MATH-1230 (DUPRÉ) FALL 2010 TEST 3 ANSWERS

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF THIS SHEET.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME.

THIRD: WRITE YOUR FALL 2010 MATH-1230 LAB DAY DIRECTLY UNDERNEATH YOU FIRST NAME.

Suppose that X and Y are unknowns with

$$
\mu_{X}=20, \mu_{Y}=100, \sigma_{X}=2, \text { and } \sigma_{Y}=10
$$

Suppose that the coefficient of correlation between X and Y is

$$
\rho=.8
$$

Let

$$
W=\beta_{0}+\beta_{1} X
$$

be the regression equation for the regression of Y on X.

1. What is the covariance of X with Y or $\operatorname{Cov}(X, Y)$?

ANSWER: By definition of the correlation coefficient we have

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

so therefore when given the standard deviations and correlation coefficient, we find the covariance using

$$
\operatorname{Cov}(X, Y)=\rho \cdot \sigma_{X} \cdot \sigma_{Y}
$$

This means here we have

$$
\operatorname{Cov}(X, Y)=(.8)(2)(10)=8 \cdot 2=16
$$

FINAL ANSWER: 16
2. What is the value of the regression slope β_{1} ?

ANSWER: The regression slope β_{1} is alsways given by the simple formula

$$
\beta_{1}=\frac{\rho \cdot \sigma_{Y}}{\sigma_{X}}
$$

This means here we have

$$
\beta_{1}=\frac{(.8)(10)}{2}=\frac{8}{2}=4
$$

FINAL ANSWER: 4
3. What is the value of the regression intercept β_{0} ?

ANSWER: The regression intercept is always given by the simple formula

$$
\beta_{0}=\mu_{Y}-\beta_{1} \cdot \mu_{X}
$$

This means here we have

$$
\beta_{0}=100-4 \cdot 20=100-80=20 .
$$

Alternately, we can recall that the regression line always goes through the point (μ_{X}, μ_{Y}), so we can easily write down the regression line equation in point-slope form:

$$
W=\beta_{1}\left(X-\mu_{X}\right)+\mu_{Y}
$$

Here this means that

$$
W=4(X-20)+100
$$

so when we simplify the expression on the right hand side we get the equation

$$
W=4 X-80+100=4 X+20
$$

or simply

$$
W=4 X+20
$$

from which we can easily see that the verticle intercept is $\beta_{0}=20$.
FINAL ANSWER: 20
4. What is $E(Y \mid X=24)$?

ANSWER: Since the regression equation is $W=\beta_{0}+\beta_{1} \cdot X$, this means that

$$
E(Y \mid X=x)=\beta_{0}+\beta_{1} \cdot x
$$

no matter what value x we are given for X. Here this means that

$$
E(Y \mid X=x)=20+4 x
$$

for any numerical value x. In particular then,

$$
E(Y \mid X=24)=20+4 \cdot(24)=20+96=116
$$

Alternately, we can notice that the value $X=24$ is 2 standard deviations above the mean, since $\mu_{X}=20$ and $\sigma_{X}=2$. Therefore, as the correlation coefficient is $\rho=.8$, we should guess that a value for Y which is (.8) $\cdot 2$ standard deviations above the mean for Y. For Y we have $\sigma_{Y}=10$, therefore two standard deviations above the mean is 20 and 80 percent of 20 is 16 . As the mean of Y is 100 , we should increase our guess for the value of Y from 100 up to 116 when we are given that $X=24$. Another way to look at this is with the deviations from the mean. The regression equation in point-slope form says

$$
W=\beta_{1} \cdot\left(X-\mu_{X}\right)+\mu_{Y},
$$

and we have $\mu_{W}=E(W)=\mu_{Y}$. (Why?) This means that using the deviations, we can write the regression equation as

$$
D_{W}=\beta_{1} \cdot D_{X}
$$

The idea of linear regression is to guess that whatever the deviation of X is from its mean, the corresponding deviation of W from its mean (which is also the mean of Y) should be used as your guess for the deviation of Y from its mean.

FINAL ANSWER: 116
5. When we use $E(Y \mid X=24)$ as our guess for the value of Y, what do we expect for our squared error?

ANSWER: In general, if we use the linear expression

$$
W=b_{0}+b_{1} \cdot X
$$

as our equation for guessing values of Y from values for X, then we have some error

$$
R=W-Y
$$

and the expected squared error is then given by the equation

$$
E\left(R^{2}\right)=\mu_{R}^{2}+\left(\rho \cdot \sigma_{Y}-b_{1} \cdot \sigma_{X}\right)^{2}+\left(1-\rho^{2}\right) \cdot \sigma_{Y}^{2}
$$

The optimal values for b_{0} and b_{1}, denoted respectively, β_{0} and β_{1}, are chosen so as to minimize the expected squared error. The second term on the right hand side of the equation for the squared error is made zero by choosing

$$
\beta_{1}=\rho \frac{\sigma_{Y}}{\sigma_{X}}
$$

and the first term is made zero obviously by choosing $\mu_{W}=\mu_{Y}$ which is the same as defining β_{0} to be given by

$$
\beta_{0}=\mu_{Y}-\beta_{1} \cdot \mu_{X}
$$

This means that using the optimal linear regression equation we have an expected squared error given by

$$
E\left(R^{2}\right)=\left(1-\rho^{2}\right) \cdot \sigma_{Y}^{2}
$$

Here this means simply

$$
E\left(R^{2}\right)=\left(1-(.8)^{2}\right) \cdot(100)=(1-.64) \cdot(100)=(.36)(100)=36
$$

Notice that if you do not use information about X to help with your guess for Y, then the optimal guess is simply $\mu_{Y}=100$ and your expected squared error is then

$$
E\left(D_{Y}^{2}\right)=\sigma_{Y}^{2}=(10)^{2}=100
$$

so by using information about the value of X we get a substantial reduction in our expected squared error.

FINAL ANSWER: 36

