MATH-1150 (DUPRÉ) SPRING 2011 TAKE HOME TEST 1

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON
THE UPPER RIGHT CORNER OF EACH SHEET TURNED IN.
SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME ON EACH SHEET TURNED IN.

THIRD: WRITE YOUR SPRING 2011 MATH-1150 SECTION NUMBER DIRECTLY UNDERNEATH YOU FIRST NAME ON EACH SHEET TURNED IN.

1. DEFINITIONS AND THEOREMS

You may only use the following theorems in each problem in the PROBLEMS section.
Theorem 1.1. Any constant function is continuous. If $D \subset \mathbb{R}$ and if $h: D \longrightarrow \mathbb{R}$ is the rule given by $h(x)=x$, for all $x \in D$, then h is continuous. If f and g are continuous functions then so are $f+g, f \cdot g, f / g$, and if $f(x) \geq 0$, for all $x \in D$, and if $p \in \mathbb{R}$, then f^{p} is continuous.

Definition 1.1. If $B \subset \mathbb{R}$, then $b \in \mathbb{R}$ is in the Closure of B if and only if every open interval which contains b must intersect B. If $A \subset \mathbb{R}$, and $b \in \mathbb{R}$, then b is a Limit Point of A if and only if b is in the closure of $A \backslash\{b\}$.
Theorem 1.2. Suppose that $D \subset E \subset \mathbb{R}$ and $c \in E$ is a limit point of D. Suppose that $f: D \longrightarrow \mathbb{R}$ and $g: E \longrightarrow \mathbb{R}$ and that

$$
f(x)=g(x), \text { for all } x \in D
$$

Further, suppose that g is continuous at c. Then f has a limit as x approaches c, and it is given by

$$
\lim _{x \rightarrow c} f(x)=g(c)
$$

2. WORKED EXAMPLES

In each of the following problems justify your answer using the theorems and definitions above.
Example 2.1. Suppose that D is the open interval with endpoints 3 and 5. Show that the closure of D is the closed interval [3,5].

Solution: If the open interval J contains the point $x=3$, then there is a positive number $r>0$ such that the open interval $(3-r, 3+r)$ is contained in J. But, $3+r / 2$ then must belong to both J and D. Therefore every open interval which contains $x=3$ must intersect D. Similarly, replacing 3 by 5 and $3+\mathrm{r} / 2$ by $5-\mathrm{r} / 2$, we conclude every open interval which contains 5 must intersect D. Therefore 3 and 5 are in the closure of D. On the other hand, if b is in $\mathbb{R} \backslash[3,5]$, then either b is in the open interval $(-\infty, 3)$ or in the open interval $(5, \infty)$ and these are open intervals which do not intersect D, and therefore the closure of D is exactly $[3,5]$.

Example 2.2. Suppose that D is the open interval

$$
D=\{x \in \mathbb{R}: x>0\}
$$

and $f: D \longrightarrow \mathbb{R}$ is given by

$$
f(x)=\frac{x^{2}+4 x^{3 / 2}}{x}, x \in D
$$

Give the reason why f has a limit as x approaches 0 and find the limit.
Solution: We can simplify the expression for $f(x)$ and find

$$
f(x)=\frac{x^{2}+4 x^{3 / 2}}{x}=x^{1 / 2}+4=4+\sqrt{x}, x \in D
$$

and we can define the function $g:[0, \infty) \longrightarrow \mathbb{R}$ by the rule

$$
g(x)=4+\sqrt{x}, x \in[0, \infty)
$$

According to definition $1.1,0$ is a limit point of $D \subset \mathbb{R}$, and according to theorem $1.1, g$ is continuous and therefore continuous at 0 , since 0 is in its domain. Therefore by theorem 1.2 the limit of f as x approaches 0 is $g(0)=4$, which is to say

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{3}+4 x^{2}}{x^{2}}=g(0)=4+\sqrt{0}=4+0=4
$$

3. PROBLEMS

FIVE PROBLEMS EACH WORTH TWENTY POINTS

In each of the following problems justify your answer (in the space provided) using the theorems and definitions above.

1. Suppose that D is the result of removing the closed interval $[2,3]$ from the closed interval $[1,4]$, in other words, $D=[1,4] \backslash[2,3]$. What is the closure of D and why?
2. Suppose that $D=[1,4] \backslash[2,3]$ and that $f: D \longrightarrow \mathbb{R}$ is defined by

$$
f(x)=x^{3}-5 x^{2}+8 x+1, \text { if } x \in[1,2)
$$

and

$$
f(x)=\sqrt{x}, \text { if } x \in(3,4] .
$$

Tell why f has limits as x approaches 2 and as x approaches 3 and give

$$
\lim _{x \rightarrow 2} f(x) \text { and } \lim _{x \rightarrow 3} f(x)
$$

3. Suppose that $D=[1,5] \backslash\{4\}$ and that $f: D \longrightarrow \mathbb{R}$ is defined by

$$
f(x)=x^{2}-4 x+1, \text { if } x \in[1,4)
$$

and

$$
f(x)=\sqrt{x}, \text { if } x \in(4,5] .
$$

Tell why f does NOT have a limit as x approaches 4 .
4. Explain why the following limit exists and find it.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{2 x-4}
$$

5. Let $\mathbb{Q} \subset \mathbb{R}$ be the set of all rational numbers. We know $\pi \in \mathbb{R}$ is an irrational number, so $\pi \in \mathbb{R} \backslash \mathbb{Q}$.

Is π a limit point of \mathbb{Q} ? Give the reasons for your answer.

