MATH 111 FORMULA SHEETS

SAMPLES:

Sample mean: $\bar{x}=\frac{\sum_{n} x}{n}$
Sample variance:

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{\sum\left(x^{2}\right)-\frac{\left(\sum x\right)^{2}}{n}}{n-1}
$$

Sample standard deviation:

$$
s=\sqrt{s^{2}}
$$

Chebyshev's Rule: For all samples

- At least $\frac{3}{4}$ of the data lie between $\bar{x}-2 s$ and $\bar{x}+2 s$;
- At least $\frac{8}{9}$ of the data lie between $\bar{x}-3 s$ and $\bar{x}+3 s$;
- In general, at least $1-\frac{1}{n^{2}}$ of the data lie between $\bar{x}-n s$ and $\bar{x}+n s$.

Empirical Rule: For roughly normal data sets

- Approximately 68% of the data lie between $\bar{x}-s$ and $\bar{x}+s$;
- Approximately 95% of the data lie between $\bar{x}-2 s$ and $\bar{x}+2 s$;
- Approximately 99.7% of the data lie between $\bar{x}-$ $3 s$ and $\bar{x}+3 s$.

Sample z-score: $z=\frac{x-\bar{x}}{s}$
Population z-score: $z=\frac{x-\mu}{\sigma}$

PROBABILITY:

For any event $S, 0 \leq P(S) \leq 1$
Complement Rule: $P\left(A^{C}\right)=1-P(A)$
Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$; if A and B are disjoint, $P(A \cup B)=P(A)+P(B)$.
Multiplication Rule: $P(A \cap B)=P(A) \cdot P(B \mid A)$; if A and B are independent, $P(A \cap B)=P(A) \cdot P(B)$
Conditional Probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Independence: A and B are independent if $P(A)=$ $P(A \mid B)$ or $P(B)=P(B \mid A)$

COUNTING:

Multiplicative Rule: If you draw one element from each of sets with size $n_{1}, n_{2}, \ldots n_{k}$, there are $n_{1} n_{2} n_{3} \cdots n_{k}$ different results possible.

Combinations/Partitions: If you draw n elements from a set of N elements without regard for order, the number of different results is

$$
\binom{N}{n}={ }_{N} C_{n}=\frac{N!}{n!\cdot(N-n)!}
$$

More generally, if you partition a set of N elements into k groups, with n_{1} elements in the first group, n_{2} elements in the second group, etc., the number of different results is

$$
\frac{N!}{n_{1}!\cdot n_{2}!\cdots n_{k}!}
$$

Permutations: If you draw n elements from a set of N elements and arrange the elements into a distinct order, the number of different results is

$$
{ }_{N} P_{n}=\frac{N!}{(N-n)!}
$$

DISCRETE VARIABLES:

Mean (or expected value): $\mu=E(X)=\sum x \cdot p(x)$ Variance: $\sigma^{2}=E(X-\mu)^{2}=\sum(x-\mu)^{2} \cdot p(x)$ or $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=\left(\sum x^{2} \cdot p(x)\right)-\mu^{2}$
Standard deviation: $\sigma=\sqrt{\sigma^{2}}$
Binomials: If X is binomial with parameters n and p then $\mu=n p, \sigma^{2}=n p q$, and $p(x)=\binom{n}{x} p^{x} q^{n-x}$
Poisson: If X is a Poisson variable with parameter λ then $\mu=\lambda, \sigma^{2}=\lambda$, and $p(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$
Hypergeometrics: If X is hypergeometric, where n elements are drawn from a population of size N that has r successes initially, then $\mu=\frac{n r}{N}, \sigma^{2}=\frac{r(N-r) n(N-n)}{N^{2}(N-1)}$, and

$$
p(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}
$$

CONTINUOUS VARIABLES:

Uniform: If X has a uniform distribution over the interval $[a, b]$, then $\mu=\frac{a+b}{2}, \sigma=\frac{b-a}{\sqrt{12}}$, and $f(x)=\frac{1}{b-a}$
Exponential: If X has an exponential distribution with parameter θ then $\mu=\theta, \sigma=\theta$, and $f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}$ Also, $P(X \geq a)=e^{-\frac{x}{a}}$

Normal: If X is normal then $z=\frac{x-\mu}{\sigma}$
Centiles: For normal variable X, the centile is $x_{\alpha}=$ $\mu+z_{\alpha} \sigma$

SAMPLING DISTRIBUTIONS:

Central Limit Theorem: For a random sample from a (large) population the sampling ditribution of \bar{x} is approximately normal.
Sample mean: For a random sample of n elements from a population with mean μ and standard deviation σ, the sampling distribution has $\mu_{\bar{x}}=\mu$ and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

Normal approximation to binomial: If X is binomial with parameters n and p, and $n p \pm 3 \sqrt{n p q}$ is in the interval $[0, n]$, (same as $9 q \leq n p$ and $9 p \leq n q$), then $P(a \leq X \leq b)=P(a-1<X<b+1)$ is approximately $P\left(a-\frac{1}{2}<Y<b+\frac{1}{2}\right)$ where Y is normal with $\mu=n p$ and $\sigma=\sqrt{n p q}$

CONFIDENCE INTERVALS:

For μ with known σ or large random sample: $\bar{x} \pm z_{\frac{\alpha}{2}}\left(\frac{\sigma}{\sqrt{n}}\right)$

Sample size (margin of error b) for μ :

$$
n \geq\left(\frac{z_{\frac{\alpha}{2}} \cdot \sigma}{b}\right)^{2}
$$

For μ with unknown σ and small sample from a normal population: $\bar{x} \pm t_{\frac{\alpha}{2}}\left(\frac{s}{\sqrt{n}}\right)$ for t with $n-1$ degrees of freedom

For proportion p : If $\hat{p} \pm 3 \sqrt{\frac{\hat{p} \hat{q}}{n}}$ is within the interval $(0,1),($ same as $9 \hat{q}<n \hat{p}$ and $9 \hat{p}<n \hat{q})$, then $\hat{p} \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \hat{q}}{n}}$
Sample size (margin of error b) for p :

$$
n \geq\left(\frac{z_{\frac{\alpha}{2}}}{b}\right)^{2} p q
$$

ONE-POPULATION TESTS:

One-sample z-test for μ with known σ or large random sample: The test statistic is $z=\frac{\bar{x}-\mu_{0}}{\left(\frac{\sigma}{\sqrt{n}}\right)}$

H_{1}	Reject H_{0} if	p-value
$\mu \neq \mu_{0}$	$\|z\|>z_{\frac{\alpha}{2}}$	$2 P(Z>\|z\|)$
$\mu>\mu_{0}$	$z>z_{\alpha}$	$P(Z>z)$
$\mu<\mu_{0}$	$z<-z_{\alpha}$	$P(Z<z)$

One-sample t-test for μ with unknown σ and small random sample from a normal population: The test statistic is $t=\frac{\bar{x}-\mu_{0}}{\left(\frac{s}{\sqrt{n}}\right)}$ and we use t with $n-1$ degrees of freedom

H_{1}	Reject H_{0} if	$p-$ value
$\mu \neq \mu_{0}$	$\|t\|>t_{\frac{\alpha}{2}}$	$2 P(T>\|t\|)$
$\mu>\mu_{0}$	$t>t_{\alpha}$	$P(T>t)$
$\mu<\mu_{0}$	$t<-t_{\alpha}$	$P(T<t)$

One-sample test for p : If $\hat{p} \pm 3 \sigma_{\hat{p}}$ is within the interval $(0,1)$ then the test statistic is $z=\frac{\hat{p}-p_{0}}{\sigma_{\hat{p}}}$ where $\sigma_{\hat{p}}=\sqrt{\frac{p_{0} q_{0}}{n}}$

H_{1}	Reject H_{0} if	p-value
$p \neq p_{0}$	$\|z\|>z_{\frac{\alpha}{2}}$	$2 P(Z>\|z\|)$
$p>p_{0}$	$z>z_{\alpha}$	$P(Z>z)$
$p<p_{0}$	$z<-z_{\alpha}$	$P(Z<z)$

TWO-POPULATION TESTS

Two-sample z-test for means with known $\sigma^{\prime} s$ or large random samples: The test statistic is $z=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{\sigma}$ where $\sigma=\sqrt{\frac{\left(\sigma_{1}\right)^{2}}{n_{1}}+\frac{\left(\sigma_{2}\right)^{2}}{n_{2}}}$

H_{1}	Reject H_{0} if	p-value
$\mu_{1}-\mu_{2} \neq D_{0}$	$\|z\|>z_{\frac{\alpha}{2}}$	$2 P(Z>\|z\|)$
$\mu_{1}-\mu_{2}>D_{0}$	$z>z_{\alpha}$	$P(Z>z)$
$\mu_{1}-\mu_{2}<D_{0}$	$z<-z_{\alpha}$	$P(Z<z)$

Two-sample t-test for means with unknown $\sigma^{\prime} s$ and small random samples, where variances are equal: The test statistic is $t=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{s}$ for $s=s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ and $s_{p}=\sqrt{\frac{\left(n_{1}-1\right)\left(s_{1}\right)^{2}+\left(n_{2}-1\right)\left(s_{2}\right)^{2}}{n_{1}+n_{2}-2}}$ and we use t with $n_{1}+n_{2}-2$ degrees of freedom

$$
\begin{array}{c|c|c}
H_{1} & \text { Reject } H_{0} \text { if } & p \text {-value } \\
\hline \mu_{1}-\mu_{2} \neq D_{0} & |t|>t_{\frac{\alpha}{2}} & 2 P(T>|t|) \\
\mu_{1}-\mu_{2}>D_{0} & t>t_{\alpha} & P(T>t) \\
\mu_{1}-\mu_{2}<D_{0} & t<-t_{\alpha} & P(T<t)
\end{array}
$$

Paired sample t-test: The test statistic is $t=\frac{\overline{x_{D}}-D_{0}}{\sigma}$ where $\sigma=\frac{\sigma_{D}}{\sqrt{n}}$ and use t with $n-1$ degrees of freedom

H_{1}	Reject H_{0} if	$p-$ value
$\mu_{D} \neq D_{0}$	$\|t\|>t_{\frac{\alpha}{2}}$	$2 P(T>\|t\|)$
$\mu_{D}>D_{0}$	$t>t_{\alpha}$	$P(T>t)$
$\mu_{D}<D_{0}$	$t<-t_{\alpha}$	$P(T<t)$

Two-sample z-test for proportions: The test statistic is

$$
z=\frac{\hat{p_{1}}-\hat{p_{2}}}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$

H_{1}	Reject H_{0} if	p-value
$p_{1}-p_{2} \neq 0$	$\|z\|>z_{\frac{\alpha}{2}}$	$2 P(Z>\|z\|)$
$p_{1}-p_{2}>0$	$z>z_{\alpha}$	$P(Z>z)$
$p_{1}-p_{2}<0$	$z<-z_{\alpha}$	$P(Z<z)$

