MATH-1150 (DUPRÉ) SPRING 2011 QUIZ 3 ANSWERS

Wednesday 29 February 2012

DIRECTIONS

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET TURNED IN.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME ON EACH SHEET TURNED IN.

THIRD: WRITE YOUR CORRECT SPRING 2011 MATH-1150 SECTION NUMBER DIRECTLY UNDERNEATH YOU FIRST NAME ON EACH SHEET TURNED IN.

FOURTH: Write NEATLY and CLEARLY, putting your answers in the space provided. If I cannot read it you do not get credit.

FIFTH: Any failure to follow any part of any of the above directions can result in additional loss of credit.

Suppose f, g, and h are functions with

$$
f(2)=4, g(2)=e, f^{\prime}(2)=5, g^{\prime}(2)=3, g(4)=5 \quad \text { and } g^{\prime}(4)=9
$$

1. If $h=f \cdot g$, then $h^{\prime}(2)=f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=5 \cdot e+4 \cdot 3=5 e+12$.
2. If $h=f / g$, then $h^{\prime}(2)=\frac{f^{\prime}(2) g(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}}=\frac{5 e-12}{e^{2}}$.
3. If $h=g \circ f$, then $h^{\prime}(2)=g^{\prime}(f(2)) \cdot f^{\prime}(2)=g^{\prime}(4) \cdot f^{\prime}(2)=9 \cdot 5=45$.
4. If $h=f^{e} \cdot \ln [\pi+g]$ then $h^{\prime}(2)=\left(\left[f^{e}\right]^{\prime} \cdot \ln [\pi+g]+f^{e} \cdot[\ln (\pi+g)]^{\prime}\right)(2)$.

Now, $\left[f^{e}\right]^{\prime}=e f^{e-1} \cdot f^{\prime}$, so $\left[f^{e}\right]^{\prime}(2)=e 4^{e-1} \cdot 5$, and

$$
[\ln [\pi+g]]^{\prime}=\frac{[\pi+g]^{\prime}}{\pi+g}=\frac{g^{\prime}}{\pi+g}
$$

so

$$
[\ln [\pi+g]]^{\prime}(2)=\frac{g^{\prime}(2)}{\pi+g(2)}=\frac{3}{\pi+e}
$$

Therefore,

$$
h^{\prime}(2)=e 4^{e-1} \cdot 5 \cdot \ln [\pi+e]+4^{e} \cdot \frac{3}{\pi+e}
$$

5. If $w=f(x, y, z)=x^{2} \cdot e^{y} \cdot \ln z$, and if we use over-dots to denote time rates of change, then express \dot{w} in terms of $x, \dot{x}, y, \dot{y}, z$, and \dot{z}.

We can simply use the product rule here. We first view $w=x^{2} \cdot e^{y} \cdot \ln z$ as being the product of two factors, the first being simply x^{2} and the second being $e^{y} \ln z$. Then

$$
\dot{w}=\left(x^{2} \dot{)}\left(e^{y} \ln z\right)+x^{2}\left(e^{y} \ln z\right)\right.
$$

Since $e^{y} \ln z$ is itself a product, we apply the product rule to it getting

$$
\left(e^{y} \ln z\right)=\left(e^{y}\right) \ln z+e^{y}(\ln z)
$$

By the chain rule, we have

$$
\begin{aligned}
& \left(x^{2} \dot{)}=2 x \dot{x}\right. \\
& \left(e^{y} \dot{)}=e^{y} \dot{y}\right.
\end{aligned}
$$

and

$$
(\ln z)=\frac{1}{z} \cdot \dot{z}=\frac{\dot{z}}{z}
$$

Therefore

$$
\dot{w}=(2 x \dot{x})\left(e^{y} \ln z\right)+x^{2}\left[\left(e^{y} \dot{y}\right) \ln z+e^{y} \frac{\dot{z}}{z}\right],
$$

which suffices for the answer. We can notice that we can arrange the terms to have

$$
\dot{w}=\left[2 x e^{y} \ln z\right] \dot{x}+\left[x^{2} e^{y} \ln z\right] \dot{y}+\left[x^{2} e^{y} \cdot \frac{1}{z}\right] \dot{z}
$$

An alternate method is to get the coefficients for \dot{x}, \dot{y}, and \dot{z} directly. We know the end result can be arranged in the form

$$
\dot{w}=M(x, y, z) \dot{x}+N(x, y, z) \dot{y}+P(x, y, z) \dot{z}
$$

for some coefficient functions M, N, P. The coefficient of \dot{x} is obtained by differentiating $f(x, y, z)$ with respect to x keeping y and z constant. If we denote the operation of differentiating with respect to x keeping all other variables constant by ∂_{x}, then

$$
M(x, y, z)=\partial_{x}\left[x^{2} e^{y} \ln z\right]=2 x e^{y} \ln z
$$

Likewise, we can denote the operation of differentiating with respect to y keeping all other variables constant by ∂_{y}, and

$$
N(x, y, z)=\partial_{y}\left[x^{2} e^{y} \ln z\right]=x^{2} e^{y} \ln z
$$

and similarly for z, we have

$$
P(x, y, z)=\partial_{z}\left[x^{2} e^{y} \ln z\right]=x^{2} e^{y} \frac{1}{z}
$$

Therefore, again,

$$
\dot{w}=\left[2 x e^{y} \ln z\right] \dot{x}+\left[x^{2} e^{y} \ln z\right] \dot{y}+\left[x^{2} e^{y} \frac{1}{z}\right] \dot{z}
$$

Notice that with this second method, we only apply the product rule in its simplest form, the case where one of the factors is a constant. It is much easier using this second method.

