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In the formulas given below, U,W,X, Y are any unknowns, and A,B,C,D,K, are any state-
ments, unless otherwise specified. E(X|A) is the Expected Value of X given A. Always
IA denotes the Indicator unknown for the statement A, and this means IA is one or zero
according to whether A is true or false. Definite real numbers are denoted by lower case sym-
bols a, b, c, d, u, v, w, x, y, z and are also referred to as constants. Unknowns can be added and
multiplied and all constants are also considered as unknowns. Think of any description of a
numerical quantity as being an unknown, so since 3 or π describe numerical quantities they are
unknowns. The unknowns form a set A containing the set of all real numbers R. We call A the
Algebra of Unknowns.

1. FUNDAMENTAL AXIOMS

INFORMATION CANNOT BE IGNORED

E(X|(X = a)&B) = a

CONSEQUENCE (since a=a)

E(a|B) = a

ORDER AXIOM

[B ⇒ (X ≤ Y )]⇒ E(X|B) ≤ E(Y |B)

2. ADDITION AXIOM

E(a ·X ± b · Y |B) = a · E(X|B)± b · E(Y |B)

3. MULTIPLICATION RULE (follows from the assumption that E(X · IA|B) as a
function of X depends only on the number E(X|A & B) for any fixed A,B, by then taking
X = a and evaluating both E(X · IB |C) and E(X|B&C))

E(X · IB |C) = E(X|B & C) · E(IB |C)

4. DEFINITION OF PROBABILITY

P (A|B) = E(IA|B)

5. NOTATION (when the given A is understood or is the same throughout)

µX = E(X) = E(X|A), E(X|B) = E(X|B&A), P (B|A) = P (B)

MULTIPLICATION RULE AND PROBABILITY

E(X · IB) = E(X|B) · P (B)
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6. LOGIC CONVERTED TO ALGEBRA

IA&B = IA · IB

IA or B = IA + IB − IA&B

Inot A = 1− IA

7. MULTIPLICATION RULE FOR PROBABILITY (use X = IA in Multiplication
Rule and definition of probability)

P (A & B) = P (A|B) · P (B)

8. RULES OF PROBABILITY (follow from 0 ≤ IA ≤ 1, the conversion of logic to
algebra, the axioms, and the definition of probability)

0 ≤ P (A) ≤ 1

P (A or B) = P (A) + P (B)− P (A&B)

P (not A) = 1− P (A)

9. PARTITION PRINCIPLE (consequence of axioms and Multiplication Rule)
If B1, B2, B3, ..., Bn are statements and exactly one is true (called a Partition), then

n∑
k=1

IBk
= 1,

n∑
k=1

P (Bk) = 1

X =

n∑
k=1

X · IBk

E(X) =

n∑
k=1

E(X|Bk) · P (Bk)

P (A) =

n∑
k=1

P (A|Bk) · P (Bk)

10. BAYES’ RULES

P (A|B) · P (B) = P (A&B) = P (B&A) = P (B|A) · P (A)

P (A|B) =
P (A&B)

P (B)
=
P (B|A) · P (A)

P (B)

P (A|B)

P (A)
=
P (B|A)

P (B)
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11. DEFINITION OF COVARIANCE

Cov(X,Y ) = E([X − µX ] · [Y − µY ])

12. DEFINITION OF VARIANCE

V ar(X) = Cov(X,X)

13. DEFINITION OF STANDARD DEVIATION

SD(X) = σX =
√
V ar(X)

14. DEFINITION OF CORRELLATION

ρ = ρ(X,Y ) =
Cov(X,Y )

σX · σY
15. DEFINITION OF STANDARDIZATION

ZX =
X − µX
σX

, X = µX + σX · ZX

16. CALCULATION FORMULAS

Cov(X,Y ) = E(X · Y )− µX · µY = ρ · σX · σY

E(X · Y ) = µX · µY + Cov(X,Y )

V ar(X ± Y ) = V ar(X) + V ar(Y )± 2Cov(X,Y )

ρ = Cov(ZX , ZY ) = E(ZX · ZY )

Cov(X, c) = 0, Cov(X,Y ) = Cov(Y,X), V ar(X ± c) = V ar(X)

Cov(W,a ·X ± b · Y ) = a · Cov(W,X)± b · Cov(W,Y ), V ar(c ·X) = c2 · V ar(X)

17. LINEAR REGRESSION (of Y on X, with W = β0 + β1 ·X and RY = WX − Y )

E(Y |X = x) = β0 + β1 · x

β1 = ρ · σY
σX

, β0 = µY − β1 · µX

E(R2
Y ) = σ2

Y · (1− ρ2)

For W = a+ bX, and R = W − Y,

E(R2) = [E(R)]2 + V ar(R) = [(a+ bµX)− µY ]2 + V ar(W ) + V ar(Y )− 2Cov(W,Y )

= [(a+ bµX)− µY ]2 + b2σ2
X + σ2

Y − 2bρσXσY

= [(a+ bµX)− µY ]2 + (1− ρ2)σ2
Y + (ρσY )2 + (bσX)2 − 2(ρσY )(bσX)

= [(a+ bµX)− µY ]2 + (1− ρ2)σ2
Y + [(ρσY )− (bσX)]2
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18. CUMULATIVE DISTRIBUTION FUNCTION

FX(x) = P (X ≤ x), x ∈ R

P (a < X ≤ b) = FX(b)− FX(a)

19. PROBABILITY DISTRIBUTION FUNCTION (for discrete unknown)

pX(k) = P (X = k), k ∈ R
20. PROBABILITY DENSITY FUNCTION

fX(x) = F ′X(x) =

(
d

dx
FX

)
(x), x ∈ R

P (a < X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(x)dx

21. TRANSFORM

[M(h)](t) =

∫ ∞
−∞

etxh(x)dx =

∫ ∞
−∞

exp(tx) · h(x)dx

ex =

∞∑
n=0

xn

n!

M(a · g ± b · h) = a · M(g)± b · M(h)

[M(x · h)](t) = [
d

dt
M(h)](t)

For A(x) the statement that x is in the interval [a, b] ⊂ R, we denote IA(x) by I[a,b](x)∫ ∞
−∞

I[a,b](x) · h(x)dx =

∫ b

a

h(x)dx

[M(I[a,b])](t) =
ebt − eat

t
=

∞∑
n=0

[bn+1 − an+1]
tn

(n+ 1)!
=

∞∑
n=0

[bn+1 − an+1]

n+ 1

tn

n!

f(t) =

∞∑
n=0

f (n)(c)

n!
(t− c)n =

∞∑
n=0

f (n)(c)
(t− c)n

n!
, f (n) =

dn

dxn
f

22. MOMENT GENERATING FUNCTION

mX = E(etX) =M(fX)

m
(n)
X (t) = E(XnetX), n = 0, 1, 2, 3, ...

m
(n)
X (0) = E(Xn), n = 0, 1, 2, 3, ...

mX±c(t) = e±ct ·mX(t)

mcX(t) = mX(ct)
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23. DIRAC DELTA FUNCTION
Not really a function but it is denoted δ with the property that for any smooth function h

with compact support

h(0) =

∫ ∞
−∞

h(x)δ(x)dx

δc(x) = δ(x− c)

h(c) =

∫ ∞
−∞

h(x)δc(x)dx

M(δc)(t) = ect

If A1, A2, A3, ..., An is a partition, v1, v2, v3, ..., vn ∈ R, then

X =
n∑
k=1

vk · IAk

is a Simple Unknown and

mX(t) =

n∑
k=1

P (Ak) · evkt =M(fX),

fX(x) =

n∑
k=1

P (Ak) · δvk

24. UNIFORM DISTRIBUTION
If X is uniformly distributed on [a, b] then

fX =
1

b− a
· I[a,b]

mX(t) =
1

b− a
M(I[a,b]) =

ebt − eat

(b− a)t
=

∞∑
n=0

[
bn+1 − an+1

(n+ 1)(b− a)

]
tn

n!

E(Xn) =
bn+1 − an+1

(n+ 1)(b− a)

E(X) =
a+ b

2

σX =
(b− a)/2√

3
25. NORMAL DISTRIBUTION

µ = E(X), σ = SD(X)

fX(x) =
1

σ
√

2π
exp

(
−1

2

[
x− µ
σ

]2
)

For Z standard normal (µ = 0, σ = 1)

fZ(z) =
1√
2π

exp(−1

2
z2)

mZ(t) = et
2/2 =

∞∑
n=0

(2n)!

2n · n!

t2n

(2n)!
, E(Zn) =

(2n)!

2n · n!
= (2n− 1)!!
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26. SAMPLING DISTRIBUTIONS
Start with any random variable X and let X1, X2, X3, ..., Xn be observations of X.

E(Xk) = µX , SD(Xk) = σX , k = 1, 2, 3, ..., n

X̄n =
1

n
Tn, Tn =

n∑
k=1

Xk

X − X̄n =

n∑
k=1

(Xk − X̄n) = 0, (X − X̄n)2 =
1

n

n∑
k=1

(Xk − X̄)2

E(Tn) = nµX , E(X̄n) = µX

(X − X̄)2 = X2 − [X̄]2

FAIR SAMPLING CONSTANT/CONDITION

c =
Cov(Xk, Tn)

σ2
X

, k = 1, 2, 3, ..., n

Then

V ar(Tn) = c · nσ2
X , SD(Tn) =

√
c ·
√
n · σX , SD(X̄n) =

√
c
σX√
n
, V ar(X̄n) = c

σ2
X

n
.

S2 =
n

n− c
(X − X̄)2, E(S2) = σ2

X

Denote Independent Random Sampling by IRS and Simple Random Sampling by
SRS. Here N is population size, n is sample size.

cIRS = 1, cSRS =
N − n
N − 1

SD(X̄n)IRS =
σX√
n
, SD(Tn)IRS =

√
nσX

SD(X̄n)SRS =
√
cSRS · SD(X̄n)IRS =

√
N − n
N − 1

· σX√
n

SD(Tn)SRS =
√
cSRS · SD(Tn)IRS =

√
N − n
N − 1

·
√
nσX

n

n− cIRS
=

n

n− 1

n

n− cSRS
=
N − 1

N
· n

n− 1
=
N − 1

N
· n

n− cIRS

(S2)SRS =
N − 1

N
(S2)IRS
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27. CHI-SQUARE DISTRIBUTION
Begin with standard normal Z and let Z1, Z2, Z3, ..., Zd be an independent random sample

of size d. Define Wd and χ2
d by

χ2
d = fW 2 , W 2

d =

d∑
k=1

Z2
k , mW 2(t) = (1− 2t)−d/2

If X is normal and IRS is used, then

fU = χ2
n−1, where U =

(n− 1)S2

σ2
X

, and S2 =
n

n− 1
(X − X̄n)2

The random variable W 2
d is said to have the Chi-Square Distribution with d−Degrees

of Freedom.

28. TWO RANDOM VARIABLE SAMPLING
Start with two random variables X and Y on the same population with paired observations

(X1, Y1), (X2, Y2), X3, Y3), ..., (Xn, Yn).

Cov(X,Y ) = ρ · σX · σY

FXk
= FX , E(Xk) = µX , SD(Xk) = σX , k = 1, 2, 3, ..., n

FYk
= FY , E(Yk) = µY , SD(Yk) = σY , k = 1, 2, 3, ..., n

TX =

n∑
k=1

Xk, TY =

n∑
k=1

Yk

Cov(Xk, Yk) = ρ · σX · σY , k = 1, 2, 3, ..., n

(X − X̄n)(Yk − Ȳn) =
1

n

n∑
k=1

(Xk − X̄n)(Yk − Ȳn)

(X − X̄)(Y − Ȳ ) = XY − [X̄][Ȳ ]

FAIR PAIRING CONDITIONS/CONSTANTS

cX =
Cov(Xk, TX)

σ2
X

, cY =
Cov(Yk, TY )

σ2
Y

, k = 1, 2, 3, ..., n

d =
Cov(Xk, TY )

(
√
cXσX) · (√cY σY )

, k = 1, 2, 3, ..., n

e =
Cov(TX , Yk)

(
√
cXσX) · (√cY σY )

, k = 1, 2, 3, ..., n

Define
c =
√
cX · cY ,

It follows that d = e and in fact ρ(TX , TY ) = d = e = ρ(X̄n, Ȳn)

Cov(TX , TY ) = ncdσXσY = ρ(TX , TY )(
√
cXnσX)(

√
cY nσY )

Cov(X̄n, Ȳn) =
1

n
c · d · σX · σY = d · (

√
cX

σX√
n

) · (
√
cY

σY√
n

)
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For SRS it is reasonable that Cov(Xk, Yl) for k 6= l is otherwise independent of k, l and this
implies

dIRS = ρ = dSRS .

Moreover, for SRS,

cX =
N − n
N − 1

= cY = cSRS ,

On the other hand, if ρ = 0, then it is reasonable that Cov(Xk, Yl) = 0 for any k, l, and thus
in general, we can write

d = aρ.

Then

E
(

(X − X̄)(Y − Ȳ )
)

=
(

1− ac

n

)
Cov(X,Y ),

so in general,

E

([
n

n− ac

]
(X − X̄)(Y − Ȳ ))

)
= Cov(X,Y ),

and

aIRS = 1 = aSRS ,

so

E

([
n

n− c

]
(X − X̄)(Y − Ȳ ))

)
= Cov(X,Y ), for IRS or SRS.

29. The t-DISTRIBUTION
Suppose that Z0 and W 2

d are independent random variables, that Z0 is standard normal and
that W 2

d has chi-square distribution for d degrees of freedom. Then

td =
Z0√
W 2

d

d

has what is called the Student t−Distribution for d Degrees of Freedom.
If Z0, Z1, Z2, ..., Zd are all mutually independent standard normal random variables, then

with

W 2
d =

d∑
k=1

Z2
k ,

the random variable the random variable W 2
d has the chi-square distribution for d degrees of

freedom and is indepedent of Z0, so td can be defined as

td =
Z0√
W 2

d

d

,

with this specific choice of W 2
d .

As d→∞ the distribution of td becomes standard normal.
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30. SAMPLING TO ESTIMATE THE MEAN

If X is a random variable with known standard deviation σX but with unknown mean, not a
common circumstance, then in case X̄n is normal, a confidence interval for the mean can easily
be given for any Level of Confidence usually denoted C. The confidence level is usually
specified in advance and we seek a Margin of Error denoted M so that

P (|X̄n − µX | ≤M) = C.

We can standardize X̄n and denote the result simply by Z, so Z is standard normal and
using the inverse normal we choose zC so that

P (|Z| ≤ zC) = C.

Then

M = zC · SD(X̄n).

Suppose X is a random variable and the sample unknowns X1, X2, X3, ..., Xn forming a
sample of size n for X are pairwise uncorrelated, which is true in case of IRS. Then the random
variables X2− X̄1, X3− X̄2, ..., Xn− X̄n−1, X̄n are all pairwise uncorrelated. Let Zk denoting
the standardization of Xk+1− X̄k, for k < n, and let Z0 be the standardization of X̄n. We then
have

(n− 1)S2

σ2
X

=

n−1∑
k=1

Z2
k = W 2

n−1

and

X̄n − µX
S/
√
n

=
X̄n − µX
σX/
√
n
· 1√

(n−1)S2

(n−1)σ2
X

=
Z0√
W 2

n−1

n−1

= tn−1

If X is normal and we have IRS, then as Z0, Z1, Z2, ..., Zn−1 are all pairwise uncorrelated and
formed as linear combinations of the independent normal random variables X1, X2, X3, ..., Xn,
it follows from linear algebra that in fact Z0, Z1, ..., Zn−1 are all independent standard normal
random variables, and therfore tn−1 has the t−distribution for n − 1 degrees of freedom. We
can therefore use the inverse t-distribution in place of the inverse standard normal when we
need to use s in place of σX , so denoting tC the number chosen so that

P (|tn−1| ≤ tC) = C,

we have now

M = tC · s,
with s the value of the sample standard deviation from the sample data.
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31. SAMPLING TO ESTIMATE VARIANCE

If X is a normal random variable and we need to estimate both µX and σX , then the problem
of estimating σX actually comes first, since it is used in estimating µX . As noted in (27. Chi-
Square Distribution), the distribution of (n − 1)S2/σ2

X is chi-square with n − 1 degrees of
freedom. Thus, to make a confidence interval with confidence level C, we use χ2

d with d = n−1.
If we set

(n− 1)
S2

σ2
X

= W 2
d , d = n− 1,

then denoting by (W 2
d )A the value of W 2

d for which

P (W 2
d ≤ (W 2

d )A) = A,

we have

A =

∫ (W 2
d )A

0

χ2
d(x)dx,

is the area under the graph of χ2
d to the left of (W 2

d )A.
So we want a region of area C in the middle under the graph of χ2

d and that means we
symmetrically want the range of values of W 2

d from (W 2
d )A, to (W 2

d )B , where A = (1 − C)/2,
and B = 1− (1− C)/2 = (1 + C)/2.

Therefore,

P

[
(W 2

d )A ≤
(n− 1)S2

σ2
X

≤ (W 2
d )B

]
= C.

Since taking reciprocals reverses the order for positive numbers, the inequality in the brackets
is equivalent to

(n− 1)S2

(W 2
d )B

≤ σ2
X ≤

(n− 1)S2

(W 2
d )A

,

so this is the confidence interval for σ2
X with confidence level C.

32. SAMPLING TWO INDEPENDENT UNKNOWNS

When trying to determine the difference in means of two exclusive populations, we can form
the population of all pairs which can be formed by taking the first member of the pair from the
first population and the second member of the pair from the second population. Specifically, if
A and B are sets and X is a random variable on A and B is a random variable on B, then we
can form the Cartesian Product, denoted A×B, and defined by

A×B = {(a, b) : a ∈ A & b ∈ B}.
A random variable X on A is a real-valued function which when the outcome is a ∈ A the
value of X is the number X(a). Likewise, if Y is a random variable on B, then for b ∈ B, the
value Y (b) is the value of Y for the outcome b. The random variable X can then be viewed as
a random variable on the set A×B by defining

X(a, b) = X(a),

and likewise, Y can be viewed as a random variable on A×B by defining

Y (a, b) = Y (b).

Thus, on A×B, the variable X ignores the second entry of a pair and Y ignores the first entry
of a pair. The result is that X and Y become independent random variables on the common
population A×B.
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Suppose now we have X1, X2, X3, ..., XnX
and Y1, Y2, Y − 3, ..., YnY

are independent random
samples for each random variable, so X̄nX

or simply X̄ is the sample mean random variable
for the population A, and likewise ȲnY

or simply Ȳ is the sample mean random variable for
the population B. These two sample mean random variables then become independent random
variables on A×B, and

E(X̄ − Ȳ ) = µX − µY .
But, since they are indepedent,

SD(X̄ − Ȳ ) =
√
V ar(X̄) + V ar(Ȳ ).

On the other hand, since the samples are IRS’s,

V ar(X̄) =
σ2
X

nx
and V ar(Ȳ ) =

σ2
Y

nY
.

Therefore

SD(X̄ − Ȳ ) =

√
σ2
X

nX
+
σ2
Y

nY
.

Thus, if σX and σY are known, then for the case of normal random variables, the margin of
error with confidence C in a confidence level is simply

zC · SD(X̄ − Ȳ ),

where

zC = invNorm

(
1 + C

2
, 0, 1

)
.

If you do not know σ2
X and σ2

Y , then you must estimate them from the sample data using
sample variances S2

X and S2
Y . Of course then, you are dealing with the distribution of

td =
X̄ − Ȳ − (µX − µY )√

S2
X

nX
+

S2
Y

nY

,

and in certain cases, this can be shown to be a t−distribution for d degrees of freedom. How
to find d then is the next problem, and the result depends on the type of situation.

CASE σX = σY .
Then with σX = σ = σY , we have

SD(X̄ − Ȳ ) =

√
σ2

(
1

nX
+

1

nY

)
.

In this case, (nX − 1)S2
X/σ

2 and (nY − 1)S2
Y /σ

2, are independent chi-square distributed
variables with degrees of freedom dfX = nX − 1 and dfY = nY − 1, respectively, so their sum,

(nX − 1)S2
X

σ2
+

(nY − 1)S2
Y

σ2
=

(nX − 1)S2
X + (nY − 1)S2

Y

σ2

also has chi-square distribution with degrees of freedom the total for each sample. Here S2
pool,

called the Pooled Variance defined by

S2
pool =

dfX · S2
X + dfY · S2

Y

dfX + dfY
then has the property
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S2
pool

σ2
=
W 2
d

d
, d = dfX + dfY ,

with W 2
d having the chi-square distribution for d degrees of freedom found by simply adding

degrees of freedom for each sample,

d = dfX + dfY .

Case where standard deviations are unknown and there relationship to each
other is unkown.

Here, the distribution is not really known, but there seems to be consensus among statisti-
cians that

W 2
d

d
=

S2
X

nX
+

S2
Y

nY

SD(X̄ − Ȳ )

where Wd should be chi-square distributed for some number of degrees of freedom d, and the
two terms in the numerator on the right hand side are independent of each other. The expected
value of any chi-square distribution is the number of degrees of freedom, but our equation does
not give us anything other than d/d = 1, a triviality. Using independence of the two terms in the
numerator allows us to compute the variance of the numerator and equate that to the variance
of W 2

d to get an equation for d. The result is (for instance, see EXPECTATION PRIMER)

d =

(
σ2
X

nX
+

σ2
Y

nY

)2

1
dfX

(
σ2
X

nX

)2

+ 1
dfY

(
σ2
Y

nY

)2 .

Notice now that d may not even be a whole number and that we need the values of the
standard deviations to know the degrees of freedom. Accepted practice here is to use the
sample standard deviations in place of the actual standard deviations to determine the degrees
of freedom d, and then the confidence interval is calculated with the t−distribution for d degrees
of freedom.
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