SCIENTIA

Series A: Mathematical Sciences, Vol. 23 (2012), 45-51
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2012

The integrals in Gradshteyn and Ryzhik.
 Part 24: Polylogarithm functions

Kim McInturff and Victor H. Moll

Abstract

The table of Gradshteyn and Ryzhik contains some integrals that can be evaluated using the polylogarithm function. A small selection of examples is discussed.

1. Introduction

The table of integrals [2] contains many entries that are expressible in terms of the polylogarithm function

$$
\begin{equation*}
\operatorname{Li}_{s}(z):=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}} \tag{1.1}
\end{equation*}
$$

In this paper we describe the evaluation of some of them. The series (1.1) converges for $|z|<1$ and Res>1. The integral representation

$$
\begin{equation*}
\operatorname{Li}_{s}(z)=\frac{z}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1} d x}{e^{x}-z} \tag{1.2}
\end{equation*}
$$

provides an analytic extension to \mathbb{C}. Here $\Gamma(s)$ is the classical gamma function defined by

$$
\begin{equation*}
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x \tag{1.3}
\end{equation*}
$$

The polylogarithm function is a generalization of the Riemann zeta function

$$
\begin{equation*}
\zeta(s):=\sum_{k=1}^{\infty} \frac{1}{k^{s}}=\operatorname{Li}_{s}(1) \tag{1.4}
\end{equation*}
$$

A second special value is given by

$$
\begin{equation*}
\operatorname{Li}_{s}(-1)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{s}}=-\left(1-2^{1-s}\right) \zeta(s) \tag{1.5}
\end{equation*}
$$

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals.
The second author wishes to acknowledge the partial support of NSF-DMS 0713836.
the last equality being obtained by splitting the sum according to the parity of the summation index.

The first result is an identity between an integral and a series coming from the evaluation of the polylogarithm at two values on the unit circle. Many of the entries presented here are special cases. This is a classical result, the proof is presented here in order to keep the paper as self-contained as possible.

Theorem 1.1. Let $\nu \in \mathbb{C}$ with $\operatorname{Re} \nu>0$ and $0<t<\pi$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\nu-1} d x}{\cosh x-\cos t}=\frac{2 \Gamma(\nu)}{\sin t} \sum_{k=1}^{\infty} \frac{\sin k t}{k^{\nu}} \tag{1.6}
\end{equation*}
$$

Proof. The integral representation (1.2) gives

$$
\begin{aligned}
i\left[\operatorname{Li}_{s}\left(e^{-i t}\right)-\operatorname{Li}_{s}\left(e^{i t}\right)\right] & =\frac{i}{\Gamma(s)} \int_{0}^{\infty} x^{s-1}\left[\frac{1}{e^{x+i t}-1}-\frac{1}{e^{x-i t}-1}\right] d x \\
& =\frac{\sin t}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1} d x}{\cosh x-\cos t}
\end{aligned}
$$

The series representation (1.1) gives

$$
\begin{aligned}
i\left[\operatorname{Li}_{s}\left(e^{-i t}\right)-\operatorname{Li}_{s}\left(e^{i t}\right)\right] & =2 \sum_{k=1}^{\infty} \frac{e^{i k t}-e^{-i k t}}{2 i k^{s}} \\
& =2 \sum_{k=1}^{\infty} \frac{\sin k t}{k^{s}}
\end{aligned}
$$

This proves the result.
Corollary 1.1. Let $\nu \in \mathbb{C}$ with $\operatorname{Re} \nu>0$ and $0<t<\pi$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\nu-1} d x}{\cosh x+\cos t}=\frac{2 \Gamma(\nu)}{\sin t} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{\sin k t}{k^{\nu}} \tag{1.7}
\end{equation*}
$$

Proof. Replace t by $\pi-t$ in the statement of Theorem 1.1.
This corollary appears as entry $\mathbf{3 . 5 3 1 . 7}$ in [2].
REmARK 1.1. In the special case $\nu=2$, the series in the corollary appears in the expansion of the Lobachevsky function

$$
\begin{equation*}
L(t):=-\int_{0}^{t} \ln \cos s d s=t \ln 2-\frac{1}{2} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{\sin 2 k t}{k^{2}}, \quad 0<t<\frac{\pi}{2} \tag{1.8}
\end{equation*}
$$

This special case of the corollary can be stated as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{\cosh x+\cos 2 t}=\frac{4(t \ln 2-L(t))}{\sin 2 t}, \quad 0<t<\frac{\pi}{2} \tag{1.9}
\end{equation*}
$$

This is entry 3.531.2 of [2]. Observe that this is written as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{\cosh 2 x+\cos 2 t}=\frac{t \ln 2-L(t)}{\sin 2 t}, \quad 0<t<\frac{\pi}{2} \tag{1.10}
\end{equation*}
$$

The fact that this is the only entry in Section 3.531 with $\cosh 2 x$ instead of $\cosh x$ can lead to confusion.

2. Some examples from the table by Gradshteyn and Ryzhik

This section presents the evaluation of some entries from the table [2] by making specific choices for the parameters ν and t in Theorem 1.1 and Corollary 1.1. Naturally a closed-form for the integral is obtained in those cases for which the series can be evaluated.

Example 2.1. Take $\nu=2$ and $t=\pi / 3$. Theorem 1.1 gives

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x d x}{\cosh x-\frac{1}{2}} & =\frac{2 \Gamma(2)}{\sin \pi / 3} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 3)}{k^{2}} \\
& =\frac{4}{\sqrt{3}} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 3)}{k^{2}}
\end{aligned}
$$

The function $\sin (\pi k / 3)$ is periodic, with period 6 , and repeating values $\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0,-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}, 0$. Therefore
$\sum_{k=1}^{\infty} \frac{\sin \left(\frac{\pi k}{3}\right)}{k^{2}}=\frac{\sqrt{3}}{2}\left(\sum_{k=0}^{\infty} \frac{1}{(6 k+1)^{2}}+\sum_{k=0}^{\infty} \frac{1}{(6 k+2)^{2}}-\sum_{k=0}^{\infty} \frac{1}{(6 k+4)^{2}}-\sum_{k=0}^{\infty} \frac{1}{(6 k+5)^{2}}\right)$.
To evaluate this series, recall the series representation of the digamma function $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$, given by

$$
\begin{equation*}
\psi(x)=-\gamma-\frac{1}{x}+\sum_{k=1}^{\infty} \frac{x}{k(x+k)}, \quad \text { for } x>0 \tag{2.1}
\end{equation*}
$$

Differentiation yields

$$
\begin{equation*}
\psi^{\prime}(x)=\sum_{k=0}^{\infty} \frac{1}{(x+k)^{2}}, \quad \text { for } x>0 \tag{2.2}
\end{equation*}
$$

and we obtain

$$
\sum_{k=0}^{\infty} \frac{1}{(6 k+j)^{2}}=\frac{1}{36} \sum_{k=0}^{\infty} \frac{1}{\left(k+\frac{j}{6}\right)^{2}}=\frac{1}{36} \psi^{\prime}\left(\frac{j}{6}\right)
$$

This provides the expression

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sin \left(\frac{\pi k}{3}\right)}{k^{2}}=\frac{\sqrt{3}}{72}\left(\psi^{\prime}\left(\frac{1}{6}\right)+\psi^{\prime}\left(\frac{2}{6}\right)-\psi^{\prime}\left(\frac{4}{6}\right)-\psi^{\prime}\left(\frac{5}{6}\right)\right) \tag{2.3}
\end{equation*}
$$

The identities

$$
\begin{equation*}
\psi(1-x)=\psi(x)+\pi \cot \pi x, \quad \text { for } 0<x<1 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(2 x)=\frac{1}{2}\left(\psi(x)+\psi\left(x+\frac{1}{2}\right)\right)+\ln 2 \tag{2.5}
\end{equation*}
$$

produce
$\psi^{\prime}\left(\frac{1}{6}\right)=5 \psi^{\prime}\left(\frac{1}{3}\right)-\frac{4 \pi^{2}}{3}, \psi^{\prime}\left(\frac{2}{3}\right)=-\psi^{\prime}\left(\frac{1}{3}\right)+\frac{4 \pi^{2}}{3}, \psi^{\prime}\left(\frac{5}{6}\right)=-5 \psi^{\prime}\left(\frac{1}{3}\right)+\frac{16 \pi^{2}}{3}$.
It follows that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{\cosh x-\frac{1}{2}}=\frac{2}{3} \psi^{\prime}\left(\frac{1}{3}\right)-\frac{4 \pi^{2}}{9} \tag{2.6}
\end{equation*}
$$

This example appears as entry 3.531.1. The value stated there is given in terms of the Lobachevsky function using (1.9):

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{\cosh x-\frac{1}{2}}=\frac{8}{\sqrt{3}}\left(\frac{\pi}{3} \ln 2-L\left(\frac{\pi}{3}\right)\right) \tag{2.7}
\end{equation*}
$$

Comparing these two evaluations gives

$$
\begin{equation*}
L\left(\frac{\pi}{3}\right)=-\frac{1}{4 \sqrt{3}} \psi^{\prime}\left(\frac{1}{3}\right)+\frac{\pi^{2}}{6 \sqrt{3}}+\frac{\pi}{3} \ln 2 \tag{2.8}
\end{equation*}
$$

This example also appears as entry $\mathbf{3 . 4 1 8 . 1}$ in the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{e^{x}+e^{-x}-1}=\frac{1}{3}\left[\psi^{\prime}\left(\frac{1}{3}\right)-\frac{2 \pi^{2}}{3}\right] \tag{2.9}
\end{equation*}
$$

Example 2.2. Entry $\mathbf{3 . 5 1 4 . 1}$ in $[\mathbf{2}]$ is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\cosh a x+\cos t}=\frac{t}{a \sin t}, \quad \text { for } 0<t<\pi, a>0 \tag{2.10}
\end{equation*}
$$

The case of arbitrary $a>0$ is equivalent to the special case $a=1$. This follows from the change of variables $a x \mapsto x$. The integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\cosh x+\cos t}=\frac{t}{\sin t}, \quad \text { for } 0<t<\pi \tag{2.11}
\end{equation*}
$$

is now evaluated by elementary methods.
The next sequence of identities gives the result:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{\cosh x+\cos t} & =2 \int_{0}^{\infty} \frac{e^{x} d x}{e^{2 x}+2 e^{x} \cos t+1} \\
& =2 \int_{1}^{\infty} \frac{d r}{r^{2}+2 r \cos t+1} \\
& =2 \int_{1+\cos t}^{\infty} \frac{d u}{u^{2}+\sin ^{2} t} \\
& =\frac{2}{\sin t} \int_{\cot (t / 2)}^{\infty} \frac{d v}{v^{2}+1} \\
& =\frac{t}{\sin t}
\end{aligned}
$$

Example 2.3. The exponential generating function for the Bernoulli polynomials $B_{n}(x)$ is $t e^{x t} /\left(e^{t}-1\right)$, so for real x and t with $0<|t|<2 \pi$,

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \tag{2.12}
\end{equation*}
$$

For $n=2 m+1$ an odd integer, these polynomials have a Fourier sine series given by

$$
\begin{equation*}
\frac{2^{2 m} \pi^{2 m+1}(-1)^{m}}{(2 m+1)!} B_{2 m+1}\left(\frac{t}{2 \pi}+\frac{1}{2}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{2 m+1}} \sin k t, \text { for }|t|<\pi \tag{2.13}
\end{equation*}
$$

For example, $n=3$ gives

$$
\begin{equation*}
\frac{t\left(\pi^{2}-t^{2}\right)}{12}=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{\sin k t}{k^{3}}, \text { for }|t|<\pi \tag{2.14}
\end{equation*}
$$

and $n=5$ gives

$$
\begin{equation*}
\frac{t\left(\pi^{2}-t^{2}\right)\left(7 \pi^{2}-3 t^{2}\right)}{720}=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{\sin k t}{k^{5}}, \text { for }|t|<\pi \tag{2.15}
\end{equation*}
$$

These representations and Corollary 1.1 give the evaluations

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2} d x}{\cosh x+\cos t}=\frac{t\left(\pi^{2}-t^{2}\right)}{3 \sin t}, \quad \text { for } 0<t<\pi \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{4} d x}{\cosh x+\cos t}=\frac{t\left(\pi^{2}-t^{2}\right)\left(7 \pi^{2}-3 t^{2}\right)}{15 \sin t}, \quad \text { for } 0<t<\pi \tag{2.17}
\end{equation*}
$$

These integrals appear as entries $\mathbf{3 . 5 3 1}$. $\mathbf{3}$ and $\mathbf{3 . 5 3 1}$. $\mathbf{4}$, respectively. The Fourier sine series

$$
\begin{equation*}
\frac{t}{2}=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{\sin k t}{k}, \text { for }|t|<\pi \tag{2.18}
\end{equation*}
$$

shows that the evaluation given in Example 2.2 is also part of this family.
Example 2.4. The limiting case $t \rightarrow 0$ in Corollary 1.1 gives, for $\nu \neq 2$, the evaluation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\nu-1} d x}{\cosh x+1}=2\left(1-2^{2-\nu}\right) \Gamma(\nu) \zeta(\nu-1) \tag{2.19}
\end{equation*}
$$

The proof uses the elementary limit $\sin k t / \sin t \rightarrow k$ as $t \rightarrow 0$ and (1.5). The identity (2.19) is part of entry 3.531.6. An alternative direct proof is presented next.

The integral representation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s-1} d x}{e^{p x}+1}=\frac{\left(1-2^{1-s}\right)}{p^{s}} \Gamma(s) \zeta(s) \tag{2.20}
\end{equation*}
$$

appears as entry 9.513 .1 in $[2]$ and it is established in $[\mathbf{3}]$ and in [1].
Differentiating with respect to p gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s} e^{p x} d x}{\left(e^{p x}+1\right)^{2}}=\frac{s\left(1-2^{1-s}\right)}{p^{1+s}} \Gamma(s) \zeta(s) \tag{2.21}
\end{equation*}
$$

and $p=1 / 2$ produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s} d x}{e^{x / 2}+e^{-x / 2}+2}=2^{s+1}\left(1-2^{1-s}\right) \Gamma(s+1) \zeta(s) \tag{2.22}
\end{equation*}
$$

The change of variables $u=x / 2$ and $\nu=s+1$ give the result.
The limiting case $\nu \rightarrow 2$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x d x}{\cosh x+1}=2 \ln 2 \tag{2.23}
\end{equation*}
$$

that is also part of entry $\mathbf{3 . 5 3 1}$.6, appears from the limiting behavior

$$
\begin{equation*}
\zeta(s)=\frac{1}{s-1}+F(s) \tag{2.24}
\end{equation*}
$$

where $F(s)$ is an entire function.
Example 2.5. Let $t=2 \pi a$ in Theorem 1.1 and take $\nu=2 m+1$ with $m \in \mathbb{N}$ to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 m} d x}{\cosh x-\cos 2 \pi a}=\frac{2(2 m)!}{\sin 2 \pi a} \sum_{k=1}^{\infty} \frac{\sin 2 \pi k a}{k^{2 m+1}} \tag{2.25}
\end{equation*}
$$

This is entry $\mathbf{3 . 5 3 1 . 5}$ in [2]. The hypotheses of the theorem restrict a to $0<a<1 / 2$, but the symmetry about $a=1 / 2$ implies that (2.25) also holds for $1 / 2<a<1$.

In the special case $a=\frac{1}{2}$, replacing $\sin 2 \pi k a / \sin 2 \pi a$ by its limiting value, produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 m} d x}{\cosh x+1}=2\left(1-2^{1-2 m}\right)(2 m)!\zeta(2 m) \tag{2.26}
\end{equation*}
$$

in agreement with (2.19). For positive integer m, the relation

$$
\begin{equation*}
\zeta(2 m)=\frac{2^{2 m-1} \pi^{2 m}\left|B_{2 m}\right|}{(2 m)!} \tag{2.27}
\end{equation*}
$$

expresses the integral in (2.26) in terms of the Bernoulli numbers $B_{2 m}$ as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 m} d x}{\cosh x+1}=2\left(2^{2 m-1}-1\right) \pi^{2 m}\left|B_{2 m}\right| \tag{2.28}
\end{equation*}
$$

Acknowledgments. The second author acknowledges the partial support of NSF-DMS 0713836.

References

[1] T. Amdeberhan, K. Boyadzhiev, and V. Moll. The integrals in Gradshteyn and Ryzhik. Part 17: The Riemann zeta function. Scientia, 20:61-71, 2011.
[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
[3] E. C. Titchmarsh. The theory of the Riemann zeta function. Oxford University Press, 2nd edition, 1986.

5433 Thames Ct, Santa Barbara, CA 93111
E-mail address: mcint@cox.net
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@math.tulane.edu

Departamento de Matemática
Universidad Técnica Federico Santa María Casilla 110-V,
Valparaíso, Chile

