MATH-1230 (DUPRÉ) FALL 2010 TEST 5 ANSWERS

FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF THIS SHEET.

SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST NAME.

THIRD: WRITE YOUR FALL 2010 MATH-1230 LAB DAY DIRECTLY UNDERNEATH YOU FIRST NAME.

Suppose that X is a random variable with mean $\mu_{X}=80$ and standard deviation $\sigma_{X}=10$. Suppose that Z is the standardization of X. Suppose that $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ is a sequence of n observations of X constituting a sample of size n. We use IRS for independent random sample and SRS for simple random sample (drawing without replacement from a population of size N.) We denote by T the sample total and by \bar{X} the sample mean. Thus T and \bar{X} are new unknowns given by

$$
T=X_{1}+X_{2}+X_{3}+\ldots+X_{n}
$$

and

$$
\bar{X}=\frac{1}{n} T
$$

1. If $X=97$ then what is the value of Z ?

ANSWER:
In general,

$$
Z_{X}=\frac{X-\mu_{X}}{\sigma_{X}}, X=\mu_{X}+\sigma_{X} \cdot Z_{X}
$$

are the equations relating X and its standardization Z_{X}, which get you back and forth between ordinary scores and standard scores. So, as $\mu_{X}=80$ and $\sigma_{X}=10$, it follows that if $X=97$, then

$$
Z_{X}=\frac{97-80}{10}=1.7
$$

2. If $Z=1.4$, then what is the value of X ?

ANSWER:
In general,

$$
Z_{X}=\frac{X-\mu_{X}}{\sigma_{X}}, X=\mu_{X}+\sigma_{X} \cdot Z_{X}
$$

are the equations relating X and its standardization Z_{X}, which get you back and forth between ordinary scores and standard scores. So, as $\mu_{X}=80$ and $\sigma_{X}=10$, it follows that if $Z_{X}=1.4$, then

$$
X=80+(10)(1.4)=80+14=94
$$

3. What is $E(\bar{X})$?

ANSWER:
For any size sample of X using any sampling method we have

$$
E(\bar{X})=\mu_{X}
$$

therefore in the case at hand,

$$
E(\bar{X})=80
$$

4. If $n=4$, what is $E(T)$?

ANSWER:
For any sample of size n and any sampling method we have

$$
E\left(T_{n}\right)=n \cdot \mu_{X}
$$

so here we have

$$
E(T)=4 \cdot(80)=320
$$

5. Assuming IRS and $n=16$, what is σ_{T} ?

ANSWER:
In general, for an IRS of size n we a have

$$
\sigma_{T}=\sqrt{n} \cdot \sigma_{X}
$$

so here we have

$$
\sigma_{T}=\sqrt{16} \cdot(10)=4 \cdot(10)=40
$$

6. Assuming SRS, $n=16$, and $N=17$, what is σ_{T} ?

ANSWER:
In general, for using SRS instead of IRS, standard deviations for T and \bar{X} must have their IRS values multiplied by the SRS correction factor, $c_{S R S}$ given by

$$
c_{S R S}=\sqrt{\frac{N-n}{N-1}}
$$

so here

$$
c_{S R S}=\sqrt{\frac{17-16}{17-1}}=\sqrt{\frac{1}{16}}=\frac{1}{4}
$$

and therefore

$$
\left(\sigma_{T}\right)_{S R S}=\frac{1}{4} \cdot\left(\sigma_{T}\right)_{I R S}=\frac{1}{4} \cdot(40)=10
$$

You should notice here that with $N=n+1$, the sample total only leaves out a single observation from the population, hence as the population total is a constant, the standard deviation for the sample total is the same as the standard deviation for the only missing observation which is therefore the standard deviation for X itself, namely $\sigma_{X}=10$. See if you can demonstrate this for any N using the rules, that is show:

$$
[N=n+1] \Rightarrow\left[\left(\sigma_{T}\right)_{S R S}=\sigma_{X}\right]
$$

Here, \Rightarrow is the mathematical symbol for "implies".
7. If $n=100$, what is the probability that \bar{X} is between 79 and 82 ?

ANSWER:
Since we only know the mean and standard deviation of X, and likewise \bar{X}, the normal distribution should be used, however, even with some other knowledge of the distribution beyond merely the mean and standard deviation, as $n \geq 30$, we can assume \bar{X} and T are normal by the Central Limit Theorem. Therefore,

$$
\begin{aligned}
& P(79 \leq \bar{X} \leq 82)=P(79<\bar{X}<82)=\operatorname{normalcdf}(79,82,80,10 / \sqrt{100}) \\
& \quad=\operatorname{normalcdf}(79,82,80,1)=\operatorname{normalcdf}(-1,2,0,1)=.8185946784
\end{aligned}
$$

8. If the moment generating function of Y is

$$
m_{Y}(t)=1+(1 / 2) t+(1 / 3) t^{2}+(1 / 4) t^{3}+\ldots
$$

then what is $E\left(Y^{2}\right)$?

ANSWER:

In general, if the moment generating function is given as a power series

$$
m_{Y}(t)=\sum_{n=0}^{\infty} c_{n} t^{n}
$$

then

$$
E\left(Y^{n}\right)=m_{Y}^{(n)}(0)=(n!) c_{n}, n=0,1,2,3, \ldots
$$

so here

$$
E\left(Y^{2}\right)=(2!) \cdot \frac{1}{3}=\frac{2}{3}
$$

Likewise,

$$
E\left(Y^{3}\right)=(3!) \cdot \frac{1}{4}=\frac{6}{4}=1.5
$$

and so on.

