THE EXPANSION OF BERNOULLI POLYNOMIALS IN FOURIER SERIES

This note contains the details of the expansion in Fourier series of $B_{n}(x)$.
Assume that the function $f(x)$ is periodic of period T. Then it is determined by its values on the interval $[-T / 2, T / 2]$. Under some simple hypothesis, the function admits an expansion of the form

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n x}{T}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n x}{T}\right) \tag{1}
\end{equation*}
$$

The coefficients a_{n} and b_{n} are called the Fourier coefficients of f.
To evaluate the coefficients we use the orthogonality of the functions sin and cos that appear in (1). This simply means that

$$
\begin{equation*}
\int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi n x}{T}\right) \sin \left(\frac{2 \pi m x}{T}\right) d x=0 \tag{2}
\end{equation*}
$$

for all $n, m \in \mathbb{N}$, also

$$
\begin{equation*}
\int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi n x}{T}\right) \cos \left(\frac{2 \pi m x}{T}\right) d x=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-T / 2}^{T / 2} \sin \left(\frac{2 \pi n x}{T}\right) \sin \left(\frac{2 \pi m x}{T}\right) d x=0 \tag{4}
\end{equation*}
$$

for $n, m \in \mathbb{N}$ and $m \neq n$ and finally

$$
\begin{equation*}
\int_{-T / 2}^{T / 2} \sin ^{2}\left(\frac{2 \pi n x}{T}\right) d x=\int_{-T / 2}^{T / 2} \cos ^{2}\left(\frac{2 \pi n x}{T}\right) d x=\frac{T}{2} \tag{5}
\end{equation*}
$$

To evaluate the coefficient b_{r}, multiply (1) by $\sin (2 \pi r x / T)$ and integrate over the interval $[-T / 2, T / 2]$. All the resulting integral vanish except the one corresponding to the index r. This gives

$$
\begin{equation*}
b_{r}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \sin \left(\frac{2 \pi r x}{T}\right) d x \quad \text { for } r \geq 1 \tag{6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
a_{r}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \cos \left(\frac{2 \pi r x}{T}\right) d x \quad \text { for } r \geq 1 \tag{7}
\end{equation*}
$$

The coefficient a_{0} is special: its formula is

$$
\begin{equation*}
a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(x) d x \tag{8}
\end{equation*}
$$

The goal is to compute the Fourier expansion of the Bernoulli polynomials. We start with

$$
\begin{equation*}
B_{1}(x)=x-\frac{1}{2} \tag{9}
\end{equation*}
$$

Of course these are not periodic functions, so what I mean is to take the function $B_{1}(x)$ over a certain interval and then extend in a periodic form.

To start, take

$$
\begin{equation*}
f(x)=x \quad \text { on }\left[-\frac{1}{2}, \frac{1}{2}\right] . \tag{10}
\end{equation*}
$$

In this case $T=1$ and the Fourier coefficients are

$$
\begin{equation*}
a_{n}=0, \text { for all } n \geq 0 \tag{11}
\end{equation*}
$$

because $f(x)$ is odd and

$$
\begin{equation*}
b_{n}=2 \int_{-1 / 2}^{1 / 2} x \sin (2 \pi n x) d x=4 \int_{0}^{1 / 2} x \sin (2 \pi n x) d x=\frac{(-1)^{n+1}}{\pi n} \tag{12}
\end{equation*}
$$

for $n \geq 1$. Therefore the Fourier expansion is

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin (2 \pi n x), \quad \text { for }-\frac{1}{2}<x<\frac{1}{2} \tag{13}
\end{equation*}
$$

Now shift to the interval $[0,1]$ using $y=x-1 / 2$ (and then writing x instead of y) to obtain

$$
\begin{equation*}
x-\frac{1}{2}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } 0<x<1 \tag{14}
\end{equation*}
$$

Note that one has to be careful with the continuity issues at the end of the interval: at $x=0$ the left-hand side of (14) becomes $-1 / 2$ and the right-hand side gives 0 .

The left-hand side of (14) is the first Bernoulli polynomial. To make it periodic, recall the fractional part of x, defined by

$$
\begin{equation*}
\{x\}=x-[x], \tag{15}
\end{equation*}
$$

where $[x]$ is the integer part of x; this is the largest integer less or equal than x. Then (14) becomes

$$
\begin{equation*}
B_{1}(\{x\})=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } x \in \mathbb{R} \tag{16}
\end{equation*}
$$

Now go back to the interval $[0,1]$ and write (16) in the form

$$
\begin{equation*}
B_{1}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } x \in[0,1] \tag{17}
\end{equation*}
$$

Recall the basic property

$$
\begin{equation*}
B_{n}^{\prime}(x)=n B_{n-1}(x) \tag{18}
\end{equation*}
$$

that gives

$$
\begin{equation*}
B_{2}^{\prime}(x)=2 B_{1}(x) \tag{19}
\end{equation*}
$$

and (17) now becomes

$$
\begin{equation*}
\frac{1}{2} B_{2}^{\prime}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } x \in[0,1] \tag{20}
\end{equation*}
$$

Integrate to obtain

$$
\begin{equation*}
\frac{1}{2} B_{2}(x)=-\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \frac{\cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right]}{2 \pi n}+C_{2} \tag{21}
\end{equation*}
$$

where C_{2} is a constant of integration. The constant of integration is obtained from the normalization

$$
\begin{equation*}
\int_{0}^{1} B_{n}(x) d x=0 \quad \text { for all } n \geq 1 \tag{22}
\end{equation*}
$$

Using

$$
\begin{equation*}
\int_{0}^{1} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] d x=\int_{-1 / 2}^{1 / 2} \cos [2 \pi n t] d t=\frac{1}{2 \pi n} \int_{-\pi n}^{\pi n} \cos s d s=0 \tag{23}
\end{equation*}
$$

gives $C_{2}=0$ and (21) becomes

$$
\begin{equation*}
B_{2}(x)=-2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \frac{\cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right]}{2 \pi n} \tag{24}
\end{equation*}
$$

This can be written in the form

$$
\begin{equation*}
B_{2}(x)=-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } 0<x<1 \tag{25}
\end{equation*}
$$

The series in (27) converges uniformly because

$$
\begin{equation*}
\left|-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right]\right| \leq \frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty \tag{26}
\end{equation*}
$$

and the uniform convergence follows from Weierstrass M-test. Therefore it is valid to evaluate both sides at an interior point.

To get an idea of what is coming, observe that $x=\frac{1}{2}$ in (25) gives

$$
\begin{equation*}
B_{2}\left(\frac{1}{2}\right)=-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \tag{27}
\end{equation*}
$$

Now recall that

$$
\begin{equation*}
B_{2}(x)=x^{2}-x+\frac{1}{6} \tag{28}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
B_{2}\left(\frac{1}{2}\right)=-\frac{1}{12} \tag{29}
\end{equation*}
$$

In this form, equation (27) becomes

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\pi^{2}}{12} \tag{30}
\end{equation*}
$$

In order to reduce (30) to a more familiar form, split the index n in the series according to parity to obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}} \tag{31}
\end{equation*}
$$

and use

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}=\left(1-\frac{1}{4}\right) \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \tag{32}
\end{equation*}
$$

Replace in (31) to obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \tag{33}
\end{equation*}
$$

Replace this in (30) to produce

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \tag{34}
\end{equation*}
$$

Now go back to (25) (that I am copying here to make it easier to read)

$$
\begin{equation*}
B_{2}(x)=-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right], \quad \text { for } 0<x<1 \tag{35}
\end{equation*}
$$

and use the relation (18) with $n=3$ to get

$$
\begin{equation*}
B_{3}^{\prime}(x)=3 B_{2}(x) \tag{36}
\end{equation*}
$$

Integrate to obtain

$$
\begin{equation*}
B_{3}(x)=-12 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \frac{\sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right]}{2 \pi n}+C_{3} \tag{37}
\end{equation*}
$$

for some constant of integration C_{3}. To obtain the value of C_{3} use the analogue of (23) in the form

$$
\begin{equation*}
\int_{0}^{1} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] d x=\int_{-1 / 2}^{1 / 2} \sin [2 \pi n t] d t=\frac{1}{2 \pi n} \int_{-\pi n}^{\pi n} \sin s d s=0 \tag{38}
\end{equation*}
$$

and conclude that $C_{3}=0$. Therefore

$$
\begin{equation*}
B_{3}(x)=-2 \cdot 3!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{3}} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{39}
\end{equation*}
$$

This time, replacing $x=\frac{1}{2}$ simply gives

$$
\begin{equation*}
B_{3}\left(\frac{1}{2}\right)=0 \tag{40}
\end{equation*}
$$

This is clear from

$$
\begin{equation*}
B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{x}{2} \tag{41}
\end{equation*}
$$

Now compare the forms

$$
\begin{equation*}
B_{2}(x)=-2 \cdot 2!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] . \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{3}(x)=-2 \cdot 3!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{3}} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{43}
\end{equation*}
$$

to guess a general pattern.

Now use the relation (18) with $n=4$ to get

$$
\begin{equation*}
B_{4}^{\prime}(x)=4 B_{3}(x) \tag{44}
\end{equation*}
$$

and integrate (39) to get

$$
\begin{equation*}
B_{4}(x)=2 \cdot 4!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{4}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{45}
\end{equation*}
$$

where the constant of integration vanishes as before.
Iterating this process leads to

$$
\begin{equation*}
B_{2 k}(x)=2(-1)^{k} \cdot(2 k)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{46}
\end{equation*}
$$

To prove this result by induction, use

$$
\begin{equation*}
B_{2 k+1}^{\prime}(x)=(2 k+1) B_{2 k}(x) \tag{47}
\end{equation*}
$$

and integrate (46) to produce

$$
\begin{aligned}
B_{2 k+1}(x) & =(2 k+1) \times 2(-1)^{k} \cdot(2 k)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k}} \frac{1}{2 \pi n} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \\
& =2(-1)^{k} \cdot(2 k+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k+1}} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right]
\end{aligned}
$$

and integrating

$$
\begin{equation*}
B_{2 k+2}^{\prime}(x)=(2 k+2) B_{2 k+1}(x) \tag{48}
\end{equation*}
$$

to get

$$
\begin{equation*}
B_{2 k+2}(x)=2(-1)^{k+1} \cdot(2 k+2)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k+2}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{49}
\end{equation*}
$$

This proves (46) by induction.
Using (46) yields

$$
\begin{aligned}
B_{2 k+1}^{\prime}(x) & =(2 k+1) B_{2 k}(x) \\
& =2(-1)^{k} \cdot(2 k+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k+1}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right]
\end{aligned}
$$

Now integrate to get

$$
\begin{equation*}
B_{2 k+1}(x)=2(-1)^{k} \cdot(2 k+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k+1}} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{50}
\end{equation*}
$$

This is summarized in the next statement. As before the extension of the polynomial $P(x)$ is given by $P(\{x\})$.

Theorem 1. The Fourier series for the periodic extensions of the Bernoulli polynomials is given by

$$
\begin{equation*}
B_{2 k}(\{x\})=2(-1)^{k} \cdot(2 k)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k}} \cos \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2 k+1}(\{x\})=2(-1)^{k} \cdot(2 k+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 \pi n)^{2 k+1}} \sin \left[2 \pi n\left(x-\frac{1}{2}\right)\right] \tag{52}
\end{equation*}
$$

Now replace $x=0$ in (51) to obtain

$$
\begin{equation*}
B_{2 k}(0)=2(-1)^{k-1} \cdot(2 k)!\sum_{n=1}^{\infty} \frac{1}{(2 \pi n)^{2 k}} \tag{53}
\end{equation*}
$$

This is now written in a more familiar form. Recall the form of the Bernoulli polynomial

$$
\begin{equation*}
B_{r}(x)=\sum_{j=0}^{r}\binom{r}{j} B_{j} x^{r-j} \tag{54}
\end{equation*}
$$

and, using $x=0$, gives

$$
\begin{equation*}
B_{r}(0)=B_{r} . \tag{55}
\end{equation*}
$$

Therefore (53) is written as

$$
\begin{equation*}
B_{2 k}=\frac{2(-1)^{k-1} \cdot(2 k)!}{(2 \pi)^{2 k}} \sum_{n=1}^{\infty} \frac{1}{n^{2 k}} \tag{56}
\end{equation*}
$$

Definition 2. The Riemann zeta function

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{57}
\end{equation*}
$$

Theorem 3. The special value of the Riemann zeta function $\zeta(2 k)$ at an even integer is a rational multiple of $\pi^{2 k}$. The explicit expression is given by

$$
\begin{equation*}
\zeta(2 k)=\frac{2^{2 k-1}}{(2 k)!}(-1)^{k-1} B_{2 k} \times \pi^{2 k} \tag{58}
\end{equation*}
$$

Corollary 4. The sign of the Bernoulli number $B_{2 k}$ is $(-1)^{k-1}$.

