
THE EXPANSION OF BERNOULLI POLYNOMIALS IN

FOURIER SERIES

This note contains the details of the expansion in Fourier series of Bn(x).

Assume that the function f(x) is periodic of period T . Then it is determined by
its values on the interval [−T/2, T/2]. Under some simple hypothesis, the function
admits an expansion of the form

(1) f(x) = a0 +

∞
∑

n=1

an cos

(

2πnx

T

)

+

∞
∑

n=1

bn sin

(

2πnx

T

)

.

The coefficients an and bn are called the Fourier coefficients of f .

To evaluate the coefficients we use the orthogonality of the functions sin and cos
that appear in (1). This simply means that

(2)

∫ T/2

−T/2

cos

(

2πnx

T

)

sin

(

2πmx

T

)

dx = 0

for all n, m ∈ N, also

(3)

∫ T/2

−T/2

cos

(

2πnx

T

)

cos

(

2πmx

T

)

dx = 0

and

(4)

∫ T/2

−T/2

sin

(

2πnx

T

)

sin

(

2πmx

T

)

dx = 0

for n, m ∈ N and m 6= n and finally

(5)

∫ T/2

−T/2

sin2
(

2πnx

T

)

dx =

∫ T/2

−T/2

cos2
(

2πnx

T

)

dx =
T

2
.

To evaluate the coefficient br, multiply (1) by sin(2πrx/T ) and integrate over the
interval [−T/2, T/2]. All the resulting integral vanish except the one corresponding
to the index r. This gives

(6) br =
2

T

∫ T/2

−T/2

f(x) sin

(

2πrx

T

)

dx for r ≥ 1.

Similarly

(7) ar =
2

T

∫ T/2

−T/2

f(x) cos

(

2πrx

T

)

dx for r ≥ 1.

The coefficient a0 is special: its formula is

(8) a0 =
1

T

∫ T/2

−T/2

f(x) dx.

1
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The goal is to compute the Fourier expansion of the Bernoulli polynomials. We
start with

(9) B1(x) = x− 1

2
.

Of course these are not periodic functions, so what I mean is to take the function
B1(x) over a certain interval and then extend in a periodic form.

To start, take

(10) f(x) = x on
[

− 1

2
, 1

2

]

.

In this case T = 1 and the Fourier coefficients are

(11) an = 0, for all n ≥ 0

because f(x) is odd and

(12) bn = 2

∫ 1/2

−1/2

x sin (2πnx) dx = 4

∫ 1/2

0

x sin (2πnx) dx =
(−1)n+1

πn

for n ≥ 1. Therefore the Fourier expansion is

(13) x =

∞
∑

n=1

(−1)n+1

πn
sin(2πnx), for − 1

2
< x < 1

2
.

Now shift to the interval [0, 1] using y = x− 1/2 (and then writing x instead of y)
to obtain

(14) x− 1

2
=

∞
∑

n=1

(−1)n+1

πn
sin

[

2πn(x− 1

2
)
]

, for 0 < x < 1.

Note that one has to be careful with the continuity issues at the end of the interval:
at x = 0 the left-hand side of (14) becomes −1/2 and the right-hand side gives 0.

The left-hand side of (14) is the first Bernoulli polynomial. To make it periodic,
recall the fractional part of x, defined by

(15) {x} = x− [x] ,

where [x] is the integer part of x; this is the largest integer less or equal than x.
Then (14) becomes

(16) B1({x}) =

∞
∑

n=1

(−1)n+1

πn
sin

[

2πn(x− 1

2
)
]

, for x ∈ R.

Now go back to the interval [0, 1] and write (16) in the form

(17) B1(x) =

∞
∑

n=1

(−1)n+1

πn
sin

[

2πn(x− 1

2
)
]

, for x ∈ [0, 1].

Recall the basic property

(18) B′

n(x) = nBn−1(x)

that gives

(19) B′

2(x) = 2B1(x)

and (17) now becomes

(20)
1

2
B′

2(x) =
∞
∑

n=1

(−1)n+1

πn
sin

[

2πn(x− 1

2
)
]

, for x ∈ [0, 1].
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Integrate to obtain

(21)
1

2
B2(x) = −

∞
∑

n=1

(−1)n+1

πn

cos
[

2πn(x− 1

2
)
]

2πn
+ C2,

where C2 is a constant of integration. The constant of integration is obtained from
the normalization

(22)

∫ 1

0

Bn(x) dx = 0 for all n ≥ 1.

Using

(23)

∫ 1

0

cos
[

2πn
(

x− 1

2

)]

dx =

∫ 1/2

−1/2

cos [2πnt] dt =
1

2πn

∫ πn

−πn

cos s ds = 0

gives C2 = 0 and (21) becomes

(24) B2(x) = −2
∞
∑

n=1

(−1)n+1

πn

cos
[

2πn(x− 1

2
)
]

2πn
.

This can be written in the form

(25) B2(x) = −4
∞
∑

n=1

(−1)n+1

(2πn)2
cos

[

2πn(x− 1

2
)
]

, for 0 < x < 1.

The series in (27) converges uniformly because

(26)

∣

∣

∣

∣

∣

−4

∞
∑

n=1

(−1)n+1

(2πn)2
cos

[

2πn(x− 1

2
)
]

∣

∣

∣

∣

∣

≤
1

π2

∞
∑

n=1

1

n2
< ∞

and the uniform convergence follows from Weierstrass M-test. Therefore it is valid
to evaluate both sides at an interior point.

To get an idea of what is coming, observe that x = 1

2
in (25) gives

(27) B2

(

1

2

)

= −4

∞
∑

n=1

(−1)n+1

(2πn)2
.

Now recall that

(28) B2(x) = x2 − x+
1

6

and therefore

(29) B2

(

1

2

)

= −
1

12
.

In this form, equation (27) becomes

(30)

∞
∑

n=1

(−1)n

n2
= −

π2

12
.

In order to reduce (30) to a more familiar form, split the index n in the series
according to parity to obtain

(31)

∞
∑

n=1

(−1)n

n2
= −

∞
∑

k=1

1

(2k − 1)2
+

∞
∑

k=1

1

(2k)2
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and use

(32)

∞
∑

k=1

1

(2k − 1)2
=

∞
∑

k=1

1

k2
−

∞
∑

k=1

1

(2k)2
=

(

1−
1

4

) ∞
∑

k=1

1

k2
=

3

4

∞
∑

k=1

1

k2
.

Replace in (31) to obtain

(33)

∞
∑

n=1

(−1)n

n2
= −

3

4

∞
∑

k=1

1

k2
+

1

4

∞
∑

k=1

1

k2
= −

1

2

∞
∑

k=1

1

k2
.

Replace this in (30) to produce

(34)

∞
∑

n=1

1

n2
=

π2

6
.

Now go back to (25) (that I am copying here to make it easier to read)

(35) B2(x) = −4
∞
∑

n=1

(−1)n+1

(2πn)2
cos

[

2πn(x− 1

2
)
]

, for 0 < x < 1

and use the relation (18) with n = 3 to get

(36) B′

3(x) = 3B2(x).

Integrate to obtain

(37) B3(x) = −12

∞
∑

n=1

(−1)n+1

(2πn)2
sin

[

2πn(x− 1

2
)
]

2πn
+ C3

for some constant of integration C3. To obtain the value of C3 use the analogue of
(23) in the form

(38)

∫ 1

0

sin
[

2πn
(

x− 1

2

)]

dx =

∫ 1/2

−1/2

sin [2πnt] dt =
1

2πn

∫ πn

−πn

sin s ds = 0

and conclude that C3 = 0. Therefore

(39) B3(x) = −2 · 3!

∞
∑

n=1

(−1)n+1

(2πn)3
sin

[

2πn(x− 1

2
)
]

.

This time, replacing x = 1

2
simply gives

(40) B3

(

1

2

)

= 0.

This is clear from

(41) B3(x) = x3 −
3

2
x2 +

x

2
.

Now compare the forms

(42) B2(x) = −2 · 2!

∞
∑

n=1

(−1)n+1

(2πn)2
cos

[

2πn(x− 1

2
)
]

.

and

(43) B3(x) = −2 · 3!
∞
∑

n=1

(−1)n+1

(2πn)3
sin

[

2πn(x− 1

2
)
]

to guess a general pattern.
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Now use the relation (18) with n = 4 to get

(44) B′

4(x) = 4B3(x)

and integrate (39) to get

(45) B4(x) = 2 · 4!

∞
∑

n=1

(−1)n+1

(2πn)4
cos

[

2πn(x− 1

2
)
]

where the constant of integration vanishes as before.
Iterating this process leads to

(46) B2k(x) = 2(−1)k · (2k)!

∞
∑

n=1

(−1)n+1

(2πn)2k
cos

[

2πn(x− 1

2
)
]

To prove this result by induction, use

(47) B′

2k+1(x) = (2k + 1)B2k(x)

and integrate (46) to produce

B2k+1(x) = (2k + 1)× 2(−1)k · (2k)!
∞
∑

n=1

(−1)n+1

(2πn)2k
1

2πn
sin

[

2πn(x− 1

2
)
]

= 2(−1)k · (2k + 1)!

∞
∑

n=1

(−1)n+1

(2πn)2k+1
sin

[

2πn(x− 1

2
)
]

,

and integrating

(48) B′

2k+2(x) = (2k + 2)B2k+1(x)

to get

(49) B2k+2(x) = 2(−1)k+1 · (2k + 2)!

∞
∑

n=1

(−1)n+1

(2πn)2k+2
cos

[

2πn(x− 1

2
)
]

This proves (46) by induction.
Using (46) yields

B′

2k+1(x) = (2k + 1)B2k(x)

= 2(−1)k · (2k + 1)!

∞
∑

n=1

(−1)n+1

(2πn)2k+1
cos

[

2πn(x− 1

2
)
]

Now integrate to get

(50) B2k+1(x) = 2(−1)k · (2k + 1)!

∞
∑

n=1

(−1)n+1

(2πn)2k+1
sin

[

2πn(x− 1

2
)
]

This is summarized in the next statement. As before the extension of the poly-
nomial P (x) is given by P ({x}).

Theorem 1. The Fourier series for the periodic extensions of the Bernoulli poly-

nomials is given by

(51) B2k({x}) = 2(−1)k · (2k)!
∞
∑

n=1

(−1)n+1

(2πn)2k
cos

[

2πn(x− 1

2
)
]
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and

(52) B2k+1({x}) = 2(−1)k · (2k + 1)!

∞
∑

n=1

(−1)n+1

(2πn)2k+1
sin

[

2πn(x− 1

2
)
]

.

Now replace x = 0 in (51) to obtain

(53) B2k(0) = 2(−1)k−1 · (2k)!
∞
∑

n=1

1

(2πn)2k

This is now written in a more familiar form. Recall the form of the Bernoulli
polynomial

(54) Br(x) =
r

∑

j=0

(

r

j

)

Bjx
r−j

and, using x = 0, gives

(55) Br(0) = Br.

Therefore (53) is written as

(56) B2k =
2(−1)k−1 · (2k)!

(2π)2k

∞
∑

n=1

1

n2k
.

Definition 2. The Riemann zeta function

(57) ζ(s) =

∞
∑

n=1

1

ns

Theorem 3. The special value of the Riemann zeta function ζ(2k) at an even

integer is a rational multiple of π2k. The explicit expression is given by

(58) ζ(2k) =
22k−1

(2k)!
(−1)k−1B2k × π2k

Corollary 4. The sign of the Bernoulli number B2k is (−1)k−1.


