THE EVALUATION OF A TRIGONOMETRIC INTEGRAL

The question considered here is to produce an explicit form of the integrals

(1)
$$S_n = \int_0^{\pi/2} \sin^n x \, dx$$

and

(2)
$$C_n = \int_0^{\pi/2} \cos^n x \, dx$$

The fact that

(3)
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

shows that

(4)
$$C_n = S_n.$$

Using Mathematica one obtains the data

$$\pi/2$$
 1 $\pi/4$ 2/3 $3\pi/16$ 8/15 $5\pi/32$ 16/35 $35\pi/256$

for $0 \leq n \leq 8.$ This suggests to separate the discussion according to the parity of n. Therefore, define

(5)
$$I_n = \int_0^{\pi/2} \sin^{2n} x \, dx = \int_0^{\pi/2} \cos^{2n} x \, dx.$$

The goal is to produce a recurrence for this integral. But first we illustrate the **peeling method**.

Before explain this method, observe that the change of variables $x = \tan t$ converts (5) to the rational form

(6)
$$I_n = \int_0^\infty \frac{dx}{(x^2 + 1)^{n+1}}$$

The peeling method consists of using Mathematica to obtain data for I_n and use it to guess a formula for I_n .

The first few values of I_n contains a factor of π , so it seems a good idea to define

(7)
$$W_n = \frac{1}{\pi} I_n.$$

The first few values of W_n are

$$1/2 \quad 1/4 \quad 3/16 \quad 5/32 \quad 35/256 \quad 63/512 \quad 231/2048 \quad 429/4096 \quad 6435/65536$$

and now we need to identify these rational numbers.

Some information about the denominators is easy to obtain: the list

$$2 \quad 4 \quad 16 \quad 32 \quad 256 \quad 512 \quad 2048 \quad 4096 \quad 65536$$

show that they all are powers of 2. The corresponding exponents are

$$1 \quad 2 \quad 4 \quad 5 \quad 8 \quad 9 \quad 11 \quad 12 \quad 16$$

and from here it seems that

(8)
$$R_n = 2^{2n+1} \times W_n$$

is an integer. The first few values are

$$1 \quad 2 \quad 6 \quad 20 \quad 70 \quad 252 \quad 924 \quad 3432 \quad 12870$$

A search in OEIS shows that

(9)
$$R_n = \binom{2n}{n}.$$

A second form of guessing (9) is provided later.

We conclude with the following:

Guess. The following formula is true:

(10)
$$I_n = \int_0^{\pi/2} \sin^{2n} x \, dx = \frac{\pi}{2^{2n+1}} \binom{2n}{n}.$$

The next step is to prove this guess. As before, we try to find a recurrence. This will come the basic algebraic relation

$$\sin^2 x + \cos^2 x = 1$$

and integration by parts.

Write this as

(12)
$$I_n = \int_0^{\pi/2} \sin^2 x \times \sin^{2n-2} x \, dx$$
$$= \int_0^{\pi/2} (1 - \cos^2 x) \times \sin^{2n-2} x \, dx$$
$$= \int_0^{\pi/2} \sin^{2n-2} x \, dx - \int_0^{\pi/2} \cos^2 x \times \sin^{2n-2} x \, dx$$
$$= I_{n-1} - \int_0^{\pi/2} \cos^2 x \times \sin^{2n-2} x \, dx.$$

Call this last integral

(13)
$$J = \int_0^{\pi/2} \cos^2 x \times \sin^{2n-2} x \, dx.$$

Now write the integrand as

(14)
$$\cos^2 x \times \sin^{2n-2} x = \cos x \times \cos x \sin^{2n-2} x$$

(15)
$$= \cos x \times \frac{d}{dx} \left(\frac{1}{2n-1} \sin^{2n-1} x\right)$$

so J becomes

(16)
$$J = \int_0^{\pi/2} \cos x \times \frac{d}{dx} \left(\frac{1}{2n-1} \sin^{2n-1} x \right) \, dx.$$

Integrate by parts and observe that the boundary terms vanish. This gives

$$J = -\int_0^{\pi/2} (-\sin x) \times \left(\frac{1}{2n-1}\sin^{2n-1}x\right) dx$$
$$= \frac{1}{2n-1} \int_0^{\pi/2} \sin^{2n}x \, dx$$
$$= \frac{1}{2n-1} I_{2n}.$$

Then (12) becomes

(17)
$$I_n = I_{n-1} - \frac{1}{2n-1}I_n$$

that leads to

(18)
$$I_n = \frac{2n-1}{2n} I_{n-1}.$$

From here you can prove the value

(19)
$$I_n = \frac{\pi}{2^{2n+1}} \binom{2n}{n}$$

using the following nice trick.

Define Y_n by the relation

(20)
$$I_n = Y_n \times \frac{\pi}{2^{2n+1}} \binom{2n}{n}$$

and replace in (18) to obtain

$$Y_{n+1} = Y_n.$$

This can be solved to get

$$(22) Y_n \equiv 1.$$

The proof of (10) is complete.

A new approach to guessing the formula for I_n . A second way to guess the value (9) is explained now: use Mathematica to compute the value R_{50} . The answer is

$$(23) R_{50} = 100891344545564193334812497256$$

that is a 30 digit number. In its factored form, this number is

(24)
$$R_{50} = 97 \cdot 89 \cdot 83 \cdot 79 \cdot 73 \cdots 29 \cdot 19 \cdot 17 \cdot 13 \cdot 11 \cdot 3^4 \cdot 2^3$$

and we will use this form to guess what R_{50} should be. The fact that its factorization contains the primes 97, 89, 83, 79, 73 suggests a relation between R_{50} and 100!. Therefore we compute

(25)
$$Y_{50} = \frac{R_{50}}{100!}.$$

This turns out to be the reciprocal of an integer, so it is better to compute

(26)
$$Z_{50} = \frac{100!}{R_{50}}.$$

This is a 129 digits number and its prime factorization is

(27)
$$Z_{50} = 47^2 \cdot 43^2 \cdot 41^2 \cdot 37^2 \cdot 31^2 \cdots 5^{24} \cdot 3^{44} \cdot 2^{94}$$

that is, all primes in the range 51 to 100 have disappeared. Also the exponents of the primes up to 50 are 2. This suggests that Z_{50} is related to $50!^2$. Therefore we compute

 $U_n = 1$

(28)
$$U_{50} = \frac{Z_{50}}{50!^2}$$

and Mathematica gives $% \left({{{\left({{{\left({{{\left({{{\left({{{{{\rm{match}}}}}} \right.}$

(29) $U_{50} = 1.$

This is equivalent to

(30)
$$R_{50} = \frac{100!}{50!^2} = \binom{100}{50}.$$

Repeating this calculation for other values of n, also gives

that gives (9).

(31)

Theorem 1. The integral

(32)
$$I_n = \int_0^{\pi/2} \sin^{2n} x \, dx$$

has the value

$$I_n = \frac{\pi}{2^{2n+1}} \binom{2n}{n}$$