
THE EVALUATION OF A TRIGONOMETRIC INTEGRAL

The question considered here is to produce an explicit form of the integrals

(1) Sn =

∫ π/2

0

sinn x dx

and

(2) Cn =

∫ π/2

0

cosn x dx.

The fact that

(3) sin
(π

2
− x

)

= cosx

shows that

(4) Cn = Sn.

Using Mathematica one obtains the data

π/2 1 π/4 2/3 3π/16 8/15 5π/32 16/35 35π/256

for 0 ≤ n ≤ 8. This suggests to separate the discussion according to the parity of
n. Therefore, define

(5) In =

∫ π/2

0

sin2n x dx =

∫ π/2

0

cos2n x dx.

The goal is to produce a recurrence for this integral. But first we illustrate the
peeling method.

Before explaing this method, observe that the change of variables x = tan t
converts (5) to the rational form

(6) In =

∫

∞

0

dx

(x2 + 1)n+1
.

The peeling method consists of using Mathematica to obtain data for In and use
it to guess a formula for In.

The first few values of In contains a factor of π, so it seems a good idea to define

(7) Wn =
1

π
In.

The first few values of Wn are

1/2 1/4 3/16 5/32 35/256 63/512 231/2048 429/4096 6435/65536

and now we need to identify these rational numbers.
Some information about the denominators is easy to obtain: the list

2 4 16 32 256 512 2048 4096 65536

show that they all are powers of 2. The corresponding exponents are

1 2 4 5 8 9 11 12 16
1
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and from here it seems that

(8) Rn = 22n+1
×Wn

is an integer. The first few values are

1 2 6 20 70 252 924 3432 12870

A search in OEIS shows that

(9) Rn =

(

2n

n

)

.

A second form of guessing (9) is provided later.

We conclude with the following:

Guess. The following formula is true:

(10) In =

∫ π/2

0

sin2n x dx =
π

22n+1

(

2n

n

)

.

The next step is to prove this guess. As before, we try to find a recurrence. This
will come the basic algebraic relation

(11) sin2 x+ cos2 x = 1

and integration by parts.

Write this as

In =

∫ π/2

0

sin2 x× sin2n−2 x dx(12)

=

∫ π/2

0

(1− cos2 x)× sin2n−2 x dx

=

∫ π/2

0

sin2n−2 x dx−

∫ π/2

0

cos2 x× sin2n−2 x dx

= In−1 −

∫ π/2

0

cos2 x× sin2n−2 x dx.

Call this last integral

(13) J =

∫ π/2

0

cos2 x× sin2n−2 x dx.

Now write the integrand as

cos2 x× sin2n−2 x = cosx× cosx sin2n−2 x(14)

= cosx×
d

dx

(

1

2n− 1
sin2n−1 x

)

(15)

so J becomes

(16) J =

∫ π/2

0

cosx×
d

dx

(

1

2n− 1
sin2n−1 x

)

dx.
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Integrate by parts and observe that the boundary terms vanish. This gives

J = −

∫ π/2

0

(− sinx)×

(

1

2n− 1
sin2n−1 x

)

dx

=
1

2n− 1

∫ π/2

0

sin2n x dx

=
1

2n− 1
I2n.

Then (12) becomes

(17) In = In−1 −
1

2n− 1
In

that leads to

(18) In =
2n− 1

2n
In−1.

From here you can prove the value

(19) In =
π

22n+1

(

2n

n

)

using the following nice trick.
Define Yn by the relation

(20) In = Yn ×
π

22n+1

(

2n

n

)

and replace in (18) to obtain

(21) Yn+1 = Yn.

This can be solved to get

(22) Yn ≡ 1.

The proof of (10) is complete.

A new approach to guessing the formula for In. A second way to guess
the value (9) is explained now: use Mathematica to compute the value R50. The
answer is

(23) R50 = 100891344545564193334812497256

that is a 30 digit number. In its factored form, this number is

(24) R50 = 97 · 89 · 83 · 79 · 73 · · · 29 · 19 · 17 · 13 · 11 · 34 · 23

and we will use this form to guess what R50 should be. The fact that its factorization
contains the primes 97, 89, 83, 79, 73 suggests a relation between R50 and 100!.
Therefore we compute

(25) Y50 =
R50

100!
.

This turns out to be the reciprocal of an integer, so it is better to compute

(26) Z50 =
100!

R50

.

This is a 129 digits number and its prime factorization is

(27) Z50 = 472 · 432 · 412 · 372 · 312 · · · 524 · 344 · 294
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that is, all primes in the range 51 to 100 have disappeared. Also the exponents of
the primes up to 50 are 2. This suggests that Z50 is related to 50!2. Therefore we
compute

(28) U50 =
Z50

50!2

and Mathematica gives

(29) U50 = 1.

This is equivalent to

(30) R50 =
100!

50!2
=

(

100

50

)

.

Repeating this calculation for other values of n, also gives

(31) Un = 1

that gives (9).

Theorem 1. The integral

(32) In =

∫ π/2

0

sin2n x dx

has the value

(33) In =
π

22n+1

(

2n

n

)

.


