MATH-1150 (DUPRÉ) SPRING 2011 TEST 1 ANSWERS

Wednesday15 February 2012

## DIRECTIONS

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET TURNED IN.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME ON EACH SHEET TURNED IN.

THIRD: WRITE YOUR CORRECT SPRING 2011 MATH-1150 SECTION NUMBER DIRECTLY UNDERNEATH YOU FIRST NAME ON EACH SHEET TURNED IN.

FOURTH: Write NEATLY and CLEARLY, putting your answers in the space provided. If I cannot read it you do not get credit.

FIFTH: Any failure to follow any part of any of the above directions can result in additional loss of credit.

Suppose $f, g$, and $h$ are functions with

$$
f(2)=3, g(2)=7, \quad f^{\prime}(2)=4, g^{\prime}(2)=-8, \quad \text { and } \quad g^{\prime}(3)=5
$$

1. If $h=f \cdot g$, then $h^{\prime}(2)=f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=4 \cdot 7+3 \cdot[-8]=28-24=4$.
2. If $h=f / g$, then $h^{\prime}(2)=\frac{f^{\prime}(2) g(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}}=\frac{4 \cdot 7-3 \cdot[-8]}{7^{2}}=\frac{28+24}{49}=\frac{52}{49}$.
3. If $h=g \circ f$, then $h^{\prime}(2)=g^{\prime}(f(2)) \cdot f^{\prime}(2)=g^{\prime}(3) \cdot f^{\prime}(2)=5 \cdot 4=20$.
4. If $h=f^{\pi} \cdot \ln g$, then $h^{\prime}(2)=\pi f(2)^{\pi-1} f^{\prime}(2) \cdot \ln [g(2)]+[f(2)]^{\pi} \cdot \frac{g^{\prime}(2)}{g(2)}$

$$
=\pi\left[3^{\pi-1}\right] \cdot 4 \cdot \ln 7+3^{\pi} \cdot \frac{[-8]}{7}=3^{\pi}\left[\frac{4}{3} \cdot \ln 7-\frac{8}{7}\right]
$$

5. If $h=[g \circ f] \cdot e^{g}$, then $h^{\prime}(2)=\left[g^{\prime}(f(2)) \cdot f^{\prime}(2)\right] e^{g(2)}+g(f(2)) \cdot e^{g(2)} \cdot g^{\prime}(2)=20 e^{7}+g(3) e^{7} \cdot(-8)$

$$
=e^{7}[20-8 \cdot g(3)]
$$

6. If $L$ is the line with equation $8 x-4 y=12$, then the slope of $L$ is $=2$.

Notice the equation is equivalent to the equation $y=2 x-3$ which has clearly has slope $=2$.
7. If $f(x)=x^{3}-[\ln x]+e^{x}-\sqrt{x}+x^{\pi}$, then $f^{\prime}(x)=3 x^{2}-\frac{1}{x}+e^{x}-\frac{1}{2 \sqrt{x}}+\pi x^{\pi-1}$.
8. If $T$ is the tangent line to the graph of the equation $y=x^{2}-2 x-2$ at the point $(3,1)$,
then the slope of $T$ is $=4$.
For we can define the function $f$ by $f(x)=x^{2}-2 x-2$ and then we know the slope $m$ of the tangent line is given by $m=f^{\prime}(3)$. But $f^{\prime}(x)=2 x-2$, therefore $f^{\prime}(3)=2 \cdot 3-2=4$.
9. If $T$ is the tangent line to the graph of the equation $x^{2}-x y+y^{3}=3$ at the point $(2,1)$,
then an equation for $T$ is:

To see this imagine we travel along the curve in time so that $x$ and $y$ depend on time, and let $\dot{x}$ and $\dot{y}$ denote their rates of change. Differentiating both sides of the equation with respect to time, we have at any time during the motion

$$
0=\dot{3}=\left(x^{2}\right)-(x y)+\left(y^{3}\right)=2 x \dot{x}-[\dot{x} y+x \dot{y}]+3 y^{2} \dot{y}=[2 x-y] \dot{x}+\left[3 y^{2}-x\right] \dot{y}
$$

or simply

$$
[2 x-y] \dot{x}+\left[3 y^{2}-x\right] \dot{y}=0
$$

In particular, at the instant we pass through the point $(2,1)$ the rates of change satisfy

$$
3 \dot{x}+\dot{y}=0
$$

which means that an equation of the tangent line is

$$
3(x-2)+(y-1)=0
$$

10. If $f(z)=\frac{z^{7}-e^{\left[3 z^{5}+2\right]}}{z^{3}+\ln z}$,
then $f^{\prime}(z)=\frac{\left[7 z^{6}-e^{\left[3 z^{5}+2\right]} \cdot\left(3 \cdot 5 z^{4}\right)\right]\left[z^{3}+\ln z\right]-\left[z^{7}-e^{\left[3 z^{5}+2\right]}\right]\left[3 z^{2}+(1 / z)\right]}{\left[z^{3}+\ln z\right]^{2}}$
