THE EVALUATION OF A TRIGONOMETRIC INTEGRAL

The question considered here is to produce an explicit form of the integrals

$$
\begin{equation*}
S_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}=\int_{0}^{\pi / 2} \cos ^{n} x d x \tag{2}
\end{equation*}
$$

The fact that

$$
\begin{equation*}
\sin \left(\frac{\pi}{2}-x\right)=\cos x \tag{3}
\end{equation*}
$$

shows that

$$
\begin{equation*}
C_{n}=S_{n} \tag{4}
\end{equation*}
$$

Using Mathematica one obtains the data

$$
\pi / 2 \quad 1 \quad \pi / 4 \quad 2 / 3 \quad 3 \pi / 16 \quad 8 / 15 \quad 5 \pi / 32 \quad 16 / 35 \quad 35 \pi / 256
$$

for $0 \leq n \leq 8$. This suggests to separate the discussion according to the parity of n. Therefore, define

$$
\begin{equation*}
I_{n}=\int_{0}^{\pi / 2} \sin ^{2 n} x d x=\int_{0}^{\pi / 2} \cos ^{2 n} x d x \tag{5}
\end{equation*}
$$

The goal is to produce a recurrence for this integral. But first we illustrate the peeling method.

Before explaing this method, observe that the change of variables $x=\tan t$ converts (5) to the rational form

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{n+1}} \tag{6}
\end{equation*}
$$

The peeling method consists of using Mathematica to obtain data for I_{n} and use it to guess a formula for I_{n}.

The first few values of I_{n} contains a factor of π, so it seems a good idea to define

$$
\begin{equation*}
W_{n}=\frac{1}{\pi} I_{n} . \tag{7}
\end{equation*}
$$

The first few values of W_{n} are
$1 / 2 \quad 1 / 4 \quad 3 / 16 \quad 5 / 32 \quad 35 / 256 \quad 63 / 512 \quad 231 / 2048 \quad 429 / 4096 \quad 6435 / 65536$
and now we need to identify these rational numbers.
Some information about the denominators is easy to obtain: the list

$$
\begin{array}{lllllllll}
2 & 4 & 16 & 32 & 256 & 512 & 2048 & 4096 & 65536
\end{array}
$$

show that they all are powers of 2 . The corresponding exponents are

$$
\begin{array}{lllllllll}
1 & 2 & 4 & 5 & 8 & 9 & 11 & 12 & 16 \\
& & & & 1 & & &
\end{array}
$$

and from here it seems that

$$
\begin{equation*}
R_{n}=2^{2 n+1} \times W_{n} \tag{8}
\end{equation*}
$$

is an integer. The first few values are

$$
\begin{array}{lllllllll}
1 & 2 & 6 & 20 & 70 & 252 & 924 & 3432 & 12870
\end{array}
$$

A search in OEIS shows that

$$
\begin{equation*}
R_{n}=\binom{2 n}{n} \tag{9}
\end{equation*}
$$

A second form of guessing (9) is provided later.

We conclude with the following:
Guess. The following formula is true:

$$
\begin{equation*}
I_{n}=\int_{0}^{\pi / 2} \sin ^{2 n} x d x=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{10}
\end{equation*}
$$

The next step is to prove this guess. As before, we try to find a recurrence. This will come the basic algebraic relation

$$
\begin{equation*}
\sin ^{2} x+\cos ^{2} x=1 \tag{11}
\end{equation*}
$$

and integration by parts.
Write this as

$$
\begin{align*}
I_{n} & =\int_{0}^{\pi / 2} \sin ^{2} x \times \sin ^{2 n-2} x d x \tag{12}\\
& =\int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right) \times \sin ^{2 n-2} x d x \\
& =\int_{0}^{\pi / 2} \sin ^{2 n-2} x d x-\int_{0}^{\pi / 2} \cos ^{2} x \times \sin ^{2 n-2} x d x \\
& =I_{n-1}-\int_{0}^{\pi / 2} \cos ^{2} x \times \sin ^{2 n-2} x d x
\end{align*}
$$

Call this last integral

$$
\begin{equation*}
J=\int_{0}^{\pi / 2} \cos ^{2} x \times \sin ^{2 n-2} x d x \tag{13}
\end{equation*}
$$

Now write the integrand as

$$
\begin{align*}
\cos ^{2} x \times \sin ^{2 n-2} x & =\cos x \times \cos x \sin ^{2 n-2} x \tag{14}\\
& =\cos x \times \frac{d}{d x}\left(\frac{1}{2 n-1} \sin ^{2 n-1} x\right) \tag{15}
\end{align*}
$$

so J becomes

$$
\begin{equation*}
J=\int_{0}^{\pi / 2} \cos x \times \frac{d}{d x}\left(\frac{1}{2 n-1} \sin ^{2 n-1} x\right) d x \tag{16}
\end{equation*}
$$

Integrate by parts and observe that the boundary terms vanish. This gives

$$
\begin{aligned}
J & =-\int_{0}^{\pi / 2}(-\sin x) \times\left(\frac{1}{2 n-1} \sin ^{2 n-1} x\right) d x \\
& =\frac{1}{2 n-1} \int_{0}^{\pi / 2} \sin ^{2 n} x d x \\
& =\frac{1}{2 n-1} I_{2 n}
\end{aligned}
$$

Then (12) becomes

$$
\begin{equation*}
I_{n}=I_{n-1}-\frac{1}{2 n-1} I_{n} \tag{17}
\end{equation*}
$$

that leads to

$$
\begin{equation*}
I_{n}=\frac{2 n-1}{2 n} I_{n-1} . \tag{18}
\end{equation*}
$$

From here you can prove the value

$$
\begin{equation*}
I_{n}=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{19}
\end{equation*}
$$

using the following nice trick.
Define Y_{n} by the relation

$$
\begin{equation*}
I_{n}=Y_{n} \times \frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{20}
\end{equation*}
$$

and replace in (18) to obtain

$$
\begin{equation*}
Y_{n+1}=Y_{n} \tag{21}
\end{equation*}
$$

This can be solved to get

$$
\begin{equation*}
Y_{n} \equiv 1 \tag{22}
\end{equation*}
$$

The proof of (10) is complete.
A new approach to guessing the formula for I_{n}. A second way to guess the value (9) is explained now: use Mathematica to compute the value R_{50}. The answer is

$$
\begin{equation*}
R_{50}=100891344545564193334812497256 \tag{23}
\end{equation*}
$$

that is a 30 digit number. In its factored form, this number is

$$
\begin{equation*}
R_{50}=97 \cdot 89 \cdot 83 \cdot 79 \cdot 73 \cdots 29 \cdot 19 \cdot 17 \cdot 13 \cdot 11 \cdot 3^{4} \cdot 2^{3} \tag{24}
\end{equation*}
$$

and we will use this form to guess what R_{50} should be. The fact that its factorization contains the primes $97,89,83,79,73$ suggests a relation between R_{50} and 100 !. Therefore we compute

$$
\begin{equation*}
Y_{50}=\frac{R_{50}}{100!} . \tag{25}
\end{equation*}
$$

This turns out to be the reciprocal of an integer, so it is better to compute

$$
\begin{equation*}
Z_{50}=\frac{100!}{R_{50}} \tag{26}
\end{equation*}
$$

This is a 129 digits number and its prime factorization is

$$
\begin{equation*}
Z_{50}=47^{2} \cdot 43^{2} \cdot 41^{2} \cdot 37^{2} \cdot 31^{2} \cdots 5^{24} \cdot 3^{44} \cdot 2^{94} \tag{27}
\end{equation*}
$$

that is, all primes in the range 51 to 100 have disappeared. Also the exponents of the primes up to 50 are 2. This suggests that Z_{50} is related to $50!^{2}$. Therefore we compute

$$
\begin{equation*}
U_{50}=\frac{Z_{50}}{50!^{2}} \tag{28}
\end{equation*}
$$

and Mathematica gives

$$
\begin{equation*}
U_{50}=1 \tag{29}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
R_{50}=\frac{100!}{50!^{2}}=\binom{100}{50} \tag{30}
\end{equation*}
$$

Repeating this calculation for other values of n, also gives

$$
\begin{equation*}
U_{n}=1 \tag{31}
\end{equation*}
$$

that gives (9).
Theorem 1. The integral

$$
\begin{equation*}
I_{n}=\int_{0}^{\pi / 2} \sin ^{2 n} x d x \tag{32}
\end{equation*}
$$

has the value

$$
\begin{equation*}
I_{n}=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{33}
\end{equation*}
$$

