FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF THIS SHEET.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME.

THIRD: WRITE YOUR FALL 2010 MATH-1230 LAB DAY DIRECTLY UN-DERNEATH YOU FIRST NAME.

DIRECTIONS: WRITE YOUR FINAL ANSWERS IN THE SPACE PRO-VIDED ON THE TEST SHEET. WRITE YOUR FULL SOLUTION TO EACH PROBLEM ON A SHEET OF PLAIN WHITE PAPER SHOWING ALL YOUR WORK WITH EACH SOLUTION ON A SEPARATE SHEET OF PAPER USING ONE SIDE ONLY. DO NOT WRITE ON THE BACK OF ANY SHEET RURNED IN. FOLLOW STEPS ABOVE FOR EACH SHEET TURNED IN FOR IDENTIFI-CATION PURPOSES. EACH PROBLEM IS WORTH 5 POINTS. THERE ARE 20 PROBLEMS.

Suppose that $X_1, X_2, X_3, ..., X_n, ...$ is a sequence of uncorrelated random variables all having mean μ and standard deviation σ . Let

$$T_n = \sum_{k=1}^n X_k, \ n = 1, 2, 3, \dots$$

and let

$$\bar{X}_n = \frac{1}{n}T_n, \ n = 1, 2, 3, \dots,$$

so we are assuming

$$Cov(X_i, X_j) = \sigma^2, i = j, \text{and } Cov(X_i, X_j) = 0, i \neq j$$

1

- 1. What is $Cov(X_3, \overline{X}_2)$?
- **2.** What is $Cov(X_2, \overline{X}_3)$?

3. What is $Cov(T_2, \overline{X}_3)$?

4. What is $Cov(\bar{X}_2, \bar{X}_3)$?

5. What is $Cov(\bar{X}_4, \bar{X}_7)$?

- **6.** What is $Cov(\bar{X}_4, X_2 \bar{X}_7)$?
- 7. What is $Cov(X_7 \bar{X}_6, X_5 \bar{X}_4)$?

Suppose that X is an unknown with probability density function (pdf) satisfying

$$f_X(x) = \frac{3}{4}(1 - x^2), \ -1 \le x \le 1.$$

- 8. What is $P(X \leq -2)$?
- **9.** What is $P(X \le 0)$?
- **10.** What is $P(X \ge .4)$?
- **11.** What is $P(-.2 \le X \le .3)$?
- **12.** What is E(X)?
- **13.** What is $E(X^2)$?
- **14.** What is σ_X^2 , the variance of X?

15. If T is the total of 5 random observations of X, then what is E(T)?

16. If T is the total of 5 independent random observations of X, then what is σ_T^2 , the variance of T?

Suppose that A is a statement with $p = P(A) = E(I_A)$, where I_A is the indicator unknown of A. Let T_n be the total of n independent observations of I_A .

17. What is $m_{I_A}(t)$, the moment generating function of I_A in terms of p, t?

18. What is the formula or expression for the moment generating function $m_{T_n}(t)$ for T_n in terms of t, n, p?

19. What is the mean and variance of T_n in terms of n and p?

20. What is $P(T_n = k)$ in terms of n, k, p, and what is $P(T_n = 4)$ for the case where n = 10 and p = .3?