# MATH-1150 (DUPRÉ) SPRING 2011 TAKE HOME TEST 1

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET TURNED IN.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME ON EACH SHEET TURNED IN.

THIRD: WRITE YOUR SPRING 2011 MATH-1150 SECTION NUMBER DIRECTLY UNDERNEATH YOU FIRST NAME ON EACH SHEET TURNED IN.

### 1. DEFINITIONS AND THEOREMS

You may only use the following theorems in each problem in the **PROBLEMS** section.

**Theorem 1.1.** Any constant function is continuous. If  $D \subset \mathbb{R}$  and if  $h: D \longrightarrow \mathbb{R}$  is the rule given by h(x) = x, for all  $x \in D$ , then h is continuous. If f and g are continuous functions then so are f+g,  $f \cdot g$ , f/g, and if  $f(x) \geq 0$ , for all  $x \in D$ , and if  $p \in \mathbb{R}$ , then  $f^p$  is continuous.

**Definition 1.1.** If  $B \subset \mathbb{R}$ , then  $b \in \mathbb{R}$  is in the **Closure** of B if and only if every open interval which contains b must intersect B. If  $A \subset \mathbb{R}$ , and  $b \in \mathbb{R}$ , then b is a **Limit Point** of A if and only if b is in the closure of  $A \setminus \{b\}$ .

**Theorem 1.2.** Suppose that  $D \subset E \subset \mathbb{R}$  and  $c \in E$  is a limit point of D. Suppose that  $f: D \longrightarrow \mathbb{R}$  and  $g: E \longrightarrow \mathbb{R}$  and that

$$f(x) = q(x)$$
, for all  $x \in D$ .

Further, suppose that g is continuous at c. Then f has a limit as x approaches c, and it is given by

$$\lim_{x \to c} f(x) = g(c).$$

## 2. WORKED EXAMPLES

In each of the following problems justify your answer using the theorems and definitions above.

**Example 2.1.** Suppose that D is the open interval with endpoints 3 and 5. Show that the closure of D is the closed interval [3, 5].

**Solution:** If the open interval J contains the point x=3, then there is a positive number r>0 such that the open interval (3-r,3+r) is contained in J. But, 3+r/2 then must belong to both J and D. Therefore every open interval which contains x=3 must intersect D. Similarly, replacing 3 by 5 and 3+r/2 by 5-r/2, we conclude every open interval which contains 5 must intersect D. Therefore 3 and 5 are in the closure of D. On the other hand, if b is in  $\mathbb{R} \setminus [3,5]$ , then either b is in the open interval  $(-\infty,3)$  or in the open interval  $(5,\infty)$  and these are open intervals which do not intersect D, and therefore the closure of D is exactly [3,5].

**Example 2.2.** Suppose that D is the open interval

$$D = \{ x \in \mathbb{R} : x > 0 \}$$

and  $f:D\longrightarrow \mathbb{R}$  is given by

$$f(x) = \frac{x^2 + 4x^{3/2}}{x}, \ x \in D.$$

Give the reason why f has a limit as x approaches 0 and find the limit.

**Solution:** We can simplify the expression for f(x) and find

$$f(x) = \frac{x^2 + 4x^{3/2}}{x} = x^{1/2} + 4 = 4 + \sqrt{x}, \ x \in D,$$

and we can define the function  $g:[0,\infty)\longrightarrow \mathbb{R}$  by the rule

$$g(x) = 4 + \sqrt{x}, \ x \in [0, \infty).$$

According to definition 1.1, 0 is a limit point of  $D \subset \mathbb{R}$ , and according to theorem 1.1, g is continuous and therefore continuous at 0, since 0 is in its domain. Therefore by theorem 1.2 the limit of f as x approaches 0 is g(0) = 4, which is to say

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^3 + 4x^2}{x^2} = g(0) = 4 + \sqrt{0} = 4 + 0 = 4.$$

### 3. PROBLEMS

#### FIVE PROBLEMS EACH WORTH TWENTY POINTS

In each of the following problems justify your answer (in the space provided) using the theorems and definitions above.

**1.** Suppose that D is the result of removing the closed interval [2,3] from the closed interval [1,4], in other words,  $D = [1,4] \setminus [2,3]$ . What is the closure of D and why?

**2.** Suppose that  $D = [1,4] \setminus [2,3]$  and that  $f: D \longrightarrow \mathbb{R}$  is defined by

$$f(x) = x^3 - 5x^2 + 8x + 1$$
, if  $x \in [1, 2)$ ,

and

$$f(x) = \sqrt{x}$$
, if  $x \in (3, 4]$ .

Tell why f has limits as x approaches 2 and as x approaches 3 and give

$$\lim_{x\to 2} f(x)$$
 and  $\lim_{x\to 3} f(x)$ .

**3.** Suppose that  $D = [1, 5] \setminus \{4\}$  and that  $f : D \longrightarrow \mathbb{R}$  is defined by

$$f(x) = x^2 - 4x + 1$$
, if  $x \in [1, 4)$ ,

and

$$f(x) = \sqrt{x}$$
, if  $x \in (4, 5]$ .

Tell why f does NOT have a limit as x approaches 4.

4. Explain why the following limit exists and find it.

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{2x - 4}$$

**5.** Let  $\mathbb{Q} \subset \mathbb{R}$  be the set of all rational numbers. We know  $\pi \in \mathbb{R}$  is an irrational number, so  $\pi \in \mathbb{R} \setminus \mathbb{Q}$ .

Is  $\pi$  a limit point of  $\mathbb{Q}$ ? Give the reasons for your answer.