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The integrals in Gradshteyn and Ryzhik.

Part 23: Combination of logarithms and rational functions

Luis A. Medina and Victor H. Moll

Abstract. The table of Gradshteyn and Ryzhik contains many entries where the
integrand is a combination of a rational function and a logarithmic function. The

proofs presented here, complete the evaluation of all entries in Section 4.231 and
4.291.

1. Introduction

The table of integrals [6] contains many entries of the form

(1.1)

∫ b

a

R1(x) lnR2(x) dx

where R1 and R2 are rational functions. Some of these examples have appeared in
previous papers: entry 4.291.1

(1.2)

∫ 1

0

ln(1 + x)

x
dx =

π2

12

as well as entry 4.291.2

(1.3)

∫ 1

0

ln(1− x)

x
dx = −π

2

6

have been established in [4], entry 4.212.7

(1.4)

∫ e

1

lnx dx

(1 + lnx)2
=
e

2
− 1

appears in [2] and entry 4.231.11

(1.5)

∫ a

0

lnx dx

x2 + a2
=
π ln a

4a
− G

a
,
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where

(1.6) G =

∞
∑

k=0

(−1)k

(2k + 1)2

is the Catalan constant, has appeared in [5]. The value of entry 4.233.1

(1.7)

∫ 1

0

lnx dx

x2 + x+ 1
=

2

9

[

2π2

3
− ψ′

(

1

3

)]

,

where ψ(x) = Γ′(x)/Γ(x) is the digamma function, was established in [8].
A standard trick employed in the evaluations of integrals over [0,∞), is to trans-

form the interval [1,∞) back to [0, 1] via t = 1/x. This gives

(1.8)

∫ ∞

0

R(x) lnx dx =

∫ 1

0

[

R(x)− 1

x2
R

(

1

x

)]

dx.

In particular, if the rational function satisfies

(1.9) R

(

1

x

)

= x2R(x),

then

(1.10)

∫ ∞

0

R(x) lnx dx = 0.

This is the case for R(x) =
1 + x2

(1− x2)2
and (1.10) appears as entry 4.234.3 in [6].

The goal of this paper is to present a sytematic evaluation of the entries in [6] of
the form (1.1).

2. Combinations of logarithms and linear rational functions

Example 2.1. Entry 4.291.3 states that

(2.1)

∫ 1/2

0

ln(1− x)

x
dx =

ln2 2

2
− π2

12
.

To evaluate this integral let t = − ln(1− x) to produce

(2.2)

∫ 1/2

0

ln(1− x)

x
dx = −

∫ ln 2

0

te−t dt

1− e−t
.

This last integral can be written as

(2.3)

∫ ln 2

0

t dt−
∫ ln 2

0

t dt

1− e−t
.

The first integral is elementary and has value 1
2 ln

2 2. The second integral was evalu-

ated as π2/12 in [3].
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Example 2.2. The change of variables t = x/2 converts (2.1) to

(2.4)

∫ 1/2

0

ln

(

1− t

2

)

dt

t
=

ln2 2

2
− π2

12
.

This is entry 4.291.4 of [6].

Example 2.3. Entry 4.291.5 states that

(2.5)

∫ 1

0

ln

(

1 + x

2

)

dx

1− x
=

ln2 2

2
− π2

12
.

To evaluate this entry, let u = (1− x)/2 to reduce it to (2.1)

Example 2.4. Differentiating

(2.6)

∫ 1

0

(1 + x)−a dx =
2−a(2a − 2)

a− 1

with respect to a gives

(2.7)

∫ 1

0

(1 + x)−a ln(1 + x) dx =
1

(a− 1)2
(

2−a(−2 + 2a + 2 ln 2− 2a ln 2
)

.

Now let a→ 1 to obtain

(2.8)

∫ 1

0

ln(1 + x)

1 + x
dx =

1

2
ln2 2.

This is entry 4.291.6.

Example 2.5. The partial fraction decomposition

(2.9)
1

x(1 + x)
=

1

x
− 1

1 + x

gives

(2.10)

∫ 1

0

ln(1 + x)

x(1 + x)
dx =

∫ 1

0

ln(1 + x)

x
dx−

∫ 1

0

ln(1 + x)

1 + x
.

The first integral is entry 4.291.1 and it has value π2/12 as shown in [4]. The second
integral is 1

2 ln
2 2 as established in Example 2.4. This gives entry 4.291.12

(2.11)

∫ 1

0

ln(1 + x)

x(1 + x)
dx =

π2

12
− 1

2
ln2 2.

Example 2.6. Entry 4.291.13 is

(2.12)

∫ ∞

0

ln(1 + x) dx

x(1 + x)
=
π2

6
.

Split the integral over [0, 1] and [1,∞) and make the change of variables t = 1/x in
the second part. This gives

(2.13)

∫ ∞

0

ln(1 + x) dx

x(1 + x)
=

∫ 1

0

ln(1 + x) dx

x(1 + x)
+

∫ 1

0

ln(1 + t)− ln t

1 + t
dt.
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Expand the first integral in partial fractions to obtain

(2.14)

∫ ∞

0

ln(1 + x) dx

x(1 + x)
=

∫ 1

0

ln(1 + x)

x
dx−

∫ 1

0

lnx

1 + x
dx.

Integrate by parts the second integral to obtain

(2.15)

∫ ∞

0

ln(1 + x) dx

x(1 + x)
= 2

∫ 1

0

ln(1 + x)

x
dx.

The evaluation

(2.16)

∫ 1

0

ln(1 + x)

x
dx =

π2

12

that appears as entry 4.291.1 has been established in [4].

3. Combinations of logarithms and rational functions with denominators

that are squares of linear terms

This section evaluates integrals of the form

(3.1)

∫ b

a

R2(x) lnR1(x) dx

where R1, R2 are rational functions and the denominator of R2 is a quadratic poly-
nomial of the form (cx+ d)2.

Example 3.1. Entry 4.291.14 is

(3.2)

∫ 1

0

ln(1 + x)

(ax+ b)2
dx =

1

a(a− b)
ln
a+ b

b
+

2 ln 2

b2 − a2

and

(3.3)

∫ 1

0

ln(1 + x) dx

(x+ 1)2
=

1− ln 2

2

gives the value when a = b, after scaling.
To evaluate the first case, integrate by parts to get

(3.4)

∫ 1

0

ln(1 + x)

(ax+ b)2
dx = − ln 2

a(a+ b)
+

1

a

∫ 1

0

dx

(1 + x)(ax+ b)
.

The result now follows by expanding the second integrand in partial fractions.
The case a = b is obtained by a direct integration by parts:

(3.5)

∫ 1

0

ln(1 + x)

(1 + x)2
dx = − ln 2

2
+

∫ 1

0

dx

(1 + x)2
.

This last integral is 1/2 and the result has been established.
The same procedure gives entry 4.291.20:

(3.6)

∫ 1

0

ln(ax+ b)

(1 + x)2
dx =

1

2(a− b)
[(a+ b) ln(a+ b)− 2b ln b− 2a ln 2] ,

for a 6= b.
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Example 3.2. The partial fraction decomposition

(3.7)
1− x2

(ax+ b)2 (bx+ a)2
=

1

a2 − b2

[

1

(ax+ b)2
− 1

(bx+ a)2

]

and Example 3.1 gives the evaluation of entry 4.291.25:
∫ 1

0

(1− x2) ln(1 + x) dx

(ax+ b)2 (bx+ a)2
=

1

(a2 − b2)(a− b)

[

a+ b

ab
ln(a+ b)− ln b

a
− ln a

b

]

− 4 ln 2

(a2 − b2)2
.

The answer may be written in the more compact form

(3.8)
−a2 ln a− b [b ln b+ a ln(16ab)] + (a+ b)2 ln(a+ b)

ab(a2 − b2)2
,

but this form hiddes the symmetry of the integral.

Example 3.3. Entry 4.291.15 is

(3.9)

∫ ∞

0

ln(1 + x) dx

(ax+ b)2
=

ln a− ln b

a(a− b)

for a 6= b. In the case a = b, the integral scales to

(3.10)

∫ ∞

0

ln(1 + x) dx

(1 + x)2
= 1.

To evaluate this entry, integrate by parts to obtain

(3.11)

∫ ∞

0

ln(1 + x) dx

(ax+ b)2
=

1

a

∫ ∞

0

dx

(1 + x)(ax+ b)
.

This last integral is evaluated by using the partial fraction decomposition

(3.12)
1

(1 + x)(ax+ b)
=

1

b− a

(

1

1 + x
− a

ax+ b

)

.

Integration by parts in the case a = b (taken to be 1 by scaling) gives

(3.13)

∫ ∞

0

ln(1 + x) dx

(1 + x)2
=

∫ ∞

0

dx

(1 + x)2
= 1.

The same procedure gives entry 4.291.21:

(3.14)

∫ ∞

0

ln(ax+ b) dx

(1 + x)2
=
a ln a− b ln b

a− b
.

for a 6= b. The value of entry 4.291.17:

(3.15)

∫ ∞

0

ln(a+ x)

(b+ x)2
dx =

a ln a− b ln b

b(a− b)

is obtained from (3.14) by the change of variables x = bt.
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Example 3.4. The partial fraction decomposition (3.7) given in Example 3.2
produces the value of entry 4.291.26

(3.16)

∫ ∞

0

(1− x2) ln(1 + x) dx

(ax+ b)2 (bx+ a)2
=

ln b− ln a

ab(a2 − b2

form Example 3.3.

4. Combinations of logarithms and rational functions with quadratic

denominators

This section considers integrals of the form (1.1) where the denominator of R2(x)
is a polynomial of degree 2 with non-real roots.

Example 4.1. Entry 4.291.8 states that

(4.1)

∫ 1

0

ln(1 + x) dx

1 + x2
=
π

8
ln 2.

The proof of this evaluation is based on some entries of [6] that have been established
in [4]. The reader is invited to provide a direct proof.

The change of variables x = tanϕ gives
∫ 1

0

ln(1 + x) dx

1 + x2
=

∫ π/4

0

ln(1 + tanϕ)dϕ

=

∫ π/4

0

ln(sinϕ+ cosϕ)dϕ−
∫ π/4

0

ln cosϕdϕ.

The value
∫ π/4

0

ln(sinϕ+ cosϕ)dϕ = −π
8
ln 2 +

G

2

is entry 4.225.2 and
∫ π/4

0

ln cosϕdϕ = −π
4
ln 2 +

G

2

is entry 4.224.5. Both examples are evaluated in [4]. This gives the result.
The same technique gives entry 4.291.10

(4.2)

∫ 1

0

ln(1− x) dx

1 + x2
=
π

8
ln 2−G.

This time, entry 4.225.1
∫ π/4

0

ln(cosϕ− sinϕ)dϕ = −π
8
ln 2− G

2

is employed.

Example 4.2. Entry 4.291.9

(4.3)

∫ ∞

0

ln(1 + x) dx

1 + x2
=
π

4
ln 2 +G
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is equivalent, via x = tanϕ, to the identity

(4.4)

∫ π/2

0

ln(sinϕ+ cosϕ)dϕ−
∫ π/2

0

ln cosϕdϕ =
π

4
ln 2 +G.

The first integral is entry 4.225.2 and it has the value − 1
4π ln 2+G; the second integral

is entry 4.224.6 with value − 1
2π ln 2. Both of these examples have been established

in [4].

Example 4.3. The change of variables t = 1/x gives

(4.5)

∫ ∞

1

ln(x− 1) dx

1 + x2
=

∫ 1

0

ln(1− t) dt

1 + t2
−
∫ 1

0

ln t dt

1 + t2
.

The first integral has the value 1
8π ln 2 − G and it appears as entry 4.291.10 (it has

been established as (4.2)). The second integral is the special case a = 1 of (1.5). This
gives the value of entry 4.291.11:

(4.6)

∫ ∞

1

ln(x− 1) dx

1 + x2
=
π

8
ln 2.

Example 4.4. A small number of entries in [6] can be evaluated from entry
4.231.9

(4.7)

∫ ∞

0

lnx dx

x2 + q2
=
π

2

ln q

q
,

evaluated in [4]. Expanding in partial fractions gives the identity

(4.8)

∫ ∞

0

lnx dx

(x2 + a2)(x2 + b2)
=

π

2(b2 − a2)

(

ln a

a
− ln b

b

)

.

This provides the evaluation of entry 4.234.6

(4.9)

∫ ∞

0

lnx dx

(a2 + b2x2)(1 + x2)
=

πb

2a(b2 − a2)
ln
a

b

via the relation

(4.10)

∫ ∞

0

lnx dx

(a2 + b2x2)(1 + x2)
=

1

b2

∫ ∞

0

lnx dx

(x2 + a2/b2)(x2 + 1)
,

entry 4.234.7

(4.11)

∫ ∞

0

lnx dx

(x2 + a2)(1 + b2x2)
=

π

2(1− a2b2)

(

ln a

a
+ b ln b

)

via the relation

(4.12)

∫ ∞

0

lnx dx

(x2 + a2)(1 + b2x2)
=

1

b2

∫ ∞

0

lnx dx

(x2 + a2)(x2 + 1/b2)
,

and finally, entry 4.234.8

(4.13)

∫ ∞

0

x2 lnx dx

(a2 + b2x2)(1 + x2)
=

πa

2b(b2 − a2)
ln
b

a
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using the partial fraction decomposition

(4.14)
x2

(a2 + b2x2)(1 + x2)
=

1

(b2 − a2)

1

x2 + 1
− a2

b2(b2 − a2)

1

x2 + a2/b2
.

The details are left to the reader.

5. An example via recurrences

The integral

(5.1) Fn(s) =

∫ 1

0

xn(1 + x)s dx

for n ∈ N and s ∈ R, is integrated by parts (with u = xn(x+1) and dv = (x+1)s−1 dx),
to produce the recurrence

(5.2) Fn(s) =
2s+1

n+ s+ 1
− n

n+ s+ 1
Fn−1(s).

The initial condition is

(5.3) F0(s) =

∫ 1

0

(x+ 1)s dx =
2s+1 − 1

s+ 1
.

The recurrence permits the evaluation of Fn(s), for any fixed n ∈ N. For instance,

F1(s) =
s2s+1 + 1

(s+ 1)(s+ 2)

F2(s) =
2
[

2s(s2 + s+ 2)− 1
]

(s+ 1)(s+ 2)(s+ 3)

F3(s) =
2
[

2s(s3 + 3s2 + 8s) + 3
]

(s+ 1)(s+ 2)(s+ 3)(s+ 4)
.

Differentiating (5.2) produces a recurrence for

(5.4) Gn(s) =

∫ 1

0

xn ln(1 + x)

(1 + x)s
dx

in the form

Gn(s) = − 21−s

(n+ 1− s)2
+

21−s ln 2

n+ 1− s
(5.5)

+
n

(n− s+ 1)2
Fn(−s)−

n

n− s+ 1
Gn−1(s).

This produces the value of Gn(s), starting from

(5.6) G0(s) =

∫ 1

0

ln(1 + x)

(1 + x)s
dx =

21−s ln 2

1− s
− 21−s − 1

(1− s)2
.

For example,

(5.7) G1(s) =
2s(2s− 3)− 2 ln 2s3 + 2(3 ln 2− 1)s2 − 4 ln 2s+ 4

2s(s− 1)2(s− 2)2
.
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Example 5.1. Entry 4.291.23 in [6] states that

(5.8)

∫ 1

0

ln(1 + x)
1 + x2

(1 + x)4
dx = − ln 2

3
+

23

72
.

This corresponds to the value G0(4) +G2(4). The recurrence (5.5) gives the required
data to verify this entry.

6. An elementary example

Integrals of the form

(6.1)

∫ b

a

lnR1(x)
d

dx
R2(x) dx

for rational functions R1, R2 can be reduced to the integration of a rational function.
Indeed, integration by parts yields

(6.2)

∫ b

a

lnR1(x)
d

dx
R2(x) dx = boundary terms−

∫ b

a

R3(x) dx

with R3 = R′
1R2/R1.

Example 6.1. Entry 4.291.27 states that

(6.3)

∫ 1

0

ln(1 + ax)
1− x2

(1 + x2)2
dx =

(1 + a)2

1 + a2
ln(1 + a)

2
− ln 2

2

a

1 + a2
− π

4

a2

1 + a2
.

This example fits the pattern described above, since

(6.4)
1− x2

(1 + x2)2
=

d

dx

x

1 + x2
.

Therefore
∫ 1

0

ln(1 + ax)
1− x2

(1 + x2)2
dx =

∫ 1

0

ln(1 + ax)
d

dx

x

1 + x2
dx

=
ln(1 + a)

2
− a

∫ 1

0

x dx

(1 + x2)(1 + ax)
.

The partial fraction decomposition

x

(1 + x2)(1 + ax)
= − a

1 + a2
1

1 + ax
+

a

1 + a2
1

1 + x2
+

1

1 + a2
x

1 + x2

and the evaluation of the remaining elementary integrals completes the solution to
this problem.

Example 6.2. Entry 4.291.28

(6.5)

∫ ∞

0

ln(a+ x)
b2 − x2

(b2 + x2)2
dx =

1

a2 + b2

(

a ln
b

a
− πb

2

)

also fits the pattern in this section since

(6.6)
d

dx

x

x2 + b2
=

b2 − x2

(b2 + x2)2
.
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Integrating by parts and checking that the boundary terms vanish, produces

(6.7)

∫ ∞

0

ln(a+ x)
b2 − x2

(b2 + x2)2
dx = −

∫ ∞

0

x dx

(x2 + b2)(x+ a)
.

It is convenient to introduce the scaling x = bt to transform the last integral to

(6.8)

∫ ∞

0

x dx

(x2 + b2)(x+ a)
=

1

b

∫ ∞

0

t dt

(1 + t2)(t+ c)

with c = a/b. The evaluation is completed using the partial fraction decomposition

t

(t2 + 1)(t+ c)
= − c

c2 + 1

1

t+ c
+

1

1 + c2
1

t2 + 1
+

c

c2 + 1

t

t2 + 1

and integrating from t = 0 to t = N and taking the limit as N → ∞. The reader will
easily check that the divergent pieces, coming from 1/(t+ c) and t/(t2+1) cancel out.

Example 6.3. Entry 4.291.29 appears as

(6.9)

∫ ∞

0

ln2(a− x)
b2 − x2

(b2 + x2)2
dx =

2

a2 + b2

(

a ln
a

b
− πb

2

)

but it should be written as

(6.10)

∫ ∞

0

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx =

2

a2 + b2

(

a ln
a

b
− πb

2

)

.

This is a singular integral and the value should be interpreted as a Cauchy principal
value

∫ ∞

0

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx =

lim
ε→0

∫ a−ε

0

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx+

∫ ∞

a+ε

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx.

The first integral is

∫ a−ε

0

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx =

∫ a−ε

0

2 ln(a− x)
d

dx

x

x2 + b2
dx

=
2(a− ε)

(a− ε)2 + b2
ln ε+

∫ a−ε

0

2x dx

(a− x)(x2 + b2)
,

after integration by parts. The second integral produces

∫ ∞

a+ε

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx =

∫ ∞

a+ε

2 ln(x− a)
d

dx

x

x2 + b2
dx

= − 2(a+ ε)

(a+ ε)2 + b2
ln ε+

∫ ∞

a+ε

2x dx

(x− a)(x2 + b2)
.
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The reader will ckeck that the boundary terms vanish as ε→ 0. This produces

(6.11)

∫ ∞

0

ln
[

(a− x)2
] b2 − x2

(b2 + x2)2
dx =

lim
ε→0

∫ a−ε

0

2x dx

(a− x)(x2 + b2)
+

∫ ∞

a+ε

2x dx

(a− x)(x2 + b2)
.

The partial fraction decomposition

(6.12)
2x

(a− x)(x2 + b2)
= − 2a

a2 + b2
1

x− a
− 2b

a2 + b2
b

x2 + b2
+

a

a2 + b2
2x

x2 + b2

gives

∫ a−ε

0

2x dx

(a− x)(x2 + b2)
=

2a

a2 + b2
[ln a− ln ε]− 2b

a2 + b2
tan−1 a− ε

b
+

a

a2 + b2
[

ln[(a− ε)2 + b2]− 2 ln b
]

.

A similar computation yields

∫ N

a+ε

2x dx

(a− x)(x2 + b2)
=

a

a2 + b2
{

ln(N2 + b2)− 2 ln(N − a) + 2 ln ε− ln
[

(a+ ε)2 + b2
]}

+
2b

a2 + b2

[

tan−1

(

a+ ε

b

)

− tan−1

(

N

b

)]

.

Now let N → ∞ and use ln(N2 + b2)− 2 ln(N − a) → 0 to obtain

∫ ∞

a+ε

2x dx

(a− x)(x2 + b2)
=

a

a2 + b2
{

2 ln ε− ln
[

(a+ ε)2 + b2
]}

+
2b

a2 + b2

[

tan−1

(

a+ ε

b

)

− π

2

]

.

Observe that the singular terms in (6.11), namely those containing the factor ln ε,
cancel out. The remaining terms produce the stated answer as ε→ 0. This completes
the evaluation.

Example 6.4. Entry 4.291.30 written as

(6.13)

∫ ∞

0

ln
[

(a− x)2
] x dx

(b2 + x2)2
=

1

a2 + b2

(

ln b− πa

2b
+
a2

b2
ln a

)

is evaluated as Example 6.3. Start with the identity

(6.14)
d

dx

(

− 1

2(x2 + b2)

)

=
x

(x2 + b2)2

and then proceed as before. The details are elementary and they are left to the reader.
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7. Some parametric examples

This section considers some entries of [6] that depend on a parameter.

Example 7.1. Entry 4.291.18 states that

(7.1)

∫ a

0

ln(1 + ax) dx

1 + x2
=

1

2
tan−1 a ln(1 + a2).

Differentiating the left-hand side with respect to a gives

(7.2)
ln(1 + a2)

1 + a2
+

∫ a

0

x dx

(1 + ax)(1 + x2)
.

The verification of this entry will start with the evaluation of the rational integral

(7.3) R(a) :=

∫ a

0

x dx

(1 + ax)(1 + x2)
.

The partial fraction decomposition

(7.4)
x

(1 + ax)(1 + x2)
= − 1

1 + a2
a

1 + ax
+

a

1 + a2
1

1 + x2
+

1

2(1 + a2)

2x

1 + x2

gives

(7.5) R(a) = − ln(1 + a2)

1 + a2
+

a

1 + a2
tan−1 a+

ln(1 + a2)

2(1 + a2)
.

Motivated by the expression in the entry being evaluated, observe that

(7.6)

∫ a

0

x dx

(1 + ax)(1 + x2)
+

ln(1 + a2)

1 + a2
=

1

2

d

da

[

tan−1 a ln(1 + a2)
]

.

Now integrate this identity from 0 to a to obtain

(7.7)

∫ a

0

[

∫ b

0

x dx

(1 + bx)(1 + x2)
+

ln(1 + b2)

1 + b2

]

db+

∫ a

0

ln(1 + b2)

1 + b2
db =

1

2
tan−1 a ln(1 + a2).

Exchange the order of integration to produce
∫ a

0

∫ b

0

x dx

(1 + bx)(1 + x2)
db =

∫ a

0

x

1 + x2

∫ a

x

db

1 + bx
dx

=

∫ a

0

1

1 + x2
[

ln(1 + ax)− ln(1 + x2)
]

dx.

The result now follows from (7.7).

Example 7.2. Entry 4.291.16 states that

(7.8)

∫ 1

0

ln(a+ x) dx

a+ x2
=

1

2
√
a
cot−1

√
a ln[a(1 + a)].
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The change of variables x =
√
at gives

(7.9)

∫ 1

0

ln(a+ x) dx

a+ x2
=

1√
a

[

ln a

∫ 1/
√
a

0

dt

1 + t2
+

∫ 1/
√
a

0

ln(1 + t/
√
a)

1 + t2
dt

]

.

The first integral is elementary and the second one corresponds to (7.1).

Example 7.3. Entry 4.291.19 states that

(7.10)

∫ 1

0

ln(1 + ax) dx

1 + ax2
=

1

2
√
a
tan−1

√
a ln(1 + a).

This follows directly from (7.1) by the change of variables x = t/
√
a and replacing a

by
√
a.

Example 7.4. Entry 4.291.7 is the identity

(7.11)

∫ ∞

0

ln(1 + ax) dx

1 + x2
=
π

4
ln(1 + a2)−

∫ a

0

lnu du

1 + u2
.

Differentiating the left-hand side gives

d

da

∫ ∞

0

ln(1 + ax) dx

1 + x2
=

∫ ∞

0

x dx

(1 + ax)(1 + x2)

=
π

2

a

1 + a2
− ln a

1 + a2
,

where the last evaluation is established by partial fractions. The result now follows
by integrating back with respect to a.

Remark 7.1. The current version of Mathematica gives
∫ a

0

lnx dx

1 + x2
= tan−1 a ln a− i

2
PolyLog[2,−ia] + i

2
PolyLog[2, ia]

but is unable to provide an analytic expression for the integral
∫ ∞

0

ln(1 + ax) dx

1 + x2
.

Entries of [6] that can be evaluated in terms of polylogarithms will be described in a
future publication.

Example 7.5. Entry 4.291.24 states that
∫ 1

0

(1 + x2) ln(1 + x)

(a2 + x2)(1 + a2x2)
dx =

1

2a(1 + a2)

[π

2
ln(1 + a2)− 2 tan−1 a ln a

]

.

The evaluation of this entry starts with the partial fraction decomposition

(7.12)
1 + x2

(a2 + x2)(1 + a2x2)
=

1

1 + a2

[

1

x2 + a2
+

1

1 + a2x2

]

that yields the identity
∫ 1

0

(1 + x2) ln(1 + x)

(a2 + x2)(1 + a2x2)
dx =

1

1 + a2

[
∫ 1

0

ln(1 + x) dx

x2 + a2
+

∫ 1

0

ln(1 + x) dx

1 + a2x2

]

,
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and the change of variables t = 1/x then produces
∫ 1

0

ln(1 + x) dx

1 + a2x2
=

∫ ∞

1

ln(1 + t) dt

t2 + a2
−
∫ ∞

1

ln t dt

t2 + a2
.

Therefore
∫ 1

0

(1 + x2) ln(1 + x)

(a2 + x2)(1 + a2x2)
dx =

1

1 + a2

[
∫ ∞

0

ln(1 + x) dx

x2 + a2
−

∫ ∞

1

lnx dx

x2 + a2

]

.

The change of variables x = at and Example 7.4 give
∫ ∞

0

ln(1 + x) dx

x2 + a2
=

1

a

∫ ∞

0

ln(1 + at) dt

1 + t2

=
π

4a
ln(1 + a2)− 1

a

∫ a

0

ln t dt

1 + t2
.

Therefore
(7.13)
∫ 1

0

(1 + x2) ln(1 + x)

(a2 + x2)(1 + a2x2)
dx =

1

1 + a2

[

π

4a
ln(1 + a2)− 1

a

∫ a

0

lnx dx

1 + x2
−
∫ ∞

1

lnx dx

x2 + a2

]

.

The change of variables x = at gives
∫ ∞

1

lnx dx

x2 + a2
=

ln a

a

∫ ∞

1/a

dt

1 + t2
+

1

a

∫ ∞

1/a

ln t dt

1 + t2

=
ln a

a

∫ ∞

1/a

dt

1 + t2
− 1

a

∫ a

0

lnu du

1 + u2
,

after the change of variables u = 1/t in the last integral. Replacing in (7.13) gives the
result.

Example 7.6. The last entry of [6] discussed here is 4.291.22
∫ ∞

0

x ln(a+ x)

(b2 + x2)2
dx =

1

2(a2 + b2)

(

ln b+
πa

2b
+
a2

b2
ln a

)

.

As before, start with the identity

(7.14)
x

(x2 + b2)2
= − d

dx

1

2(x2 + b2)

and integrate by parts to produce
∫ ∞

0

x ln(a+ x)

(b2 + x2)2
dx =

ln a

2b2
+

1

2

∫ ∞

0

dx

(x+ a)(x2 + b2)
.

This last integral is evaluated by the method of partial fractions to obtain the result.

Summary. The examples presented here, complete the evaluation of every entry in
Section 4.291 of the table [6]. The entries not appearing here have been presented in
[4, 5, 7].
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8. Integrals yielding partial sums of the zeta function

Some entries of [6] contain as the integrand the product of lnx and a rational
function coming from manipulations of a geometric series. This section presents the
evaluation of some of these examples. These evaluations can be written in terms of
the Riemann zeta function

(8.1) ζ(s) =

∞
∑

k=1

1

ns

and the generalized harmonic numbers

(8.2) Hn,m =

n
∑

k=1

1

km
.

Example 8.1. Entry 4.231.18 states that

(8.3)

∫ 1

0

1− xn+1

(1− x)2
lnx dx = − (n+ 1)π2

6
+

n
∑

k=1

n− k + 1

k2
.

This can be expressed as

(8.4)

∫ 1

0

1− xn+1

(1− x)2
lnx dx = −(n+ 1)ζ(2) + (n+ 1)Hn,2 −Hn,1.

The evaluation begins with the identity

(8.5)
1

(1− x)2
=

∞
∑

k=0

(k + 1)xk

and its shift

(8.6)
1− xn+1

(1− x)2
=

n
∑

k=0

(k + 1)xk + (n+ 1)
∞
∑

k=n+1

xk.

Integrate term by term and use the value

(8.7)

∫ 1

0

xk lnx dx = − 1

(k + 1)2

to obtain

(8.8)

∫ 1

0

1− xn+1

(1− x)2
lnx dx = −

n
∑

k=0

1

k + 1
− (n+ 1)

∞
∑

k=n+1

1

(k + 1)2
.

This can now be transformed to the form stated in [6].

Example 8.2. Entry 4.262.7

(8.9)

∫ 1

0

1− xn+1

(1− x)2
(lnx)3 dx = − (n+ 1)π4

15
+ 6

n
∑

k=1

n− k + 1

k4

is obtained by using (8.6), the identity

(8.10)

∫ 1

0

(lnx)3xk dx = − 6

(k + 1)4
,
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and the value

(8.11)

∞
∑

k=1

1

k4
= ζ(4) =

π4

90
.

Example 8.3. Replacing x by x2 is (8.6) gives

(8.12)
1− x2n+2

(1− x2)2
=

n
∑

k=0

(k + 1)x2k + (n+ 1)

∞
∑

k=n+1

x2k.

This gives
∫ 1

0

1− x2n+2

(1− x2)2
lnx dx =

n
∑

k=0

(k + 1)

∫ 1

0

x2k lnx dx+ (n+ 1)
∞
∑

k=n+1

∫ 1

0

x2k lnx dx

= −
n
∑

k=0

k + 1

(2k + 1)2
− (n+ 1)

∞
∑

k=n+1

1

(2k + 1)2
.

The value

(8.13)

∞
∑

k=1

1

(2k − 1)2
=
π2

8
=

3

4
ζ(2)

is obtained by separating the terms forming the series for ζ(2) into even and odd
indices. Now write

(8.14)

∞
∑

k=n+1

1

(2k + 1)2
=

3

4
ζ(2)−

n+1
∑

k=1

1

(2k − 1)2

to obtain, after some elementary algebraic manipulatons, the evaluation

(8.15)

∫ 1

0

1− x2n+2

(1− x2)2
lnx dx = −3

4
(n+ 1)ζ(2) +

n
∑

k=1

n− k + 1

(2k − 1)2
.

This is entry 4.231.16.

Example 8.4. The alternating geometric series

(8.16)
1

1 + x
=

∞
∑

k=0

(−1)kxk

is used as before to derive the identity

(8.17)
1 + (−1)nxn+1

(1 + x)2
= (n+ 1)

∞
∑

k=0

(−1)kxk −
n
∑

k=0

(−1)k(n− k)xk.

Integrating yields

(8.18)

∫ 1

0

1 + (−1)nxn+1

(1 + x)2
lnx dx = −(n+ 1)

∞
∑

k=0

(−1)k

(k + 1)2
−

n
∑

k=1

(−1)k(n− k + 1)

k2
.
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This is entry 4.231.17, written in the form

(8.19)

∫ 1

0

1 + (−1)nxn+1

(1 + x)2
lnx dx = − (n+ 1)π2

12
−

n
∑

k=1

(−1)k(n− k + 1)

k2
,

using the value

(8.20)
∞
∑

k=0

(−1)k

(k + 1)2
=
π2

12
.

Example 8.5. Entry 4.262.8

(8.21)

∫ 1

0

1 + (−1)nxn+1

(1 + x)2
(lnx)3 dx = −7(n+ 1)π4

120
+ 6

n
∑

k=1

(−1)k−1n− k + 1

k4

is obtained by using (8.17) and the identities employed in Example 8.2. The procedure
employed in Example 8.3 now gives entry 4.262.9

(8.22)

∫ 1

0

1− x2n+2

(1− x2)2
(lnx)3 dx = − (n+ 1)π4

16
+ 6

n
∑

k=1

n− k + 1

(2k − 1)4
.

9. A singular integral

The last evaluation presented here is entry 4.231.10

(9.1)

∫ ∞

0

lnx dx

a2 − b2x2
= − π2

4ab
.

The parameters a, b have the same sign, so it may be assumed that a, b > 0. Observe
that this is a singular integral, since the integrand is discontinuous at x = a/b.

The change of variables t = bx/a gives

(9.2)

∫ ∞

0

lnx dx

a2 − b2x2
=

1

ab

[

ln
a

b

∫ ∞

0

dt

1− t2
+

∫ ∞

0

ln t dt

1− t2

]

.

The first integral is singular and is computed as the limit as ε→ 0 of

(9.3)

∫ 1−ε

0

dt

1− t2
+

∫ ∞

1+ε

dt

1− t2
=

1

2
ln

(

2− ε

ε

)

+
1

2
ln

(

ε

2 + ε

)

=
1

2
ln

(

2− ε

2 + ε

)

obtained by the method of partial fraction. Therefore this singular integral has value
0. The second integral is

(9.4)

∫ ∞

0

ln t dt

1− t2
= 2

∫ 1

0

ln t dt

1− t2
,

because the integral over [1,∞) is the same as over [0, 1]. The method of partial
fractions and the values

(9.5)

∫ 1

0

lnx dx

1− x
= −π

2

6
and

∫ 1

0

lnx dx

1 + x
= −π

2

12
,

that appear as entries 4.231.2 and 4.231.1, respctively, give the final result. These
last two entries were evaluated in [1].
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The change of variables t = lnx converts this integral into entry 3.417.2

(9.6)

∫ ∞

−∞

t dt

a2et − b2e−t
=

π2

4ab
.

The same change of variables gives the evaluation of entry 3.417.1

(9.7)

∫ ∞

−∞

t dt

a2et + b2e−t
=

π

2ab
ln
b

a

from entry 4.231.8

(9.8)

∫ ∞

0

lnx dx

a2 + b2x2
= − π

2ab
ln
b

a

evaluated in [4].

Summary. The examples presented here, complete the evaluation of every entry in
Section 4.231 of the table [6]. The entries not appearing here have been presented in
[4, 5, 7].
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Casilla 110-V,
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