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Evaluation of entries in Gradshteyn and Ryzhik employing the
method of brackets
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Abstract. The method of brackets was created for the evaluation of definite

integrals appearing in the resolution of Feynman diagrams. This method consists

of a small number of heuristic rules and it is quite easy to apply. The first of these
is Ramanujan’s Master Theorem, one of his favorite tools to evaluate integrals.

The current work illustrates its applicability by evaluating a variety of entries

from the classical table of integrals by I. S. Gradshteyn and I. M. Ryzhik.

1. Introduction

The problem of providing a closed-form expression for a definite integral has been
studied by a variety of methods. The corresponding problem for indefinite integrals
has been solved, for a large class of integrands, by the methods developed by Risch
[20, 21, 22]. The reader will find in [7] a modern description of these ideas and in
[26] an interesting overwiew of techniques for integration.

The lack of a universal algorithm for the evaluation of definite integrals has created
a collection of results saved in the form of Tables of Integrals. The volume created by
I. S. Gradshteyn and I. M. Ryzhik [14], currently in its 7th edition, is widely used by
the scientific community. Others include [5, 8, 9, 19]. The use of symbolic languages,
such as Mathematica or Maple, for this task usually contains a database search as a
preprocessing of the algorithms. The question of reliability of these tables is essential.

The method of brackets employed here was developed by one of the authors in
[12, 13] in the context of evaluations of definite integrals obtained from the Schwinger
parametrization of Feynman diagrams. The method is closely related to the so-called
negative dimensional integration method developed by I. G. Halliday and R. M. Ricotta
[15] and A. T. Suzuki et al. [23, 24, 25]. The reader will find a nice collection of
examples in [3, 4]. The use of this method in the general framework of definite
integrals has appeared in [10, 11]. In the present work, the flexibility of the method
of brackets is illustrated with the evaluation of a selected list of examples from [14].
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With just a few rules, the method can easily be automated. Code has been
produced in [17] using Sage with calls to Mathematica. Testing this implementation
against [14] has suggested adjustments to the original set of rules in the method. This
modified set of rules is presented here.

The main rule of the method of brackets corresponds to one of Ramanujan’s
favorite method to evaluate integrals of the form

∫∞
0
dxxν−1f(x). This is the so-

called Ramanujan’s Master Theorem. It states that if f(x) admits a series expansion
of the form

(1.1) f(x) =

∞∑
n=0

ϕ(n)
(−x)n

n!

in a neighborhood of x = 0, with f(0) = ϕ(0) 6= 0, then

(1.2)

∫ ∞
0

xν−1f(x) dx = Γ(ν)ϕ(−ν).

The integral is the Mellin transform of f(x) and the term ϕ(−ν) requires an extension
of the function ϕ, initially defined only for ν ∈ N. Details on the natural unique
extension of ϕ are given in [1]. Observe that, for ν > 0, the condition ϕ(0) 6= 0
guarantees the convergence of the integral near x = 0. The proof of Ramanujan’s
Master Theorem and the precise conditions for its application appear in Hardy [16].
The reader will find in [1] many other examples.

2. The method of brackets

This is a method that evaluates definite integrals over the half line [0, ∞). The
application of the method consists of small number of rules, deduced in heuristic form,
some of which are placed on solid ground [1].

For a ∈ R, the symbol

(2.1) 〈a〉 7→
∫ ∞

0

xa−1 dx

is the bracket associated to the (divergent) integral on the right. The symbol

(2.2) φn :=
(−1)n

Γ(n+ 1)

is called the indicator associated to the index n. The notation φi1i2···ir , or simply
φ12···r, denotes the product φi1φi2 · · ·φir .

Rules for the production of bracket series

Rule P1. Power series appearing in the integrand are converted into bracket series
by the procedure

(2.3)

∞∑
n=0

anx
αn+β−1 7→

∑
n>0

an〈αn+ β〉.
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Rule P2. For α ∈ C, the multinomial power (a1 + a2 + · · · + ar)
α is assigned the

r-dimension bracket series

(2.4)
∑
n1>0

∑
n2>0

· · ·
∑
nr>0

φn1 n2 ···nr
an1

1 · · · anr
r

〈−α+ n1 + · · ·+ nr〉
Γ(−α)

.

Rule P3. Each representation of an integral by a bracket series has associated an
index of the representation via

(2.5) index = number of sums − number of brackets.

It is important to observe that the index is attached to a specific representation of the
integral and not just to integral itself. The experience obtained by the authors using
this method suggests that, among all representations of an integral as a bracket series,
the one with minimal index should be chosen.

Rules for the evaluation of a bracket series

Rule E1. The one-dimensional bracket series is assigned the value

(2.6)
∑
n>0

φnf(n)〈an+ b〉 7→ 1

|a|
f(n∗)Γ(−n∗),

where n∗ is obtained from the vanishing of the bracket; that is, n∗ solves an+ b = 0.
This is precisely the Ramanujan’s Master Theorem.

The next rule provides a value for multi-dimensional bracket series of index 0,
that is, the number of sums is equal to the number of brackets.

Rule E2. Assuming the matrix A = (aij) is non-singular, then the assignment is∑
n1>0

· · ·
∑
nr>0

φn1···nr
f(n1, · · · , nr)〈a11n1 + · · ·+a1rnr+c1〉 · · · 〈ar1n1 + · · ·+arrnr+cr〉

7→ 1

|det(A)|
f(n∗1, · · ·n∗r)Γ(−n∗1) · · ·Γ(−n∗r)

where {n∗i } is the (unique) solution of the linear system obtained from the vanishing
of the brackets. There is no assignment if A is singular.

Rule E3. The value of a multi-dimensional bracket series of positive index is obtained
by computing all the contributions of maximal rank by Rule E2. These contributions
to the integral appear as series in the free parameters. Series converging in a common
region are added and divergent series are discarded. Any series producing a non-real
contribution is also discarded. There is no assignment to a bracket series of negative
index.

The next sections offer a variety of examples that illustrate these rules.

3. Examples of index 0

This section contains some integrals from [14] that lead to bracket series of index 0.
The evaluation of these entries by the method of brackets illustrate the rules described
in the previous section.
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Example 3.1. Entry 3.310 states the elementary result

(3.1) I =

∫ ∞
0

e−x dx = 1.

The method of brackets begins with the integral representation

(3.2) e−x =

∞∑
n1=0

(−x)n1

n1!

with its corresponding bracket series

(3.3)

∞∑
n1=0

(−1)n1

n1!
〈n1 + 1〉 =

∞∑
n1=0

φn1〈n1 + 1〉,

and the associated function f(n1) ≡ 1. Therefore, this problem produces one sum and
a single bracket giving a sum of index 0. The vanishing of the brackets gives n∗1 = −1.
Rule E1 gives the integral as

(3.4) I = Γ(n∗1) = Γ(1) = 1.

Example 3.2. The integrand now involves the Bessel function

(3.5) Jν(x) :=
(x

2

)ν ∞∑
n=0

(−1)n

n! Γ(ν + 1 + n)

(x
2

)2n

.

The bracket series corresponding to the integral

(3.6) I =

∫ ∞
0

Jν(bx) dx

is

(3.7) S =

(
b

2

)ν∑
n>0

φn1

1

Γ(ν + 1 + n1)

b2n1

4n1
〈2n1 + ν + 1〉.

This bracket series also has index 0: one sum and one bracket. The vanishing of this
bracket yields n∗1 = − 1

2 (1 + ν). Therefore the integral is assigned the value

I =
1

2

(
b

2

)ν
b2n

∗
1

22n∗
1 Γ(ν + 1 + n∗1)

Γ(−n∗1)

=
1

2

(
b

2

)ν
b−1−ν

2−1−ν Γ(ν+1
2 )

Γ(ν+1
2 )

=
1

b
.

This agrees with entry 6.511.1 in [14].

Example 3.2. Entry 6.521.11 gives the identity

(3.8) I =

∫ ∞
0

x2K1(ax) dx =
2

a3
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for a > 0. The integrand now involves the modified Bessel function of the second kind.
Use of the integral representation

(3.9) Kν(x) :=
2νΓ

(
ν + 1

2

)
xνΓ

(
1
2

) ∫ ∞
0

cos(xt) dt

(t2 + 1)ν+ 1
2

produces the double integral

(3.10) I =

∫ ∞
0

x2K1(ax) dx =

∫ ∞
0

∫ ∞
0

x

a

cos(axt)

(t2 + 1)
3
2

dt dx.

The cos(axt) factor is written as a series in n1

(3.11) cos(axt) =

∞∑
n1=0

Γ
(

1
2

)
Γ
(

1
2 + n1

) (−axt
2

)2n1

and Rule P2 assigns to the factor (t2 + 1)−
3
2 the bracket series

(3.12)
∑
n2>0

∑
n3>0

φn2 n3t
2n21n3

〈 32 + n2 + n3〉
Γ
(

3
2

) .

The final step in producing the bracket series is to replace t2n1+2n2 with 〈1+2n1+2n2〉
and x1+2n1 with 〈2 + 2n1〉. The bracket series

(3.13)
∑
n1>0

∑
n2>0

∑
n3>0

φ1,2,3
21−2n1a−1+2n1

Γ
(

1
2 + n1

) 〈2 + 2n1〉〈1 + 2n1 + 2n2〉〈 32 + n2 + n3〉

is of index 0.

The linear system constructed from the vanishing of the brackets is

(3.14)

2 0 0
2 2 0
0 1 1

n1

n2

n3

 =

−2
−1
− 3

2


with the matrix A having rank 3 and determinant 4. The solution of the system gives
n∗1 = −1, n∗2 = 1

2 , and n∗3 = −2. The value of the integral by Rule E2 is

I =
1

4

(
21−2n∗

1a−1+2n∗
1

Γ
(

1
2 + n∗1

) )
Γ(−n∗1)Γ(−n∗2)Γ(−n∗3)

=
1

4

(
23a−3

Γ
(
− 1

2

))Γ(1)Γ
(
− 1

2

)
Γ(2)

=
2

a3
,

verifying (3.8).
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4. Examples of index 1

This section considers integrals that lead to representations of index 1.

Example 4.1 The first example provides an evaluation of the elementary entry
3.311.1 in [14]:

(4.1)

∫ ∞
0

dx

epx + 1
=

ln 2

p
.

The method of brackets will reduce the problem to a triple series and two brackets
leading to a representation of index 1. Rule E3 reduces the number of sums by two
and the answer is expressed as a single series. The remaining series is elementary and
is recognized as ln 2.

The first step is to replace the integrand by its brackets series:∑
n1>0

∑
n2>0

φ1,2(epx)n11n2
〈1 + n1 + n2〉

Γ(1)
=
∑
n1>0

∑
n2>0

φ1,2e
n1px〈1 + n1 + n2〉.

The power series representation of the exponential is now employed to produce

∑
n1>0

∑
n2>0

φ1,2

∑
n3>0

(xn1)n3

Γ(n3 + 1)

 〈1 + n1 + n2〉 =

∑
n1,n2,n3>0

φ1,2,3(−n1)n3pn3xn3〈1 + n1 + n2〉.

This form of integrand produces the bracket series

(4.2) I =
∑

n1,n2,n3>0

φ1,2,3(−n1)n3pn3〈1 + n1 + n2〉 〈n3 + 1〉

for the integral.
There are now three sums and two brackets, giving a representation of index 1.

The matrix equation associated to the vanishing of the brackets

(4.3)

(
1 1 0
0 0 1

)n1

n2

n3

 =

(
−1
−1

)
has rank 2. It follows that the problem has 1 free parameter. Observe that the
equation coming from the vanishing of the bracket 〈n3 + 1〉 determines n∗3 = −1. The
system has reduced to the single equation n1 + n2 = −1. The choices of free indices
are n1 and n2 and their contributions to the integral are described next.

Case 1: n1 is free. The relation among the indices yields n∗2 = −n1 − 1 and the
corresponding determinant is −1. The contribution of this index to the integral is

(4.4)
∑
n1>0

φ1
1

| − 1|
(−n1p)

n∗
3Γ(−n∗2)Γ(−n∗3) =

∑
n1>0

(−1)n1+1

n1p
.

The term n1 = 0 yields the series divergent, so its contribution to the integral is
discarded.
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Case 2: n2 is free. Then n∗1 = −n2 − 1 with determinant −1. The contribution of
this index to the integral is given by

(4.5)
∑
n2>0

φ2
1

| − 1|
(−n∗1p)n

∗
3Γ(−n∗1)Γ(−n∗3) =

∑
n2>0

(−1)n2

(n2 + 1)p
.

Adding all the finite contributions of free indices gives the evaluation

(4.6)

∫ ∞
0

dx

ex + 1
=
∑
n2>0

(−1)n2

(n2 + 1)p
.

In order to present the integral in its simplest possible form, it is now required to
identify this series. In this case this is elementary: the result is

(4.7)
∑
n2>0

(−1)n2

(n2 + 1)p
=

ln 2

p
,

Thus,

(4.8)

∫ ∞
0

dx

epx + 1
=

ln 2

p
,

as stated in [14].

Example 4.2. This example illustrates the fact that the method of brackets gives, as
the value of a definite integral, a finite number of series. The question of reduction of
these series to its simplest form is a separate issue. As of now, there is no algorithmic
solution to this question.

Entry 3.452.1 states that

(4.9) I =

∫ ∞
0

x dx√
ex − 1

= 2π ln 2.

The brackets series for the integral is obtained as before, with the result

(4.10) I =
∑

n1,n2.n3

φ1,2,3
1√
π

(−1)n2+n3 〈n3 + 2〉〈n1 + n2 + 1
2 〉.

This is a representation of index 1 (three sums and two brackets).
The vanishing of the brackets shows that n3 is fixed: n∗3 = −2 and the relation

n1 + n2 + 1
2 = 0 must hold. Therefore the integral is given in terms of a single series.

Case 1: if n1 is free, then n∗2 = −n1 − 1
2 and the corresponding series is

(4.11) S1 =

∞∑
n1=0

(−1)2n1+5/2 Γ(n1 + 1/2)√
πn2

1 Γ(n1 + 1)
.

This series is discarded due to the presence of the singular term at n1 = 0.

Case 2: if n2 is free, then n∗1 = −n2 − 1
2 and the corresponding series is

(4.12) S2 =

∞∑
n2=0

4Γ(n2 + 1/2)

(2n2 + 1)2
√
π Γ(n2 + 1)

.
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The duplication formula for the gamma function

(4.13) Γ(m+ 1
2 ) =

(2m)!

22mm!

√
π

reduces the series to

(4.14) S2 =

∞∑
n2=0

(
2n2

n2

)
2−2n2

(2n2 + 1)2
.

The method of brackets now yields

(4.15)

∫ ∞
0

x dx√
ex − 1

=

∞∑
n2=0

(
2n2

n2

)
2−2n2

(2n2 + 1)2
.

To evaluate the series start with

(4.16)

∞∑
m=0

(
2m

m

)
xm =

1√
1− 4x

,

replace x by x2 and integrate from 0 to 1/2 to produce (after simplifications)

(4.17)

∞∑
m=0

(
2m
m

)
(2m+ 1)2

2−2m =

∫ 1

0

Arcsin u

u
du.

Finally, integrate by parts to obtain

(4.18)

∞∑
m=0

(
2m
m

)
(2m+ 1)2

2−2m = −
∫ π/2

0

ln sin y dy.

Euler showed that this last integral evaluates to −π2 ln 2. Details of this elementary
evaluation can be found in Section 12.5 of [6]. Formula (4.9) has been verified.

Example 4.3. Entry 6.554.1 gives the evaluation

(4.19)

∫ ∞
0

xJ0(xy)
dx

(x2 + a2)3/2
= a−1e−ay

for y > 0 and a ∈ C with Re a > 0. Here J0 is the Bessel function

(4.20) J0(x) =

∞∑
k=0

(−1)k
x2k

22k k!2
.

The bracket representations of the terms in the integrand are

(4.21) (a2 + x2)−3/2 =
∑
n1>0

∑
n2>0

φ12a
2n1x2n2

〈 32 + n1 + n2〉
Γ
(

3
2

)
and

(4.22) J0(xy) =
∑
n3>0

φn3

1

22n3 Γ(1 + n3)
(xy)2n3 .
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Therefore the integral is assigned the bracket series

(4.23)

∫ ∞
0

xJ0(xy)
dx

(x2 + a2)3/2
7→

∑
n1>0

∑
n2>0

∑
n3>0

φ1,2,3
y2n3a2n1

22n3Γ(1 + n3)Γ( 3
2 )
〈 32 + n1 + n2〉 〈2n2 + 2n3 + 2〉.

This is a representation of index +1.

Case 1: n1 free. The linear system from the vanishing of brackets is

(4.24)

(
1 0
2 2

)(
n2

n3

)
=

(
−n1 − 3

2
−2

)
with determinant 2 and solutions n∗2 = −n1 − 3

2 and n∗3 = n1 + 1
2 . The contribution

to the integral is given by

S1 =
∑
n1>0

(−1)n12−2n1−1a2n1y2n1+1Γ(−n1 − 1
2 )

√
π Γ(n1 + 1)

= −y
∞∑

n1=0

(ay)2n1

(2n1 + 1)!

= − sinh ay

a
.

Case 2: n2 free. Proceeding as before it is found that this case leads to a divergent
series so its contribution is ignored.

Case 3: n3 free. As in Case 1, the system has determinant −2 with solutions n∗1 =
n3 − 1

2 and n∗2 = −n3 − 1
2 . The contribution to the integral is

S3 =
∑
n3>0

(−1)n3a2n3−1y2n3Γ(−n3 + 1
2 )

√
π 22n3 Γ(n3 + 1)

=
cosh ay

a
.

Summing the finite contributions by Rule E3 gives

(4.25)

∫ ∞
0

xJ0(xy)
dx

(x2 + a2)3/2
= S1 + S3 =

e−ay

a
,

as stated.

Example 4.4. Entry 6.512.1 provides the value for the integral

(4.26)

∫ ∞
0

Jµ(ax)Jν(bx) dx.

The answer in [14] is divided according to conditions on the parameters.
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The integral is provided a brackets series by the usual method:

∫ ∞
0

Jµ(ax)Jν(bx) dx =

∫ ∞
0

 (
ax
2

)µ
Γ(µ+ 1)

∞∑
n1=0

(
− (ax)2

4

)n1

(µ+ 1)n1 n1!

×
 (

bx
2

)ν
Γ(ν + 1)

∞∑
n2=0

(
− (bx)2

4

)n2

(ν + 1)n2 n2!

 dx

is given by the series

S =
aµbν

2µ+νΓ(µ+ 1)Γ(ν + 1)

∑
n1,n2

φ12
a2n1 b2n2

22n1+2n2 (µ+ 1)n1(ν + 1)n2

〈2n1 +2n2 +µ+ν+1〉.

This is a representation of index 1.

Case 1: n2 free. Then n∗1 = − 1
2 (2n2 +µ+ ν + 1) and the contribution to the integral

is

S1 =
aµbν

2µ+νΓ(µ+ 1)Γ(ν + 1)

∑
n2>0

φ2
b2n2

(ν + 1)n2
22n2

(
1

2

(a
2

)2n∗
1 Γ(−n∗1)

(µ+ 1)n∗
1

)

=
bνa−ν−1

Γ(µ+ 1)Γ(ν + 1)

∑
n2>0

(−1)n2

n2!

(
b2

a2

)n2 Γ
(
µ+ν+1

2 + n2

)
(ν + 1)n2

Γ(µ+ 1)

Γ
(
µ+1−ν

2 − n2

)
=

bνa−ν−1Γ
(
µ+ν+1

2

)
Γ(ν + 1)

∑
n2>0

(
− b2

a2

)n2

n2!

(
µ+ν+1

2

)
n2

(ν + 1)n2

1(
µ−ν+1

2

)
−n2

Γ
(
µ+1−ν

2

) .
Simplifying the Pochhammer with negative index using

(4.27) (a)−n =
(−1)n

(1− a)n

gives

S1 =
bνa−ν−1 Γ

(
µ+ν+1

2

)
Γ(ν + 1)Γ

(
µ+1−ν

2

) ∑
n2>0

(
− b2

a2

)n2 (
µ+ν+1

2

)
n2

(
1− µ−ν+1

2

)
n2

n2!(ν + 1)n2
(−1)n2

=
bνa−ν−1 Γ

(
µ+ν+1

2

)
Γ(ν + 1)Γ

(
µ+1−ν

2

) ∑
n2>0

(
b2

a2

)n2 (
µ+ν+1

2

)
n2

(−µ+ν+1
2

)
n2

n2!(ν + 1)n2

=
bνa−ν−1 Γ

(
µ+ν+1

2

)
Γ(ν + 1)Γ

(
µ+1−ν

2

) 2F1

( µ+ν+1
2 , ν−µ+1

2

ν + 1

∣∣∣∣ b2a2

)
.

The series converges provided |b| < |a|.
Case 2: n2 free. The calculation is done as in Case 1. The result is the formula in
Case 1, with µ and ν interchanged and a and b interchanged.
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Example 4.5. Entry 3.423.1 is

(4.28)

∫ ∞
0

xν−1 dx

(ex − 1)2
= Γ(ν) [ζ(ν − 1)− ζ(ν)] .

The method of brackets provides a direct evaluation. The bracket series corre-
sponding to the integral is∫ ∞

0

xν−1 dx

(ex − 1)2
7→
∑
n1>0

∑
n2>0

∑
n3>0

φ1,2,3(−1)n2+n3nn3
1 〈n3 + ν〉 〈n1 + n2 + 2〉.

This is a representation of index 1 and n∗3 = −ν is determined. Choosing n1 as free
parameter gives the series ∑

n1>0

(−1)ν−2Γ(n1 + 2) Γ(ν)

nν1 Γ(n1 + 1)
.

The term n1 = 0 makes the series diverge, so its contribution is ignored.

The choice of n2 as a free parameter gives the series

(4.29)
∑
n2>0

(−1)νΓ(n2 + 2) Γ(ν)

(−n2 − 2)ν Γ(n2 + 1)
=
∑
n2>0

(n2 + 1) Γ(ν)

(n2 + 2)ν
.

The answer is obtained by writing n2 + 1 = (n2 + 2)− 1.

5. Examples of index 2

This section considers integrals that lead to representations of index 2.

Example 5.1. Entry 7.414.9 provides the value

(5.1)

∫ ∞
0

e−xxa+bLam(x)Lbn(x) dx = (−1)m+n(a+ b)!

(
a+m

n

)(
b+ n

m

)
,

with Re a+ b > −1. Here Lλn(x) is the associated Laguerre polynomial:

(5.2) Lλn(z) =
(λ+ 1)n

n!
1F1

(
−n
λ+ 1

∣∣∣∣z)
The resulting bracket series is of index +2:

∑
n1

∑
n2

∑
n3

φ1,2,3
(−1)n2+n3Γ(−n+ n3)Γ(−m+ n2)Γ(b+ n+ 1)Γ(a+m+ 1)

Γ(n+ 1)Γ(m+ 1)Γ(b+ n3 + 1)Γ(a+ n2 + 1)Γ(−m)Γ(−n)

× 〈a+ b+ n1 + n2 + n3 + 1〉.

There are three choices of free/fixed variables in the solution of the linear system
coming from the vanishing of the bracket:
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Case 1: With n1 and n2 free, the resulting series is zero and makes no contribution:

∑
n1,n2

(−1)a+b+2n1+n2+1Γ(−m+ n2)Γ(b+ n+ 1)Γ(a+m+ 1)

Γ(n2 + 1)Γ(n1 + 1)Γ(n+ 1)Γ(m+ 1)Γ(a+ n2 + 1

× Γ(a+ b+ n1 + n2 + 1)Γ(−a− b− n− n1 − n2 − 1)

)Γ(−a− n1 − n2)Γ(−m)Γ(−n)

=
(−1)a+bΓ(1 + a+ b)Γ(−m)Γ(1 + a+m)Γ(1 + b+ n)Γ(−a−m+ n)

π2 sin((a+ b+ n)π)Γ(1 + n)Γ(1 + b−m+ n)

× sin(aπ) sin(mπ) sin(nπ) = 0.

Case 2: With n1 and n3 free, the result is the same as in Case 1.

Case 3: With n2 and n3 free, the resulting series can be evaluated as follows to match
the value in the table:

∑
n2

∑
n3

Γ(−n+ n3)Γ(−m+ n2)Γ(b+ n+ 1)Γ(a+m+ 1)Γ(a+ b+ n2 + n3 + 1)

Γ(n3 + 1)Γ(n2 + 1)Γ(n+ 1)Γ(m+ 1)Γ(b+ n3 + 1)Γ(a+ n2 + 1)Γ(−m)Γ(−n)

=
∑
n2

Γ(−m+ n2)Γ(b+ n+ 1)Γ(a+m+ 1)

Γ(n2 + 1)Γ(n+ 1)Γ(m+ 1)Γ(a+ n2 + 1)Γ(−m)Γ(−n)

× Γ(−n)Γ(a+ b+ n2 + 1)

Γ(b+ 1)
2F1(−n, 1 + a+ b+ n2; 1 + b; 1)

=
∑
n2

Γ(−m+ n2)Γ(b+ n+ 1)Γ(a+m+ 1)Γ(a+ b+ n2 + 1)

Γ(n2 + 1)Γ(n+ 1)Γ(m+ 1)Γ(a+ n2 + 1)Γ(−m)Γ(b+ 1)

Γ(1 + b)Γ(−a+ n− n2)

Γ(1 + b+ n)Γ(−a− n2)

=
Γ(a+m+ 1)Γ(1 + a+ b)

Γ(n+ 1)Γ(m+ 1)

∑
n2

(−m)n2
(1 + a+ b)n2

(−π cscπ(a− n+ n2))

n2!(−π cscπ(a+ n2))Γ(1 + a− n+ n2)

=
Γ(a+m+ 1)Γ(1 + a+ b)

Γ(n+ 1)Γ(m+ 1)Γ(1 + a− n)

∑
n2

(−m)n2(1 + a+ b)n2(sin aπ)(−1)n2)

n2!(sin aπ)(−1)−n+n2(1 + a− n)n2

=
(−1)nΓ(a+m+ 1)Γ(1 + a+ b)

Γ(n+ 1)Γ(m+ 1)Γ(1 + a− n)
2F1(−m, 1 + a+ b; 1 + a− n; 1)

=
(−1)nΓ(a+m+ 1)Γ(1 + a+ b)

Γ(n+ 1)Γ(m+ 1)Γ(1 + a− n)

Γ(1 + a− n)Γ(m− n− b)
Γ(1 + a− n+m)Γ(−n− b)

=(−1)m+nΓ(a+ b+ 1)
Γ(a+m+ 1)

Γ(n+ 1)Γ(a+m− n+ 1)

Γ(b+ n+ 1)

Γ(m+ 1)Γ(b+ n−m+ 1)
.

6. The goal is to minimize the index

In this section the last part of Rule P3 is illustrated. Given a specific definite
integral, it has been conjectured by the authors that the optimal solution by the
method of brackets is the one with minimal index.
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Observe that the index of an integral may be affected by the representation of the
integrand or the order of expansion into series.

Example 6.1. Entry 3.331.1 gives the evaluation of

(6.1)

∫ ∞
0

e−βe
−x−µx dx = β−µγ(µ, β).

Here γ(µ, β) is the incomplete gamma function defined by

(6.2) γ(α, x) =

∫ x

0

e−ttα−1 dt.

Method 1. The integrand is associated a bracket series via

e−βe
−x

e−µx =
∑
n1>0

φn1
(βe−x)n1e−µx

=
∑
n1>0

φn1
βn1e−(n1+µ)x

=
∑
n1>0

βn1

∑
n2>0

φn2
(n1 + µ)n2xn2 .

The final step is to produce the bracket 〈n2 + 1〉 appearing from integration of xn2 .
Therefore, the bracket series associated with this representation of the integral is

(6.3)

∫ ∞
0

e−βe
−x−µx dx 7→

∑
n1>0

∑
n2>0

φn1n2β
n1(n1 + µ)n2〈n2 + 1〉.

This representation has index +1.
The vanishing of the bracket yields that n2 is fixed as n∗2 = −1 and n1 must be

free. It follows that the integral is

∑
n1>0

φn1β
n1(n1 + µ)−1Γ(1) =

Γ(µ)

Γ(µ+ 1)
1F1

(
µ

µ+ 1

∣∣∣∣β)
=

1

βµ
γ(µ, β).

Method 2. A second representation is produced as follows:

e−βe
−x

e−µx =
∑
n1>0

φn1
(βe−x)n1e−µx

=
∑
n1>0

φn1
βn1e−n1xe−µx

=
∑
n1>0

φn1
βn1

∑
n2>0

φn2
nn2

1 xn2

∑
n3>0

φn3
µn3xn3

=
∑
n1>0

∑
n2>0

∑
n3>0

φn1,n2,n3
βn1nn2

1 µn3xn2+n3 .
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The final step is now to replace the power xn2+n3 by the bracket 〈n2 + n3 + 1〉 to
produce

(6.4)

∫ ∞
0

e−βe
−x−µx dx 7→

∑
n1>0

∑
n2>0

∑
n3>0

φn1,n2,n3β
n1nn2

1 µn3〈n2 + n3 + 1〉.

This representation has index +2.
The vanishing of the brackets shows that n1 is free and either n2 or n3 is fixed.

Case 1: n1 free and n∗3 = −n2 − 1:

S1 =
∑
n1>0

∑
n2>0

φn1,n2
βn1nn2

1 µ−1−n2Γ(n2 + 1)

=
∑
n1>0

(−β)n1

µΓ(n1 + 1)

∑
n2>0

(
−n1

µ

)n2

=
∑
n1>0

(−β)n1

µΓ(n1 + 1)

(
1 +

n1

µ

)−1

=
Γ(µ)

Γ(µ+ 1)
1F1

(
µ

µ+ 1

∣∣∣∣−β)
= β−µγ(µ, β).

Case 2: n1 free and n∗2 = −n3 − 1:

S2 =
∑
n1>0

∑
n3>0

φn1,n3β
n1n−n3−1

1 µn3Γ(n3 + 1)

=
∑
n1>0

(−β)n1

n1Γ(n1 + 1)

∑
n3>0

(
− µ

n1

)n3

=
∑
n1>0

(−β)n1

n1Γ(n1 + 1)

(
1 +

µ

n1

)−1

=
Γ(µ)

Γ(µ+ 1)
1F1

(
µ

µ+ 1

∣∣∣∣−β)
= β−µγ(µ, β).

Rule E3 would return the sum S1 +S2, but this is twice the correct value. Among
these two methods for producing bracket series, the one giving the minimal index
should be chosen. This doubling phenomena has appearing in other examples where
the minimal index is not chosen. The reason behind this phenomena remains to be
elucidated.

Example 6.2. Entry 3.451.1 in [14] states that

(6.5)

∫ ∞
0

xe−x
√

1− e−x dx =
4

9
(4− 3 ln 2) .
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To evaluate this entry by classical methods, observe that the integral is −h′(1), where

(6.6) h(a) =

∫ ∞
0

e−ax
√

1− e−x dx.

The change of variables t = e−x gives

(6.7) h(a) =

∫ 1

0

ta−1(1− t)1/2 dt = B(a, 3
2 ),

where B is the beta function. Differentiation yields

(6.8) h′(a) = h(a)
[
ψ(a)− ψ(a+ 3

2 )
]
,

where ψ = Γ′/Γ is the polygamma function. This gives

(6.9)

∫ ∞
0

xe−x
√

1− e−x dx = −
Γ(1)Γ( 3

2 )

Γ( 5
2 )

[
ψ(1)− ψ( 5

2 )
]
.

The values ψ(1) = −γ (the Euler constant) and ψ( 5
2 ) = −γ−2 ln 2+ 8

3 give the result.
To obtain this last special value use

(6.10) ψ(n) = −γ +

n−1∑
k=1

1

k
and 2ψ(2x) = 2 ln 2 + ψ(x) + ψ(x+ 1

2 ).

This last relation follows by differentiaton of the duplication formula for the gamma
function Γ(2x) = 22x−1Γ(x)Γ(x+ 1

2 )/
√
π.

The evaluation of (6.5) is now obtained by the method of brackets.

Method 1. The exponential term is replaced by

(6.11) e−x =

∞∑
n=0

(−1)nxn

n!
7→
∑
n1>0

φ1x
n1

and Rule P2 is employed to produce

(6.12)
√

1− e−x =
∑
n2>0

∑
n3>0

φ2,31n2(−e−x)n3
〈− 1

2 + n2 + n3〉
Γ(−1/2)

.

Now expand the exponential terms e−n3x and replace the integral by the corresponding
bracket to obtain the series

(6.13)
∑
n1>0

∑
n2>0

∑
n3>0

∑
n4>0

φ1,2,3,4
(−1)n3nn4

3

Γ(−1/2)
〈n1 + n4 + 2〉〈n2 + n3 − 1

2 〉.

This gives a representation of index +2.

Case 1: n1, n2 free. Then n∗4 = −n1 − 2 and n∗3 = −n2 + 1
2 . The corresponding

determinant is −1 and the series becomes

∑
n1>0

∑
n2>0

−(−n2 + 1/2)−n1−2(−1)n1+1/2Γ(n2 − 1/2)Γ(n1 + 2)

2
√
πΓ(n2 + 1)Γ(n1 + 1)

This result is purely imaginary and therefore discarded.
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Case 2: n1, n3 free. Then n∗4 = −n1 − 2 and n∗2 = −n3 + 1
2 . The determinant is −1

and the series becomes

S2 =
∑
n1

∑
n3

−(−1)n1n−n1−2
3 Γ(n3 − 1/2)Γ(n1 + 2)

2
√
πΓ(n3 + 1)Γ(n1 + 1)

=
∑
n3

−Γ(n3 − 1/2)

2
√
πΓ(n3 + 1)

∑
n1

(−n3)n1Γ(n1 + 2)

Γ(n1 + 1)

=
∑
n3

−Γ(n3 − 1/2)

2
√
πΓ(n3 + 1)(1 + n3)2

= 3F2

(
1, 1,− 1

2

2, 2

∣∣∣∣1)
=

ψ
(

5
2

)
+ γ

3
2

= 4
9 (4− 3 ln 2) .

Case 3: n2, n4 free. This case is similar to Case 1 so it is also discared.
Case 4: n3, n4 free. This case is analog to Case 2 with value 2

3

(
8
3 − ln 4

)
.

Summing the results from Cases 2 and 4 would result in twice the correct value. This
doubling is due to the fact that the series in each of these cases converge on the
boundary.

Method 2. An alternative is to obtain the bracket series for (1−e−x)−1/2 to produce∫ ∞
0

xe−x(1− e−x)−1/2 dx 7→
∫ ∞

0

xe−x
∑
n1>0

∑
n2>0

φ1,21n1(−e−x)n2
〈− 1

2 + n1 + n2〉
Γ(−1/2)

dx,

that can be written as∫ ∞
0

xe−x(1− e−x)−1/2 dx 7→
∫ ∞

0

∑
n1>0

∑
n2>0

φ1,2(−1)n2xe−(1+n2)x 〈−
1
2 + n1 + n2〉
Γ(−1/2)

dx.

The exponential term is now expanded to produce the representation∫ ∞
0

xe−x(1−e−x)−1/2 dx 7→ 1

Γ(−1/2)

∑
n1>0

∑
n2>0

∑
n2>0

φ1,2,3(−1)n2(1+n2)n3〈n3+2〉 〈n1+n2− 1
2 〉.

This is a representation of index +1.

The value n∗3 = −2 is determined and the indices n1 and n2 are free.

Case 1. n1 is free. Then n∗2 = 1
2 − n1 leads to the contribution

(6.14)
∑
n1>0

φ1

(−1)
1
2−n1( 3

2 − n1)−2

Γ(−1/2)
Γ(2)Γ(n1 − 1

2 ).

This is discarded because it is purely imaginary.
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Case 2. n2 is free. Then n∗1 = 1
2 − n2 produces to the contribution

(6.15)
∑
n2>0

φ2
(−1)n2(1 + n2)−2

Γ(−1/2)
Γ(2)Γ(n2 − 1

2 ).

Therefore, the method of brackets shows that∫ ∞
0

xe−x(1− e−x)−1/2 dx = − 1

2
√
π

∑
n2>0

φ2

(−1)n2Γ(n2 − 1
2 )

(1 + n2)2

= 3F2

(
1, 1, 1

2

2, 2

∣∣∣∣1)
=

ψ
(

5
2

)
+ γ

3
2

= 4
9 (4− 3 ln 2) .

This verifies (6.5). As in the first method for this integral, the series converged on the
boundary, but it was counted only once in this evaluation using the bracket series of
index +1.

7. The evaluation of a Mellin transform

Several entries in [14] are instances of the Mellin transform

(7.1) M(f) :=

∫ ∞
0

xs−1f(x) dx.

For instance, entry 3.764.2:

(7.2)

∫ ∞
0

xp cos(ax+ b) dx = − 1

ap+1
Γ(p+ 1) sin

(
b+

πp

2

)
,

is of this form with p = s− 1. The reader will find in [2] an elementary proof of this
evaluation.

The evaluation of (7.2) by the method of brackets uses the hypergeometric repre-
sentation

cos(ax+ b) = 0F1

(
−
1
2

∣∣∣∣− (ax+ b)2

4

)
=

∞∑
n1=0

Γ( 1
2 )

n1! Γ(n+ 1
2 )

(
− (ax+ b)2

4

)n1

.

Therefore

(7.3)

∫ ∞
0

xp cos(ax+ b) dx =

∫ ∞
0

xp
∞∑

n1=0

φn1

Γ( 1
2 )

4n1 Γ(n1 + 1
2 )

(ax+ b)2n1 dx.

The bracket expansion

(7.4) (ax+ b)2n1 =

∞∑
n2=0

∞∑
n3=0

φ2,3a
n2bn3xn2

〈−2n1 + n2 + n3〉
Γ(−2n1)

,
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gives

(7.5)

∫ ∞
0

xp cos(ax+ b) dx =

∑
n1,n2,n3>0

φ1,2,3

Γ( 1
2 ) an2bn3

4n1Γ(n1 + 1
2 ) Γ(−2n1)

〈−2n1 + n2 + n3〉〈n2 + p+ 1〉.

The vanishing of the bracket 〈n2 + p + 1〉 determines n∗2 = −p − 1. There is one
sum and two possible choices for a free index.

Case 1: n1 is free. Then n∗3 = 2n1 − p− 1 and the corresponding determinant is −1.
The contribution to the integral is given by

S1 =
∑
n1>0

φn1

1

| − 1|
Γ( 1

2 )an
∗
2bn

∗
3

4n1Γ(n1 + 1
2 ) Γ(−2n1)

Γ(−n∗2)Γ(−n∗3)

=
∑
n1>0

φn1

Γ( 1
2 )a−p−1b2n1+p+1

4n1Γ(n1 + 1
2 ) Γ(−2n1)

Γ(p+ 1)Γ(−2n1 − p− 1).

Each term 1/Γ(−2n1) vanishes, it follows that S1 = 0.

Case 2: n3 is free. Then n∗1 = 1
2 (n3 − p− 1) and the contribution to the integral is

S2 =
∑
n3>0

φn3

1

2

Γ( 1
2 )an

∗
2bn3

4n
∗
1Γ(n∗1 + 1

2 ) Γ(−2n∗1)
Γ(−n∗1)Γ(−n∗2)

=
Γ
(

1
2

)
Γ(p+ 1)2p

ap+1

∞∑
n3=0

φn3

bn3Γ( 1
2 (−n3 + p+ 1)).

2n3Γ( 1
2 (n3 − p)) Γ(−n3 + p+ 1)

.

The factors in the last summand can be simplified to produce

S2 =
Γ(p+ 1)

ap+1

[
− sin

πp

2

∞∑
k=0

(−b2)k

Γ(2k + 1)
− b cos

πp

2

∞∑
k=0

(−b2)k

Γ(2k + 2)

]

=
Γ(p+ 1)

ap+1

[
− sin

πp

2
cos b− b cos

πp

2
sin b

]
= −Γ(p+ 1)

ap+1
sin
(πp

2
+ b
)

Adding all the finite contributions of free indices gives the evaluation

(7.6)

∫ ∞
0

xp cos(ax+ b) dx = −Γ(p+ 1)

ap+1
sin
(πp

2
+ b
)
.

8. The introduction of a parameter

This section illustrates the evaluation of entry 3.249

(8.1)

∫ ∞
0

[
e−x − (1 + x)−µ

] dx
x

= ψ(µ), for Reµ > 0.

A classical evaluation of this entry appears in [18].
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To apply the method of brackets, consider first the integral

(8.2) I(ε) =

∫ ∞
0

exp(−x)− (1 + x)−µ

x1−ε dx.

The result is obtained by letting ε → 0. Now compute the bracket series associated
to the integrand in (8.2) to obtain

(8.3) I(ε) =
∑
k>0

φk

[
1− Γ(µ+ n)

Γ(µ)

]
〈k + ε〉.

Therefore,

(8.4) I(ε) = Γ(ε)

[
1− Γ(µ− ε)

Γ(µ)

]
.

To obtain the value of (8.1), simply use the expansion

Γ(ε)

[
1− Γ(µ− ε)

Γ(µ)

]
= ψ(µ)−

(
ψ′(µ)

2
− 1

2
ψ2(µ) + γψ(µ)

)
ε+O(ε2)

as ε→ 0.

Conclusions. The examples given here, all taken from the classical table of integrals
by I. S. Gradshteyn and I. M. Ryzhik, have been evaluated using the method of
brackets. This illustrate the great flexibility of this method. The rules for evaluation
have been partially justified via Ramanujan’s Master Theorem.
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