂gn,k, d̂1l − d̂gn,l

)
> −

(
1

2
ln

(
Ln

2

))2
[
g2

n

2
+ o

(
n−1

)]

by Corollary 4. For Var
(
d̂2. − d̂gn+1.

)
, we note that, for all k > gn + 1,

Var
(
d̂2,k − d̂gn+1,k

)
= Var

(
d̂1,k−1 − d̂gn,k−1

)
. We therefore bound the sum as

for the previous term and again apply Corollary 4, deriving the identical bound

Var
(
d̂2. − d̂gn+1.

)
> (ln(n))2

[
(n− (gn + bn))cβ,s,n − g2

ns2

4
− o

(
n−1

)]
.

(A.62)

2
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Proof of Theorem 5 By definition,

Var
(
D̂gngn+1 − D̂12

)

=Var
((

d̂gn,gn+1 − d̂12

)
+

1

n− 2

(
d̂1. − d̂gn.

)
+

1

n− 2

(
d̂2. − d̂gn+1.

))

=Var
(
d̂gn,gn+1 − d̂12

)
+

(
1

n− 2

)2 [
Var

(
d̂1. − d̂gn.

)
+ Var

(
d̂2. − d̂gn+1.

)]

+
(

2

n− 2

) [
Cov

(
d̂gn,gn+1 − d̂12, d̂1. − d̂gn.

)
+ Cov

(
d̂gn,gn+1 − d̂12, d̂2. − d̂gn+1.

)]

+ 2
(

1

n− 2

)2

Cov
(
d̂1. − d̂gn., d̂2. − d̂gn+1.

)
.

To analyze this expression, we first note that, by Lemma 14, the terms involv-

ing
(
d̂gn,gn+1 − d̂12

)
are negligible for sequences of polynomial length. Focusing

on the remaining terms, we employ the lower bounds for Var
(
d̂1. − d̂gn.

)
and

Var
(
d̂2. − d̂gn+1.

)
obtained in Lemma 15. And by Theorem 3,

Cov
(
d̂1. − d̂gn., d̂2. − d̂gn+1.

)
≥ −

(
1

2
ln

(
Ln

2

))2 [
g2

n + o
(
n−1

)]
.

We combine this inequality with the results from Lemmas 14 and 15 to estab-

lish the overall variance bound.

2

A.1 Total Variation Distance Results

The following properties are easily verified, and are therefore stated without

proof.
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Property 1 For two sequences of independent and identically distributed

random variables Y1, Y2, . . . , Yk and Z1, Z2, . . . , Zk,

TV ((Y1, Y2, . . . , Yk) , (Z1, Z2, . . . , Zk)) ≤ (k)TV (Y1, Z1) .

Property 2 For any two random vectors Y = (Y1, Y2, . . . , Yk) and Z =

(Z1, Z2, . . . , Zk) and any function f ,

TV (f(Y), f(Z)) ≤ TV(Y,Z).
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Figure Captions

Figure 1: (a) A general n-taxa caterpillar tree. There are n − 2 internal

nodes, each represented by a “dot” in the figure, and all edges have equal

length de. (b) The “legless” caterpillar tree considered in the analysis. The

taxa are sequentially connected by edges of equal length de.

Figure 2: Reconstructing a 4-leaf caterpillar. Two of the four correct paths,

shown on the left and right, begin by joining leaves 1 and 2. At each step, leaves

and internal nodes included in the N-J distance calculations are enclosed in

boxes.
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Figures

Fig. 1.
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Fig. 2.
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