MATH-1150 (DUPRÉ) SPRING 2013 TEST 4 ANSWERS

THE USUAL DIRECTIONS (AS ON TEST 3) APPLY.

Suppose that the function $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is given by

$$
f(x, y)=x^{2} y-x y-x y^{2}=x y(x-y-1) .
$$

We can easily see that

$$
f(4,2)=8
$$

Therefore the point $(4,2)$ is on the curve with equation $f(x, y)=8$ which is a curve in the (x, y)-plane.

PROBLEM 2. Suppose that x and y are both functions of time, t, that $x=x(t)$, and $y=y(t)$, and the function $z=z(t)$ of time is given by $z=f(x, y)$, so that

$$
z=x^{2} y-x y-x y^{2}=z(t)=f(x(t), y(t))=[x(t)]^{2} y(t)-x(t) y(t)-x(t)[y(t)]^{2}, t \in \mathbb{R} .
$$

Use the chain rule to express \dot{z} in terms of x, y, \dot{x}, \dot{y}.
ANSWERS: $\dot{z}=\left[2 x y-y-y^{2}\right] \dot{x}+\left[x^{2}-x-2 x y\right] \dot{y}=y[2 x-y-1] \dot{x}+x[x-2 y-1] \dot{y}$

PROBLEM 3. Suppose that a beetle is crawling along the graph of the curve

$$
z=f(x, y)=8
$$

so that the rate of increase of x for the beetle is 6 units per second at the instant the beetle passes through the point $(4,2)$. What is the rate of increase of z for the beetle at the instant the beetle passes through the point $(4,2)$?

ANSWERS: $\dot{z}=0$

PROBLEM 4. Suppose that a beetle is crawling along the graph of the curve

$$
z=f(x, y)=8
$$

so that the rate of increase of x for the beetle is 6 units per second at the instant the beetle passes through the point $(4,2)$. What is the rate of increase of y for the beetle at the instant the beetle passes through the point $(4,2)$?

ANSWERS: Since $0=\dot{z}=\left[2 x y-y-y^{2}\right] \dot{x}+\left[x^{2}-x-2 x y\right] \dot{y}=y[2 x-y-1] \dot{x}+x[x-2 y-1] \dot{y}$ for the beetle, it follows that at the point $(4,2)$,

$$
10 \dot{x}-4 \dot{y}=0 .
$$

Therefore, $\dot{y}=[(10) / 4] \dot{x}=[5 / 2][6]=(5)(3)=15$.

PROBLEM 5. What is $\frac{d y}{d x}$ at the point $(4,2)$ on the curve $z=f(x, y)=8$?
ANSWERS: The beetle knows. At the point $(4,2)$ moving along the curve $z=8$ with $\dot{x}=6$ the rate of change of y is $\dot{y}=15$, so

$$
\frac{d y}{d x}=\frac{15}{6}=\frac{5}{2}=2.5
$$

Suppose that the function f with domain $[-1,12]$ is defined by

$$
y=f(x)=x(12-x),-1 \leq x \leq 12
$$

Suppose that

$$
g(x)=x y=x f(x)=x^{2}(12-x)=12 x^{2}-x^{3},-1 \leq x \leq 12
$$

PROBLEM 6. What is $g^{\prime}(x)$ for $-1<x<12$?
ANSWERS: $g^{\prime}(x)=24 x-3 x^{2}=3 x(8-x)$.

PROBLEM 7. What are the critical points of g on the interval $-1<x<12$?

ANSWERS: The critical points are the points where g^{\prime} has value zero. Since $g^{\prime}(x)=3 x(8-x)$, it follows that g^{\prime} will be zero only for $x=0,8$, so these are the critical points of g.

PROBLEM 8. What is $g^{\prime \prime}(x)$ on the interval $-1<x<12$?

ANSWERS: $g^{\prime \prime}(x)=\left[g^{\prime}(x)\right]^{\prime}=\left[24 x-3 x^{2}\right]^{\prime}=24-6 x=6(4-x)$.

PROBLEM 9. What are the inflection points of g on the interval $-1<x<12$?

ANSWERS: The inflection points of g are the points where $g^{\prime \prime}$ is zero, so as $g^{\prime \prime}(x)=6(4-x)$, it follows that $x=4$ is the only inflection point of g.

PROBLEM 10. What is the value of x for which $g(x)$ is maximum for $-1 \leq x \leq 12$?

ANSWERS: The value of x giving the maximum value of g on the interval $-1 \leq x \leq 12$, is either a boundary point or critical point of g in the interval, so
the only possibilities are $x=-1,0,8,12$.
Now using $g(x)=x^{2}(12-x)$, we find

$$
g(-1)=13, g(0)=0, g(8)=256, g(12)=0
$$

and therefore clearly $x=8$ gives the maximum value of g on the interval $-1 \leq x \leq 12$.

Calclate the following integrals and derivatives.

ANSWERS:

PROBLEM 11. $\int_{0}^{8} x^{2 / 3} d x=\left[\frac{x^{5 / 3}}{5 / 3}\right]_{0}^{8}=\frac{3}{5}\left[x^{5 / 3}\right]_{0}^{8}=\frac{3}{5} 8^{5 / 3}=\frac{3}{5}\left[8^{1 / 3}\right]^{5}=\frac{3}{5} 2^{5}=\frac{96}{5}$.

PROBLEM 12. $\frac{d}{d x} \int_{-2}^{x} e^{\sqrt{t^{4}+2}} d t=e^{\sqrt{x^{4}+2}}$

