Why The Laws of Physics Imply the OPT
Astrophysical black holes almost certainly exist, but Hawking has shown that if black holes are allowed to exist for unlimited proper time, then they will completely evaporate, and unitarity will be violated. Thus unitarity requires that the universe must cease to exist after finite proper time, which implies that the universe has the spatial topology of a three-sphere. The Second Law of Thermodynamics says the amount of entropy in the universe cannot decrease, but it can be shown that the amount of entropy already in the CBR will eventually contradict the Bekenstein Bound near the final singularity unless there are no event horizons, since in the presence of horizons the Bekenstein Bound implies the universal entropy S is less that a constant times the radius of the universe squared, and general relativity requires the radius to go to zero at the final singularity. The absence of event horizons by definition means that the universe's future c-boundary is a single point, call it the Omega Point. MacCallum has shown that a three-sphere closed universe with a single point future c-boundary is of measure zero in initial data space. Barrow has shown that the evolution of a three-sphere closed universe into its final singularity is chaotic. Yorke has shown that a chaotic physical system is likely to evolve into a measure zero state if and only if its control parameters are intelligently manipulated. Thus life (which near the final state, is really collectively intelligent computers) almost certainly must be present arbitrarily close to the final singularity in order for the known laws of physics to be mutually consistent at all times. Misner has shown in effect that event horizon elimination requires an infinite number of distinct manipulations, so an infinite amount of information must be processed between now and the final singularity. The amount of information stored at any given time diverges to infinity as the Omega Point is approached, since the entropy diverges to infinity there, implying divergence of the complexity of the system that must be understood to be controlled.