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Abstract. Let p > 2 be a prime. The p-adic valuation of Stirling numbers
of the second kind is analyzed. Two types of tree diagrams that encode this
information are introduced. Conditions that describe the infinite branching of
these trees, similar to the case p = 2, are presented.

1. Introduction

The Stirling numbers of second kind S(n, k), defined for n ∈ N and 0 ≤ k ≤ n
count the number of ways to partition a set of n elements into exactly k nonempty
subsets. They are explicitly given by

(1.1) S(n, k) =
1

k!

k−1
∑

i=0

(−1)i

(

k

i

)

(k − i)n,

or, alternatively, by the recurrence

(1.2) S(n, k) = S(n − 1, k − 1) + kS(n − 1, k),

with the initial conditions S(0, 0) = 1 and S(n, 0) = 0 for n > 0.
Divisibility properties of integer sequences are expressed in terms of p-adic val-

uations: given a prime p and a positive integer b, there exist unique integers a, n,
with a not divisible by p and n ≥ 0, such that b = apn. The number n is called the
p − adic valuation of b. We write n = νp(b). Thus, νp(b) is the highest power of p
that divides b.

The 2-adic valuation of the Stirling numbers was discussed in [1]. The main
conjecture described there is that the partitions of the positive integers N in classes
of the form

(1.3) Cm,j := {2mi + j : i ∈ N}

where the index i starts at the point where 2mi + j ≥ k, leads to a clear pattern
for the 2-adic valuations of Stirling numbers. The class Cm,j is called constant if
ν2(Cm,j) consists of a single value. This single value is called the constant of the
class Cm,j . The parameter m in (1.3) is called the level of the class. The level are
defined inductively as follows: assume that the (m − 1)-level has been defined and
that it consists of the s classes

(1.4) Cm−1,i1 , Cm−1,i2 , . . . , Cm−1,is
.
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2 A. BERRIZBEITIA ET AL.

Each class Cm−1,ij
splits into two classes modulo 2m, namely Cm,ij

and Cm,ij+2m−1 .
The m-level is formed by the non-constant classes modulo 2m. The main conjecture
of [1] is now stated:

Conjecture 1.1. Let k ∈ N be fixed. Then we conjecture that
a) there exists a level m0(k) and an integer µ(k) such that for any m ≥ m0(k), the
number of nonconstant classes of level m is µ(k), independently of m;

b) moreover, for each m ≥ m0(k), each of the µ(k) nonconstant classes splits into
one constant and one nonconstant subclass. The latter generates the next level set.

This conjecture was established in [1] only for the case k = 5. The proof makes
strong use of the recurrence (1.2) and the fact that the 2-adic valuations for S(n, k),
for 1 ≤ k ≤ 4 are easily determined.

The goal of this paper is to describe a similar behavior for the p-adic valuations
of S(n, k) for the case of p an odd prime.

2. Modular and p-adic trees

Consider a sequence of positive integers a := {aj}, with aj dividing aj+1. The
tree associated to a starts with a root vertex and as first generation has a1 vertices
representing all the residue classes modulo a1. Each vertex, branches into the
second generation into a2/a1 siblings corresponding to residues modulo a2. For
instance, the vertex corresponding to 1 in the first generation branches into the
vertices corresponding to the classes 1, 1 + a1, 1 + 2a1, . . . , 1 + (a2/a1 − 1)a1. The
m-th generation of the tree contains am vertices that provide a partition of N into
a collection of residue classes.

We define two types of trees that encode the p-adic valuations of the Stirling
numbers. In each case, the sequence aj described above corresponds to the period
of the function S(n, k) modulo powers of the prime p. This periodicity is described
first.

Given a prime p and an integer m ∈ N, the sequence S(n, k) mod pm, for k
fixed is periodic of period Lm := (p − 1)pm+α(p,k)−1, where α(p, k) is defined by
pα(p,k) < k ≤ pα(p,k)+1. Observe that Lm divides Lm+1 with quotient p. For
instance, the Stirling numbers S(n, 5) modulo 32 have period 18, the repeating
block being

(2.1) {1, 6, 5, 6, 3, 0, 4, 6, 8, 6, 6, 0, 7, 6, 2, 6, 0, 0}.

The question of the minimal period of S(n, k) modulo pm has been discussed by
Nijenhuis and Wilf [5] and Kwong [4]. This paper is not concerned with minimality
and uses only the period Lm defined above. See [2], [3] for more information on
this topic.

Indexing. Fix a prime p and m ∈ N. The residue classes modulo Lm+1 can be
written in the form

(2.2) n = i0 + i1L1 + i2L2 + · · · + imLm,

where 0 ≤ i0 ≤ p − 2 = L1 − 1 and 0 ≤ ir ≤ p − 1 for 1 ≤ r ≤ m. The coefficients
ir are uniquely determined by n.
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Definition 2.1. The set

(2.3) Dm,j := {n ∈ N : n ≡ j mod Lm },

will be called a class at the m-th level.

The tree associated to the sequence {Lj} is now modified by branching a subset
of the nodes at the m-th level. Recall that each vertex at the m-th level corresponds
to a class Dm,j. Two different branching criteria produce the two types of trees
mentioned above.

Note. We assume throughout that k < p. This has the advantage that the term
k! in (1.1) is invertible modulo p, so it may be ignored in the question of divisi-
bility of S(n, k) by p. This assumption also yields α(p, k) = 0 and the sequence
S(n, k) mod pm is periodic of period Lm := (p − 1)pm−1 = ϕ(pm), where ϕ is the
Euler totient function.

Modular trees. A branching vertex is one for which

(2.4) S(Dm,j, k) ≡ 0 mod pm.

The remaining vertices will be called terminal. The periodicity of S(n, k) modulo
pm shows that (2.4) is independent of the element in the class Dm,j. Indeed, if
n1 ≡ n2 mod p − 1, then

(2.5) S(n1, k) ≡ S(n2, k) mod p.

In particular, if S(n1, k) 6≡ 0 mod p, then νp(S(n, k)) = 0 for all n ≡ n1 mod (p−1).
On the other hand, if S(n1, k) ≡ 0 mod p, then is not guaranteed that νp(S(n1, k))
and νp(S(n2, k)) are the same.

0 0

Figure 1. The first level for p = 5 and k = 3.

The first level consists of p − 1 vertices corresponding to the residue classes
modulo L1 = p − 1. The branches that correspond to values with S(n, k) 6≡ 0 mod
p are labeled by the valuation, namely 0, they are terminated. The remaining
branches are not labeled and are split modulo (p − 1)p into the next level.

The p edges coming out of a branching vertex i correspond to the p numbers
nj := i + (p − 1)j with 0 ≤ j ≤ p − 1. All these indices are congruent modulo
p − 1 and distinct modulo L2 := p(p − 1). Their corresponding Stirling numbers
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0 0

1 1 1 1

Figure 2. The first and second level for p = 5 and k = 3.

satisfy νp(S(nj , k)) ≥ 1. At this point, we consider the values of S(nj , k) modulo
p2. Using the fact that

(2.6) a ≡ b mod L2 implies S(a, k) ≡ S(b, k) mod p2,

we conclude that, if S(nj , k) 6≡ 0 mod p2, then νp(S(nj , k)) = 1. Those vertices
are labeled 1 and terminated. The remaining vertices, namely those for which
S(nj, k) ≡ 0 mod p, are split again modulo p. For these classes we have that their
valuations are at least 2.

Example 2.2. Figures 1 and 2 illustrate the first two levels for p = 5 and k =
3. At the first level, the integers are divided in classes modulo L1 = 4 and the
corresponding Stirling numbers are considered modulo p = 5. Figure 1 shows
that two classes, those congruent to 0 and 3 modulo 4, have Stirling numbers not
divisible by 5. Thus, ν5(D1,0) = ν5(D1,3) = 0. These branches are labeled by their
valuation. The Stirling numbers corresponding to the two remaining classes do not
have the same valuation. At this point one can only conclude that ν5(n, 3) ≥ 1 for
n ≡ 1 or 2 mod 4. For example,

ν5(S(13, 3)) = ν5(7508501) = 3

ν5(S(17, 3)) = ν5(5652751651) = 2.

The numbers congruent to 1 modulo 4 split into classes congruent to 1, 5, 9, 13, 17
modulo L2 = 20 = 4 · 5. Similarly, the class 2 modulo 4 becomes the five classes
2, 6, 10, 14, 18 modulo 20. The construction of the tree continues by testing the
Stirling numbers corresponding to these indices modulo 52 = 25.

Lemma 2.3. If a vertex j appears at the level m, then νp(Dm,j) ≥ m − 1.

The modular tree has the advantage that it is easy to generate: at the m-th
level the Stirling numbers are tested modulo pm. Moreover, if a branch terminates
at level m, then the corresponding indices satisfy νp(n) = m. Experimentally it is
found that they become very large. This is a disadvantage. An alternative to these
trees is proposed next.

p-adic trees. This second type of trees differ from the modular trees in the mech-
anism employed to terminate a branch. Recall that, at level m, each vertex corre-
sponds to a class Dm,j. In this new type of trees, a vertex is declared terminal if
the corresponding class has constant p-adic valuation; i.e. for n ∈ Dm,j , the valua-
tion νp(S(n, k)) is independent of n. In practice, this is decided in an experimental
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manner. Given a parameter T∞, the class Dm,j is declared constant if its first
T∞-values have the same valuation. Naturally a class is branched if it contains two
elements with distinct valuation. The last section presents an algorithm where this
experimental procedure is replaced by a rigorous procedure.

0 0

1111

22222 22222 22222 2222

Figure 3. The first three levels of the modular tree for p = 5 and
k = 3

0 0

2 2 2 1 1 1 1

3 3 3 3 3 3 3 3 2 2 2 2

Figure 4. The first three levels of the p-adic tree for p = 5 and k = 3

Figures 3 and 4 present the first three levels of the modular and 5-adic trees
for k = 3, respectively. Observe that in the modular trees there are vertices that
branch to the third level only to discover that each of the siblings has the same
constant valuation. This is the case for the second vertex at the second level. The
p-adic tree detects this phenomena at the second level. This accounts for the fact
that, in general, p-adic trees are smaller that the modular trees.

The study of the p-adic valuations of Stirling numbers begins with an elementary
criteria.

Lemma 2.4. Let i be a residue class modulo L1 such that S(i, k) 6≡ 0 mod p. Then
i is a terminal vertex and the class D1,i has p-adic valuation 0.

Example 2.5. Take p = 7 and k = 4. The periodicity of the Stirling numbers
shows that if i ≡ 0 mod L1 = 6, then S(i, 4) ≡ S(6, 4) mod 7. In this case S(6, 4) =
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65 ≡ 2 mod 7, thus S(6t, 4) ≡ 2 mod 7. Therefore the class D1,0 has constant 7-adic
valuation 0 and the vertex 0 is terminal.

0 0 0

Figure 5. The first level for p = 7 and k = 4

Figure 5 shows that the vertices 0, 4 and 5 are terminal and the classes D1,0, D1,4

and D1,5 have constant valuation 0. The remaining classes D1,1, D1,2 and D1,3 are
now tested further. The description is given for the class D1,1, the others are
treated using the same ideas. Details are given in section 5. For level m = 1 and if
n ≡ 1 mod L1 = 6, we have

(2.7) S(1 + 6t, 4) ≡ S(L1 + 1, 4) = S(7, 4) mod 7.

The value S(7, 4) = 350, shows that S(7, 4) ≡ 0 mod 7. We conclude that the
valuation ν7(S(1+6t, 4)) ≥ 1. The question of whether the class D1,1 is constant is
decided in an experimental manner. The required number of values to declare the
branching of a class is usually small. For instance, for D1,1, the value T∞ = 7 suffices
in practice. Indeed, S(43, 4) = 72 × N , with N = 65790764819319273461750 6≡
0 mod 7. Therefore, the class D1,1 is not constant. The value T∞ = 7 is also
sufficient to determine that the two remaining classes, D1,2 and D1,3 are non-
constant.

The analysis of the branched class D1,1 is now considered at level 2, that is, the
sequence n = 1+ 6t is considered modulo L2 = (p− 1)p = 42. The class D1,1 splits
into the seven classes

(2.8) D2,1, D2,7, D2,13, D2,19, D2,25, D2,31, D2,37.

The branches of the tree depicted in Figure 6 show the branching from the non-
constant class D1,1. Recall the indexing for residue classes modulo L2 = 42 in
the form n = i0 + i1L1 described in (2.2). The subtree depicted in Figure 6 cor-
responds to indices with i0 = 1 and the label in each branch is the residue of
S(i0 + i1L1 + tL2, 4) modulo 72.

Note. Figure 6 shows that six of the seven classes in (2.8) are constant. This leaves
only the leftmost vertex, with label i0 = 1, i1 = 0, for possible branching. This is
the class

(2.9) D2,1 = {n ∈ N : n ≡ 1 mod 42} = {1 + 42t : t ∈ N}.
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D1,1

@1,0D @7,7D @13,14D @19,21D @25,28D @31,35D @37,42D

Figure 6. Branching into the second level

0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 7. The second level for p = 7 and k = 4

Then one checks that D2,1 branches to level 3 by computing the values of ν7(S(1+
42t, 4)) for 0 ≤ t ≤ T∞. Once again, T∞ = 7 is sufficient to verify that D2,1 is a
non-constant class.

Note. In order to declare a class Dm,j constant, we compute the first T∞ values of
νp(S(j + tLm, k)) for a precribed length T∞. The class Dm,j is considered constant
if these values are the same. Experiments have shown that a modest value T∞

suffices in each case.

3. Criteria for branching on modular trees

The goal of this section is to discuss the branching mechanism on modular trees.
The assumption k < p and the labeling described in (2.2) are imposed throughout.

Recall that each vertex at level m represents a class Dm,j = {n ∈ N : n ≡
j mod Lm}. Using the value L1 = p − 1, it follows that level 1 is represented by
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the numbers {0, 1, 2, . . . , p − 2} and a vertex i0 branches to level 2 if

(3.1) S(i0 + tL1, k) ≡ 0 mod p.

The terminal (= non-branching) vertices stop at level 1 and they are labeled by the
valuation ( = 0).

The branched vertices are now considered modulo L2 and they branch to level
3 if

(3.2) S(i0 + i1L1 + tL2, k) ≡ 0 mod p2.

Continuing with this process, the vertices appearing at level m correspond to
branches that have not been terminated up to this point. Therefore the corre-
sponding classes satisfy νp(Dm,j) ≥ m − 1.

Lemma 3.1. Assume the a vertex i at level m satisfies

(3.3) S(i, k) 6≡ 0 mod pm.

Then νp(Dm,i) = m − 1 and the vertex is terminal.

The first result states that the left most vertex always terminates.

Lemma 3.2. Assume n ≡ 0 mod L1. Then S(n, k) 6≡ 0 mod p and νp(S(n, k)) = 0.
Therefore the vertex D1,0 is terminal.

Proof. Write n = i(p − 1) and then

(3.4) S(n, k) =
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri(p−1).

Fermat’s little theorem shows that rp−1 ≡ 1 mod p, thus

(3.5) S(n, k) ≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

mod p.

The result now follows from

(3.6)

k
∑

r=1

(−1)r

(

k

r

)

= −1.

�

Definition 3.3. Assume 1 ≤ r ≤ p − 1, so that rL1 ≡ 1 mod p. Define βr by the
identity rL1 ≡ 1 + pβr mod p2.

The distribution of βr is complicated. Figure 8 shows the values of βr for
2 ≤ r ≤ 7918. The prime 7919 is the 1000-th prime.

The expression βr is now employed to compute the residue of S(n, k) modulo p2.

Theorem 3.4. Let n ≡ i0 + i1L1 mod L2. Then

(3.7) S(n, k) ≡
(−1)k

k!

[

k
∑

r=1

(−1)r

(

k

r

)

ri0 + i1p
k

∑

r=1

(−1)r

(

k

r

)

ri0βr

]

mod p2.
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Figure 8. The values of βr for the prime p = 7919.

Proof. The relation rL2 ≡ 1 mod p2 yields

(3.8) S(n, k) ≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0ri1L1 mod p2.

Therefore

S(n, k) ≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0ri1L1 mod p2

≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0 (1 + pβr)
i1 mod p2

≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0 (1 + i1pβr) mod p2

≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0 +
(−1)k

k!
i1p

k
∑

r=1

(−1)r

(

k

r

)

ri0βr mod p2.

This gives the result. �

Corollary 3.5. Let n ≡ i0 mod L1. Then

(3.9) S(n, k) ≡
(−1)k

k!

k
∑

r=1

(−1)r

(

k

r

)

ri0 mod p.

Therefore the class D1,i0 branches to level 2 precisely when

(3.10)
k

∑

r=1

(−1)r

(

k

r

)

ri0 ≡ 0 mod p.

Corollary 3.6. Let n ≡ i0 mod L1 with 1 ≤ i0 ≤ k − 1. Then the class D1,i0

branches to level 2.

Proof. The result follows from the previous corollary and

(3.11)

k
∑

r=1

(−1)r

(

k

r

)

ri0 = (−1)kk!S(i0, k) = 0
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in view of the assumption 1 ≤ i0 ≤ k − 1. �

Corollary 3.7. Let D2,j be a class at level 2 with j ≡ i0 + i1L1 mod L2. Then
D2,j branches to level 3 precisely when

(3.12)

k
∑

r=1

(−1)r

(

k

r

)

ri0 ≡ 0 mod p2

and

(3.13) i1

k
∑

r=1

(−1)r

(

k

r

)

ri0βr ≡ 0 mod p.

Corollary 3.8. Let D2,j be a class at level 2 with j ≡ i0 + i1L1 mod L2. Assume
1 ≤ i0 ≤ k − 1. Then D2,j branches to level 3 precisely when

(3.14) i1

k
∑

r=1

(−1)r

(

k

r

)

ri0βr ≡ 0 mod p.

In particular, the class corresponding to i1 = 0 always branches.

The remainder of this section addresses patterns of branching behavior that
continue through increasing m-levels.

Lemma 3.9. For given p and 1 ≤ r < p,

rϕ(pm) ≡ 1 + βrp
m mod pm+1

for all m, with βr independent of m.

Proof. Suppose rϕ(pm−1) ≡ 1 + βrp
m−1 mod pm for some m. Then

rϕ(pm) = rϕ(pm−1)p

≡ (1 + βrp
m−1 + apm)p mod pm+1

≡ 1 + βrp
m mod pm+1.

This is the result. �

Now consider a branching class Dm,j at level m. Its siblings consist of the p
classes Dm+1,j+iLm

with 0 ≤ i ≤ p − 1. The next result states a condition that
guarantees the preservation of the pairwise incongruent property. In particular,
from some point on, exactly one of them will branch.

Theorem 3.10. Let m ≥ 1. Assume that for some branching class Dm,j all vertices
are incongruent, that is,

(3.15) S(Dm+1,j+i1Lm
, k) 6≡ S(Dm+1,j+i2Lm

, k) mod pm+1

for 0 ≤ i1 < i2 ≤ p − 1. Then, every subsequent branching class DM,J with
J ≡ j mod Lm and M ≥ m,

(3.16) S(DM+1,J+i1LM
, k) 6≡ S(DM+1,J+i2LM

, k) mod pM+1

for 0 ≤ i1 < i2 ≤ p − 1.
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Proof. Let d1, d2 ∈ Dm,j such that d1 6≡ d2 mod Lm+1. Index these values by

d1 = j + i1Lm + x1Lm+1,

d2 = j + i2Lm + x2Lm+1,

with x1, x2 ∈ Z. By assumption, S(d2, k) − S(d1, k) 6≡ 0 mod pm+1. Then

(−1)kk! [S(d2, k) − S(d1, k)] ≡
k

∑

r=1

(−1)r

(

k

r

)

[rd2 − rd1 ] mod pm+1

≡

k
∑

r=1

(−1)r

(

k

r

)

rj(rLm)i1 [(rLm)i2−i1 − 1] mod pm+1

≡

k
∑

r=1

(−1)r

(

k

r

)

rj(1 + βrp
m)i1 [(1 + βrp

m)i2−i1 − 1] mod pm+1

≡ (i2 − i1)p
m

k
∑

r=1

(−1)r

(

k

r

)

rjβr mod pm+1.

Observe that the hypothesis of pairwise incongruence imply that

k
∑

r=1

(−1)r

(

k

r

)

rjβr 6≡ 0 mod p

and conversely.

Since the Stirling numbers associated with the p vertices emanating from Dm,j

are by hypothesis pairwise incongruent modulo pm+1, exactly one of these vertices
branches. Suppose that this branching vertex corresponds to the class Dm+1,j+i∗Lm

.
Now write

d1 = j + i∗Lm + i∗1Lm+1 + x1Lm+2

d2 = j + i∗Lm + i∗2Lm+1 + x2Lm+2

where again 0 ≤ i∗1 < i∗2 ≤ p−1. To verify that the pairwise incongruence condition
holds at this new level, it is required to show that

(3.14) S(d2, k) − S(d1, k) 6≡ 0 mod pm+2.

Proceeding as before, we have

(−1)kk! [S(d2, k) − S(d1, k)] ≡

k
∑

r=1

(−1)r

(

k

r

)

[

rd2 − rd1
]

mod pm+2.

Expanding as before, it follows that

(−1)kk! [S(d2, k) − S(d1, k)] ≡ (i∗2 − i∗1)p
m+1

k
∑

r=1

(−1)r

(

k

r

)

rj+i∗Lmβr mod pm+2.

The assumption (3.13) proves the pairwise incongruence of the Stirling numbers at
level m + 2. �
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Corollary 3.11. Assume the class Dm,j has satisfies the pairwise incongruence
condition at level m. Then it satisfies at level m + 1 if and only if

(3.13)

k
∑

r=1

(−1)r

(

k

r

)

rjβr 6≡ 0 mod p.

holds. Observe that this condition is independent of m.

Note. A branching class Dm,j satisfying condition (3.13) separates at level m + 1
into p− 1 terminal vertices (with Stirling numbers of constant p-adic valuation m)
and exactly one branching vertex. Observe that this is exactly the analog of the
main conjecture of [1].

Note. Let j be an index such that the hypothesis of Theorem 3.10 is satisfied for
Dm,j at level m. Write

(3.14) j = i0 + i1L1 + · · · + im−1Lm−1,

and observe that

rj = ri0

m−1
∏

t=1

rLtit ≡ ri0 mod p.

Thus, the condition (3.13) depends only on j modulo L1.

Corollary 3.12. Using the expansion

(3.15) j = i0 + i1L1 + · · · + im−1Lm−1,

the hypothesis of Theorem 3.10 is satisfied for Dm,j at level m if and only if it is
satisfied for D1,i0 .

Corollary 3.13. If (3.13) is not satisfied, that is,

(3.16)
k

∑

r=1

(−1)r

(

k

r

)

rjβr ≡ 0 mod p,

for j, then for d1, d2 such that d1 ≡ d2 ≡ j mod L1 and d1 ≡ d2 mod Lm,

S(d1, k) ≡ S(d2, k) mod pm+1.

Example 3.14. This example continues Example 2.2 for p = 5 and k = 3. Con-
gruence (3.16) is satisfied for the class D1,1, that is, for n ≡ 1 mod L1 = 4. Since
29 ≡ 49 ≡ 1 mod 4 and 29 ≡ 49 mod 20, Corollary 3.13 shows that S(29, 3) ≡
S(49, 3) mod 53. This is depicted in Figure 9. Moreover, the class D2,9 corresponds
to a terminal vertex: for all n such that n ≡ 9 mod 20, ν5(S(n, 3)) = 2.

4. Refined branching criteria for modular trees

In this section we describe a refinement of the criteria developed in the previous
section. Examples illustrating the use of this criteria are given in Section 5. The goal
is to provide a generalization of Theorem 3.10. We start by generalizing Definition
3.3.

Definition 4.1. Fix a prime p. Given 1 ≤ r < p, define the sequence β1,r, β2,r, . . . , βω+1,r

by

(4.1) rϕ(pω+1) ≡ 1 + β1,rp
ω+1 + β2,rp

ω+2 + . . . + βω+1,rp
2ω+1 mod p2ω+2.
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@0,25D @1,25D @2,25D @3,25D @4,25D

D2,9

D3,9 D3,29 D3,49 D3,69 D3,89

Figure 9. Branching from the class D2,9. S(9 + i1 · 20, k) ≡
S(9 + i2 · 20, k) mod 53, for all i1, i2.

Next a generalization of Lemma 3.9.

Lemma 4.2. The coefficients β1,r, β2,r, . . . , βω,r are independent on ω i.e. if m > ω
then

(4.2) rϕ(m) ≡ 1 + β1,rp
m + β2,rp

m+1 + · · · + βω,rp
ω+m−1 mod pω+m

Proof. The proof is similar to the one for Lemma 3.9. �

Definition 4.3. Define the condition

(4.3) Tω+1,j :=
k

∑

r=1

(−1)r

(

k

r

)

rj(β1,r + β2,rp + . . . + βω+1,rp
ω) 6≡ 0 mod pω+1

for j modulo Lω+1, ω ≥ 0. Observe that T1,j coincides with (3.13).

Proposition 4.4. Tω+1,j true (or false) implies Tω+1,j+imLm
true (or false) for

all m ≥ ω + 1.

Proof. For 1 ≤ r < p, rLm ≡ 1 mod pm, so rLm ≡ 1 mod pω+1 for m ≥ ω + 1. �

Just as the condition T1,j served as a test for a particular branching behavior
continuing through m-levels, the collection of conditions T1,j , T2,j, . . . , Tω,j now
serves as a test. The implication of these conditions is presented in the following
proposition and theorem.

Proposition 4.5. Consider a branching class Dj,m. Suppose that Tj,m is false,
then p2m divides S(j + iLm, k) for all i ∈ N precisely when

(4.4)
k

∑

r=1

(−1)r

(

k

r

)

rj ≡ 0 mod p2m.
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Proof. Note that

(−1)kk!S(j + aLm, k) ≡

k
∑

r=1

(−1)r

(

k

r

)

rj mod p2m

+a

k
∑

r=1

(−1)r

(

k

r

)

rj
(

β1,rp
m + β2,rp

m+1 + · · · + βn,rp
2m−1

)

mod p2m.

Since Tj,m is false, the second sum is congruent to zero modulo p2m. The result is
established. �

Theorem 4.6. Suppose that Dm,j is a branching class. If T1,j , T2,j, . . . , Tm−1,j

are false and Tm,j is true, then all siblings of Dm,j at level m + 1 are incongruent
modulo p2m. Moreover, all siblings of every subsequent branching class DM,J with
J ≡ j mod Lm and M > m are incongruent modulo pm+M .

Proof. The proof of this theorem is similar to the one of Theorem 3.10. Let d1, d2 ∈
Dm,j such that d1 6≡ d2 mod Lm+1. Index these values by

d1 = j + i1Lm + x1Lm+1,

d2 = j + i2Lm + x2Lm+1

where i1 < i2 and x1, x2 ∈ Z. Note that

(4.5) (−1)kk![S(d1, k) − S(d2, k)] ≡ (i2 − i1)p
mTm,j mod p2m.

Here we are abusing the notation and letting

(4.6) Tm,j =

k
∑

r=1

(−1)r

(

k

r

)

rj
(

β1,r + β2,rp
1 + · · · + βn,rp

m−1
)

rather than the test itself. By assumption Tm,j 6≡ 0 mod pm, hence (4.5) is not
congruent to zero modulo p2m. The rest of the proof follows by induction as in
Theorem 3.10. �

Example 4.7. Theorem 4.6 describes the behavior of the class D2,11 for p = 5
and k = 4. T1,11 is false, but T2,11 is true. Then since 231 ≡ 391 ≡ 11 mod 20 and
231 6≡ 391 mod 100,

S(231, 4) 6≡ S(391, 4) mod 54.

This is depicted in Figure 10.

5. The p-adic valuation of Stirling numbers

In this section we present three illustrative examples of the algorithm developed
in this paper. We present the data using p-adic trees, since they do not grow as
fast as modular trees. A conjecture on the structure of these valuations is also
presented. This conjecture extends the results presented in [1].

Recall the construction of trees described here: fix a prime p and an index
k satisfying 0 ≤ k < p. The Stirling numbers S(n, k) are periodic modulo pm,
of period Lm = (p − 1)pm−1. The description of the patterns of the valuations
νp(S(n, k)) is given in terms of the classes

(5.1) Dm,j = {n ∈ N : n ≡ j mod Lm}.
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0 0 0 0 0

125 125 125 125 125 375 375 375 375 375 0 0 0 0 0 250 250 250 250 250 500 500 500 500 500

D2,11

D3,11 D3,31 D3,51 D3,71
D3,91

Figure 10. Branching from the class D2,11, for p = 5 and k = 4.

Each class corresponds to a vertex of a tree and, for each m ∈ N, the collection of
all classes Dm,j, is called the m-th level of the tree. The fundamental connection
between classes and divisibility properties is given by

(5.2) a, b ∈ Dm,j if and only if S(a, k) ≡ S(b, k) mod pm.

Example 5.1. Let p = 7 and k = 3. Figure 11 presents the p-adic tree correspond-
ing to these numbers.

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

Figure 11. The 7-adic tree of S(n, 3)

The first level of the tree associated with this case corresponds to the residues
modulo L1 = 6. This gives the six classes D1,0, D1,1, D1,2, D1,3, D1,4 and D1,5

that form the first level.
Lemma 3.2 guarantees that the class

(5.3) D1,0 = {n ∈ N : n ≡ 0 mod 6}

terminates and it has valuation 0. On the other hand, the classes

D1,3 = {n ∈ N : n ≡ 3 mod 6}(5.4)

D1,4 = {n ∈ N : n ≡ 4 mod 6}(5.5)

D1,5 = {n ∈ N : n ≡ 5 mod 6}(5.6)
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also terminate with valuation 0. The reason is simple: the class D1,3 contains 3
and S(3, 3) = 1. Periodicity of S(n, 3) implies that every index in D1,3 satisfies
S(4t + 3, 3) ≡ 1 mod 7. Therefore ν5(D1,3) = 0. Similarly, D1,4 contains 4 and
S(4, 3) = 6 and D1,5 contains 5 and S(5, 3) = 25.

The remaining two classes, D1,1 and D1,2, satisfy S(D1,1, k) ≡ S(D1,2, k) ≡
0 mod 7, hence testing is required.

The D1,1 class has a simple branching structure. At level 2 D1,1 has seven
siblings D2,1, D2,7, D2,13, D2,19, D2,25, D2,31 and D2,37. These classes are labeled
by the index i0 + i1L1 modulo L2 = 42. The label i0 = 1 and 0 ≤ i1 ≤ 6. A direct
calculation shows that

S(2 + 0 · 6 + tL2, 3) ≡ 0 mod 72

S(2 + 1 · 6 + tL2, 3) ≡ 7 mod 72

S(2 + 2 · 6 + tL2, 3) ≡ 14 mod 72

S(2 + 3 · 6 + tL2, 3) ≡ 21 mod 72

S(2 + 4 · 6 + tL2, 3) ≡ 28 mod 72.

S(2 + 5 · 6 + tL2, 3) ≡ 35 mod 72

S(2 + 6 · 6 + tL2, 3) ≡ 42 mod 72.

Observe that these values are incongruent modulo 72. An alternative way to see
this is by noticing that condition (3.13) holds

(5.7)

3
∑

r=1

(−1)r

(

3

r

)

rβr ≡ 1 mod 7.

Therefore, Theorem 3.10 states that this pattern of pairwise incongruence will con-
tinue through increasing m-levels, as illustrated in Figure 11. The class D1,2 also
has a simple branching structure since a similar argument produces

(5.8)

3
∑

r=1

(−1)r

(

3

r

)

r2βr ≡ 5 mod 7.

It follows that each of the classes D1,1 and D1,2 split modulo L2 = 42 into six
terminal classes, with constant ν7(S(n, 3)) = 1, and one branching (nonconstant)
class. This branching class will moreover split modulo L3 = 294 into six terminal
classes with constant ν7(S(n, 3)) = 2 and one branching class, and so on, at each
m-level. This ends the characterization of this tree.

Example 5.2. The next example considers the valuations ν5(S(n, 4); that is, p = 5
and k = 4, see Figure 12.

The first level is formed by the classes D1,0, D1,1, D1,2 and D1,3. Lemma 3.2
states that the class D1,0 is terminal with valuation ν5(D1,0) = 0. The remaining
three classes are subject to the pre-test: is S(j + 4t, 4) ≡ 0 mod 5? If the answer is
no, the vertex j is terminal and ν5(D1,j) = 0. From j ≤ k − 1 = 3, Theorem 3.6
shows that S(j + 4t, 4) ≡ 0 mod 5 for 1 ≤ j ≤ 3 and t ∈ N. In order to decide if
these vertices branch to level 3, we ask the question: does T1,j hold?, that is, is

(5.9) T1,j :=

4
∑

r=1

(−1)r

(

4

r

)

rjβ1,r 6≡ 0 mod 5 ?
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0

1111 1111 2 22

2222 2222 3333 33 33

3333 3333 4444 44 44

4444 4444 5555 55 55

Figure 12. The 5-adic tree of S(n, 4)

Recall that βr is defined in (3.3).
A direct calculation shows that

(5.10) β1,1 = 0, β1,2 = 3, β1,3 = 1, β1,4 = 1

and this gives that T1,1 and T1,2 are true and T1,3 is false.
As in the case of Example 5.1, it follows that each of the classes D2,1 and D2,2

split modulo 20 into four terminal classes, with constant ν5(S(n, 4)) = 1, and one
branching (nonconstant) class. This branching class will moreover split modulo 100
into four terminal classes with constant ν5(S(n, 4)) = 2 and one branching class,
and so on, at each m-level.

The class D1,3 corresponding to the vertex j = 3 requires further testing. The
class {n ∈ N : n ≡ 3 mod 4} at the second level splits into five classes modulo 20:
j = 3, 7, 11, 15, 19. Since

(5.11)
k

∑

r=1

(−1)r

(

k

r

)

r3 ≡ 0 mod 52,

then Proposition 4.5 implies that 52 divides S(D2,j , k) for j = 3, 7, 11, 15, 19. Hence,
for each of these, the following test is performed: first, is S(j + 20t, 4) ≡ 0 mod 53?
If not, then the vertex j is terminal, with ν5(S(n, 4)) = 2 for every n ≡ j mod 20.
Then, does T2,j hold?

The only j for which S(j+20t, 4) ≡ 0 mod 53 are 3 and 11, so it is only necessary
to test T2,3 and T2,11. Recall that β2,r is defined by

(5.12) r20 ≡ 1 + 52β1,r + 53β2,r mod 54

so β2,r, 1 ≤ r ≤ 4, is determined by the following calculations:

1 ≡ 1 + 52 · 0 + 53 · 0 mod 54

220 ≡ 1 + 52 · 3 + 53 · 3 mod 54

320 ≡ 1 + 52 · 1 + 53 · 0 mod 54

420 ≡ 1 + 52 · 1 + 53 · 2 mod 54

Thus we have
β2,1 = 0, β2,2 = 3, β2,3 = 0, β2,4 = 2.
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Then

(5.13)

(

4

2

)

23(3 + 3 · 5) −

(

4

3

)

33 +

(

4

4

)

43(1 + 2 · 5) = 1460 6≡ 0 mod 52

implies T2,3 true, and

(5.14)

(

4

2

)

211(3 + 3 · 5) −

(

4

3

)

311 +

(

4

4

)

411(1 + 2 · 5) = 45649940 6≡ 0 mod 52

implies T2,11 true. So per Theorem 4.6, each of the classes j = 3, 11 at the second
level splits modulo 100 into four terminal classes with ν5(S(n, 4)) = 3 and one
branching class. This branching class will moreover split modulo 500 into four
terminal classes with constant ν5(S(n, 4)) = 4 and one branching class, and so on,
at each m-level. This completes our characterization of this tree.

Example 5.3. The last example described here is p = 11 and k = 4, see Figure
13.

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Figure 13. The 11-adic tree of S(n, 4)

As in the previous two examples, the first level of this tree is formed by the classes
D1,j, j = 0, 1, 2, · · · , 9. The classes D1,i, i = 0, 4, 5, 6, 7, 8, 9 are terminal with
valuation ν5(D1,i) = 0. The classes D1,j for each 1 ≤ j ≤ 3 require test.

Using Definition 3.3 and Example 5.2, the reader can verify that in this case we
have β1,1 = 0, β1,2 = 5, β1,3 = 0, and β1,4 = 10. This information yields T1,1 true,
T1,2 true, and T1,3 false. From here we gather that each of the vertices j = 1, 2
splits modulo 110 into ten terminal classes, with constant ν11(S(n, 4)) = 1, and one
branching (nonconstant) class. This branching class will moreover split modulo
1210 into ten terminal classes with constant ν11(S(n, 4)) = 2 and one branching
class, and so on, at each m-level.

Since T1,3 is false, then the vertex j = 3 requires further testing. We proceed as
in Example 5.2. At the second level, this vertex splits into eleven classes modulo
110. These are

j = 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103.
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Note that

(5.15)

4
∑

r=1

(−1)r

(

4

r

)

r3 ≡ 0 mod 112,

therefore by Proposition 4.5 we know that 112 divides S(D2,j , k) for each of these j.
The following test is performed at each vertex: first, is S(j +110t, 4) ≡ 0 mod 113?
If not, then the vertex j is terminal, with ν11(S(n, 4)) = 2 for every n ≡ j mod 110.
Then, does T2,j hold?

The only j for which S(j + 110t, 4) ≡ 0 mod 113 is j = 3, so it is only necessary
to test T2,3. Recall that β2,r is defined by

(5.16) r110 ≡ 1 + 112β1,r + 113β2,r mod 114.

A direct calculation gives

β2,1 = 0, β2,2 = 1, β2,3 = 4, β2,4 = 2.

Then
(

4

2

)

23(5 + 1 · 11) −

(

4

3

)

33(0 + 4 · 11) +

(

4

4

)

43(10 + 2 · 11) = −1936 ≡ 0 mod 112

and so T2,3 is false. This implies that further testing is required and so we still need
to go another level down.

The class {n ∈ N : n ≡ 3 mod 110} splits into eleven classes modulo 1210:

j = 3, 113, 223, 333, 443, 553, 663, 773, 883, 993, 1103.

Since

(5.17)

k
∑

r=1

(−1)r

(

k

r

)

r3 ≡ 0 mod 114,

then 114 divides S(D3,j) for each of these j. Once again, for each of these classes,
the following two test are performed: first, is S(j + 13310t, 4) ≡ 0 mod 115? If
not, then the vertex j is terminal, with ν11(S(n, 4)) = 4 for every n ≡ j mod 1210.
Then, does T3,j hold?

The only j for which S(j +1210t, 4) ≡ 0 mod 115 are 3 and 113. The calculation

(5.18) β3,1 = 0, β3,2 = 3, β3,3 = 0, β3,4 = 6

implies T3,3 and T3,113 are true. So by Theorem 4.6, each of the classes j = 3, 113
splits modulo 13310 into ten terminal classes with ν(S(n, 4)) = 5 and one branching
class, and so on, through m-levels. This completes our characterization of this tree.

This process is a systematic and very easily automated way to summarize the
structure of the p-adic valuation of S(n, k) for fixed k < p.

We conclude with an extension of Conjecture 1.1 for any odd prime.

Conjecture 5.4. Fix the index k. Given a prime p, its is conjectured that
a) there exists a level m0,p(k) and an integer µp(k) such that for any m ≥ m0,p(k),
the number of non-constant classes at the level m is µp(k), independently of m;

b) moreover, for each m ≥ m0,p(k), each of the µp(k) nonconstant classes splits
into p − 1 constant and one nonconstant subclass. The latter generates the next
level set.
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Supporting software. This article is accompanied by the Mathematica package
StirlingTrees.m available from the webpages:

http://www.math.rutgers.edu/~lmedina/

and

http://www.math.tulane.edu/~vhm/
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