
MATH-111 (DUPRÉ) SPRING 2010 LECTURES

1. LECTURE MONDAY 11 JANUARY 2010

We discussed the syllabus and course policy as well as the location of my office and my office
hours. I will generally be in my office Monday, Wednesday, and Friday from 9 to 10 AM and
from 1 to 2 PM. My office is Gibson Hall Room 309A. I will often be in my office at other
times, so if you need to see me come up to the office and if I am not there, check the fourth
floor. The syllabus and work schedule are on my Tulane website and you will receive a link in
an email from blackboard.

We briefly discussed the idea that guessing must have certain logical constraints. We dis-
cussed the idea that when we guess we must base our guess on our knowledge of some factual
information which we assume to be true, so our guess depends ont this information. But, given
our information for instance if we guess one unknown quantity to be 10 and another unknown
quantity to be 20, then logical consistency would dictate that we should guess their sum to be
30. In mathematics, the technical terminology for guessing is EXPECTED VALUE.

2. LECTURE WEDNESDAY 13 JANUARY 2010

We discussed the logic of guessing in some detail. We use capital letters near the end of the
alphabet to denote UNKNOWNS which are to be thought of as numerical quantities whose
values are certain but are to some extent unknown to us, whereas we use lower case letters for
numbers that are definitely known to us. For instance we discussed the example of the outside
air temperature in degrees Fahrenheit and its relation to the temperature in degrees Celsius. If
the temperature in degrees Celsius is denoted by X and the temperature in degrees Fahrenheit
is denoted by Y, then we know the conversion formula Y = (9/5)X + 32 so even if we do not
know the exact temperature, if we must guess values for X and for Y, then our guesses are
constrained by the conversion formula. If we guess the outside temperature in degrees Celsius
is 10, then we are guessing the value of X is 10. Then our guess for Y must be (9/5)10+32 = 50.
The formula which relates Y to X here has the general form Y = aX + b where a and b are
definite numbers. Since in general any equation of this form can be viewed as simply specifying
a way to change units, this means that if we guess X has value 10, then we should guess that
aX + b has value 10a+ b no matter how a and b are chosen. Remember, choices of units are in
fact somewhat arbitrary.

In general, we deal with unknowns and statements of factual nature. Thus we will not use
subjective statements of opinion. The statements we deal with are restricted to be statements
of fact which are either true or false, even though in certain situations we may not know whether
a given statement is true or false. We will use capital letters near the beginning of the alphabet
for statements. Thus, if A is a statement, then A is either true or false.

In dealing with guessing values for unknowns, it is useful to have a notation which contains
the symbols indicating what we are guessing and the factual statements we are using to arrive
at our guess. We use

E(X|K)

to denote the guess for the unknown X when K is the statement of the factual information we
are using to arrive at our guess. In words, E(X|K) is the Expected Value of X given K.

We noted that because units can always be changed in many arbitrary ways, it should always
be the case that for any specified numbers a and b we should have

1
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E(aX + b|K) = aE(X|K) + b.

This in some sense merely expresses the fact that numerical quantities have an intrinsic value
that goes beyond the choice of units, even though numerical specifications require units to have
meaning. There is something about knowing the outside temperature that is beyond the choice
of units used to specify it.

If we take the case where we chose a = 0, then the preceding equation says for any definite
number b it must be the case that

E(b|K) = b.

More generally, if

K implies that the value of X is b,

then,

E(X|K) = b.

This is just the most basic expression of logical consistency for guessing-whenever your
information tells you the value of the unknown you are trying to guess, then you do not really
have to guess.

More generally, if we have any two unknowns X and Y then we can form their Sum X + Y
and their Product XY which are new unknowns. For instance, if we have a basket of oranges
and a basket of apples and if X is the number or oranges in the basket of oranges and Y is the
number of apples in the basket of apples, then X + Y makes perfectly good sense. Likewise, if
X is the number of apples in the basket of apples and Y is the outside temperature in degrees
Celsius, then X + Y is a perfectly specified unknown. If, based on information K, I guess the
value 12 for X and the value 10 for Y, then to be logically consistent, based on K, I should
guess 22 for the value of X + Y. Using our notation, this leads to the general rule

E(X + Y |K) = E(X|K) + E(Y |K),

called the Additive Property of Expectation, and which is simply expressing the logical
consistency of addition with guessing.

We can also notice that as far as logic is concerned, if our information K tells us X ≤ Y,
even without knowing either, as far as guessing is concerned, to be logically consistent with our
information we must choose a guess for X that is no more than our guess for Y. That is it must
generally be true that

if K implies X ≤ Y,
then,

E(X|K) ≤ E(Y |K).

This is known as the Order Property of Expectation or the Positivity Property of
Expectation.

We need to keep in mind that our guessing procedure is to be though of as mechanized so
as to be performed by a robot. No subjective information is allowed, only factual statements
whose truth value we may not know.

We noted that if we have any statement A, then we can form an unknown called the Indi-
cator of A, denoted IA, whose value is either zero or one according to whether A is false or
true. Thus if we think A is true, then we would guess the unknown IA has value one, whereas
if we think A is false, then we should guess the unknown IA has value zero. Thus the statement
”IA = 1” is logically equivalent to the statement ”A is true”, they both have the same meaning.

We can notice that no matter what,

0 ≤ IA ≤ 1,

and therefore
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0 = E(0|K) ≤ E(IA|K) ≤ E(1|K) = 1,

so always

0 ≤ E(IA|K) ≤ 1,

no matter what. We must keep in mind that our general rules so far do not tell us to guess
either a zero or a one for the value of the indicator. More generally if X is an unknown whose
possible values are the whole numbers one through six, then the only thing we can say for sure
is that

1 ≤ E(X|K) ≤ 6,

but logical consistency may not allow us to guess one of the whole numbers. So far, we do not
know how to guess here, but we will soon. For the example here, think of a dice in a box which
we cannot see and X is the number on the top face. Our rules so far tell us our guess should
be a real number between one and six, but our rules do not tell us that our guess should be a
whole number.

We noted that we can use logic to combine statements and algebra to combine indicators,
and this gives a useful way to turn logic into algebra. For instance, it is easy to see that if A
and B are any statements, then since A&B is the statement that both A and B are true, it
must be the case that

IA&B = IAIB ,

that is to say, the indicator of A&B is simply the product of the indicator of A with the indicator
of B. We can also easily see that the negation of A, denoted not A, has indicator

I(not A) = 1− IA.
Finally, we noted that the statement A or B is the statement that at least one of the

statements A and B is true, possibly both. The only way that A or B can be false is for both
A to be false and B to be false. Since combining statements with ”&” involved multiplication
of the indicators, we might try addition for combining statements with ”or”. Unfortunately, if
A and B are both true, then IA + IB has the value two which is not allowed for an indicator.
But this is easily fixed by subtracting one exactly when (and only when) both are true, that is,
just subtract the indicator of A&B. Thus,

I(A or B) = IA + IB − IA&B = IA + IB − IAIB .
We will use these facts next time to see how our rules for guessing force us to guess certain

values for indicators in many situations. In other words, in many situations we find that there
is a unique solution to the problem of guessing-we have no ”leeway”.

3. LECTURE FRIDAY 15 JANUARY 2010

Today we began by reviewing the basic rules for guessing dictated by logic, that is to say the
rules for expectation. We generally use capital letters near the end of the alphabet for unknowns
and capital letters near the beginning of the alphabet for statements. Lower case letters are
symbols for numbers which are known to us. Thus, if X is any unknown, then E(X|K) is the
expected value of X given K is the statement of the information used to evaluate how we should
guess the value of X. It is useful to also have another symbol for E(X|K) and that is the Greek
letter µ which you will see in your text book. Thus we can write µ in place of E(X|K) when
X and K are understood. Sometimes we tag tag the µ with a subscript to indicate information
if necessary. Thus we can write

µ = µX = µ(X|K) = E(X|K).
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So, in brief, our basic rules are now

E(aX + b|K) = aE(X|K) + b,

E(X + Y |K) = E(X|K) + E(Y |K),

if K implies that X = c, then E(X|K) = c,

if K implies that X ≤ Y, then E(X|K) ≤ E(Y |K).
We also created an unknown for each statement called its indicator. For any statement A,

we denote its indicator by IA, and remember it is simply the unknown whose value is one if
A is true and zero otherwise. Thus knowing the value of IA is exactly the same as knowing
whether or not A is actually true.

We observed that for the indicator of any statement A, we know 0 ≤ IA ≤ 1, so

0 ≤ E(IA|K) ≤ 1, for any statement A.

Moreover, for any statements A and B, it is easy to check that

I(A&B) = IAIB ,

Inot A = 1− IA,
and

I(A or B) = IA + IB − I(A&B).

We ended last time thinking about how a robot programmed to follow our rules would
evaluate E(IA|K) in a simple example: the dice in the box. The statement K says that no value
for the number up on the dice should be given any preference. We considered the statement A
which says ”the number up is even”. The robot knows that he must guess a number for IA that
is between zero and one from our rules above, but because of K he cannot make any preference
of A over B = not A. Thus he must accept that E(IA|K) + E(IB |K). On the other hand, by
our addition rule, since we have IA + IB = 1, it follows that the robot’s guesses must satisfy

E(IA|K) + E(IB |K) = 1.

If we set E(IA|K) = µ = E(IB |K), which we can do as the robot must guess equal values for
these two indicators in order to follow the dictates of K and our rules, then this tells us

µ+ µ = 1,

or

2µ = 1,

giving

µ =
1

2
,

which is to say finally,

E(IA|K) =
1

2
= E(IB |K).

If A is the statement that the number up is 1 or 2, if B is the statement that the number up
is 3 or 4, if C is the statement that the number up is 5 or 6, then we know one and only one of
these statements is true, so

IA + IB + IC = 1,

and again, the robot cannot make any preference over any one of these statements so must
guess the same value for all three, but the sum of the guesses must equal 1, so he must guess
each to be one third. That is
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E(IA|K) = E(IB |K) = E(IC |K) =
1

3
.

On the other hand, suppose that for real number r, we let (r) denote the statement ”the
number up on the dice is the number r,” so exactly one of the statements (1),(2),(3),(4),(5),(6)
is certainly true for the dice in the box. Let N be the statement that the number up on the
box is even. Then making the robot use the statement N&K, we see that

K&N implies that I(2) + I(4) + I(6) = 1,

but none of these three statements can be preferred, so he must guess the same number
for all three again, and by our rules all the guesses must add up to one, so again, the only
possibility is to guess each to be one third, which is now

E(I(2)|N&K) = E(I(4)|N&K) = E(I(4)|N&K) =
1

3
.

Notice that these calculations are giving exactly what we would calculate if we were calcu-
lating probabilities. Thus, if you have no idea what number on the dice is up, then there is a
fifty percent chance it is even, whereas if you know that the number up is even but have no idea
which even number it is, then each of the numbers 2,4,6 has a one third chance of being the
number up. For the number up itself, we notice that using K, the robot cannot prefer any of
the statements (1),(2),(3),(4),(5),(6), so he must guess the same number for all their indicators,
but again, exactly one of these six statements is true and all the others are false,

I(1) + I(2) + I(3) + I(4) + I(5) + I(6) = 1,

and this means

E(I(1)|K) = E(I(2)|K) = E(I(3)|K) = E(I(4)|K) = E(I(5)|K) = E(I(6)|K) =
1

6
.

Again, this is obviously the probability of each statement. We are seeing that our robot is
actually using probabilities for guesses for values of indicators. With this as motivation, we will
make the general definition of PROBABILITY. For any statements A and B whatsoever, we
DEFINE the probability of A given B, denoted P (A|B) by the equation

P (A|B) = E(IA|B).

From the rules for expectation, and our algebraic rules for indicators, we immediately obtain
basic rules of probability:

0 ≤ P (A|B) ≤ 1,

P (A or B|K) = P (A|K) + P (B|K)− P (A&B|K).

We also see right away, that any time we have n statements one of which must be true and
all the others false, if K tells us none of the statements are preferred, then each must have
probability 1/n. Thus, our rules are giving us the probabilities in many situations. What about
the unknown X itself? To see how to guess it involves a new rule. First, we take the equation

1 = I(1) + I(2) + I(3) + I(4) + I(5) + I(6)

and multiply both sides by X getting

X = XI(1) +XI(2) +XI(3) +XI(4) +XI(5) +XI(6),

which now by our rules give us

E(X|K) = E(XI(1)|K)+E(XI(2)|K+E(XI(3)|K)+E(XI(4)|K)+E(XI(5)|K)+E(XI(6)|K),
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Notice we must calculate a sum of terms and each has the form

E(XIN |K)

where N is a statement. Notice that we have no general rule for guess the product of two
unknowns in terms of the guesses for the factors, so let us look back at our examples. Take
the case where X = I(2) and N is the statement that the number up is even. Notice that
(2)&N = (2), as saying the number up is two and its even is redundant, its just the same as
saying the number up is two. Thus

E(I(2)IN |K) = P ((2)&N |K) = P ((2)|K) =
1

6
,

whereas earlier we calculated

P ((2)|N&K) = E(I(2)|N&K) =
1

3
and

P (N |K) =
1

2
.

Notice that the product of the last two numbers gives the 1/6 we need. This would lead us to
suspect the general MULTIPLICATION RULE:

E(XIN |K) = E(X|N&K)P (N |K).

In fact this is the rule we will use to calculate E(X|K) for the dice. Notice that for any number
r we have

E(X|(r)&K) = r,

since (r)&K implies the number up is r. For each whole number one through six, the probability
is exactly one sixth, so our previous equation expressing E(X|K) as a sum of expected values
of products of X with indicators when combined with the multiplication rule gives

E(X|K) = 1
1

6
+ 2

1

6
+ 3

1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
=

21

6
=

7

2
= 3.5.

Notice that the guess dictated by these rules is not a possible value. This is a feature of
guessing which may at first be counter intuitive, but we must accept it as it is a consequence
of the rules. One way to think of this at first is to think that the robot is trying to guess a
number which is simultaneously as close as possible to all the possible values.
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4. LECTURE MONDAY 18 JANUARY 2010

NO CLASS FOR HOLIDAY (MARTIN LUTHER KING JR).

5. LECTURE WEDNESDAY 20 JANUARY 2010

Today we discussed the MULTIPLICATION RULE:

E(XIN |K) = E(X|N&K)P (N |K), for any unknown X and any statements N and K.
We began by noting that most of our rules follow from one single rule and the mere as-

sumption that some form of rule exists. The single most fundamental rule of guessing is the
RETRACTION RULE:

if K implies that X = c, then E(X|K) = c.

For instance, if your information tells you that the value of X is 7 then your guess based on
that information must be 7. Remember, lower case letters stand for definite numbers-they are
unknowns whose description actually tells their value, so for them there is really no guessing.
In fact, the retraction rule in particular tells us that if c is any number, then

E(c|K) = c.

This is because K certainly implies that c = c because c = c is a true statement and therefore by
the retraction rule, E(c|K) = c. As a point of logic, remember that the only way the implication
”P implies Q” can be false is for P to be true and Q to be false. Thus any time Q is true then
”P implies Q” is true”. Since c = c is always true, this means that for any statement K it is
true that ”K implies c = c” is a true statement and therefore by the retraction rule we have
E(c|K) = c, always, no matter what K is and no matter what c is.

Now, the retraction rule puts an enormous constraint on what rules can be. For instance, if
we consider the rule for changing units or the GENERAL RESCALE RULE:

E(aX + b|K) = aE(X|K) + b, for any numbers a, b and any unknown X,

we can see that the rule tells us that as soon as the numerical value of E(X|K) has been
worked out, to calculate E(aX+b) we need only add to b the number a multiplied by the number
already found for E(X|K). We do not need to examine the unknown aX + b as an unknown
itself in order to find what we guess for its value, if we have already guessed a value for X.
In particular, we see that if X and Y are any two unknowns such that E(X|K) = E(Y |K),
then E(aX + b|K) = E(aY + b|K), since the resulting guess only depends on the numerical
value of E(X|K) and this is the same as E(Y |K). But if we put E(X|K) = c, where c is the
definite number we have decided to guess for the value of X on the basis of assuming K, then
in particular by the retraction rule,

E(X|K) = c = E(c|K)

and therefore

E(aX + b|K) = E(ac+ b|K) = ac+ b = aE(X|K) + b,

so the general rescaling rule follows from the retraction rule and the assumption that some form
of rescaling rule exists.

As another example, consider the ADDITION RULE:

E(X + Y |K) = E(X|K) + E(Y |K), for any unknowns X and Y.

In particular, this rule implies that merely knowing the numerical values you guess for X
and for Y is enough to somehow determine what must be guessed for X + Y. Put another way,
this says that if U and V is any other pair of unknowns and if E(X|K) = E(U |K) and if
E(Y |K) = E(V |K), then
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E(X + Y |K) = E(U + V |K),

which is to say that our guess for the value of X+Y has to be the same as our guess for U +V.
Again, if we write E(X|K) = a and E(Y |K) = b, then by the retraction rule, we have

E(X|K) = a = E(a|K)

and

E(Y |K) = b = E(b|K),

and therefore by our previous observation it must be the case that we guess the same thing for
X + Y as we guess for a+ b, that is to say

E(X + Y |K) = E(a+ b|K) = a+ b = E(X|K) + E(Y |K),

and this is the addition rule. That is the addition rule follows from the retraction rule and the
mere assumption that our guess for X + Y can always be determined somehow using only the
pair of numerical values from our guesses for X and for Y. The assumption of the existence of
some form of rule gives the exact rule using the retraction rule.

Now, notice that we do NOT have a rule for guessing products of unknowns in general. If
there were such a rule for finding how to guess XY as soon as you decided what to guess for
X and for Y, then the only possible rule would be to multiply your guesses together, by the
same reasoning as we used for the addition rule. The argument would go like this. Assuming
that somehow the two numbers resulting from guessing X and Y determine what should be
guessed for XY would mean that if E(X|K) = E(U |K) and E(Y |K) = E(V |K), then always
E(XY |K) = E(UV |K). But putting E(X|K) = a and E(Y |K) = b we have here with a playing
the role of U and b playing the role of V, that we could conclude

E(XY |K) = E(ab|K) = ab = E(X|K)E(Y |K),

and we arrive at the conclusion that we have to simply multiply our guesses together to arrive
at the guess for XY. We will see that as a result of the retraction rule and the addition rule
that in fact this multiplication WOULD GIVE THE WRONG ANSWER. In particular, this
means the underlying assumption is wrong. To determine the guess for XY must and will turn
out to involve more than simply knowing what you guessed for X and what you guessed for Y.

Returning now to the MULTIPLICATION RULE that we will prove using the retraction
rule is that

E(XIN |K) = E(X|N&K)E(IN |K) = E(X|N&K)P (N |K).

Notice that it is a restricted form of product whose guess we can determine, we can determine
XY is one of the factors is an indicator. Remember for Y to be an indicator is the same as
having Y 2 = Y, since the only numbers which equal their own square are zero and one. Also
notice that to determine the guess for XY when Y = IN is an indicator we need to know
E(X|N&K), the guess for X assuming that N is true, and also we need E(IN |K) which by
definition is P (N |K). Thus, if Y = IN is an indicator, then N is logically equivalent to the
statement Y = 1, so we can also say that the multiplication rule says that

E(XY |K) = E(X|(Y = 1)&K)E(Y |K), for any unknowns X and Y, provided that Y 2 = Y.
To prove the multiplication rule, we first observe that we must assume that some form of rule

exists. That is we assume that given merely the numerical value we guess for X assuming N
true, that is the number E(X|N&K), and the number E(IN |K), we can determine E(XIN |K).
This means that we assume that if Y is any other unknowns for which we happen to make the
same guess as for X under the assumption that N is true, that is if

E(X|N&K) = E(Y |N&K),
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then we must arrive at the same value for our guesses for the unknowns XIN and Y IN , which
is to say we must assume here it is valid to conclude that

E(XIN |K) = E(Y IN |K).

But now, we can work out the multiplication rule using the retraction property. Suppose that
E(X|N&K) = b. By the retraction rule, E(X|N&K) = b = E(b|N&K), so letting b play the
role of Y, we conclude that

E(XIN |K) = E(bIN |K).

But now by the general rescaling rule we know

E(bIN |K) = bE(IN |K) = bP (N |K) = E(X|N&K)P (N |K),

and combining this equation with the previous equation gives

E(XIN |K) = E(X|N&K)P (N |K),

which is the multiplication rule.
As a consequence of the multiplication rule we can prove the SAVAGE SURE THING

PRINCIPLE:

(SSTP) for any statement M, if E(X|M&K) = c = E(X|(not M)&K), then E(X|K) = c.

That is if M is some statement and if we find we should guess X has value c assuming M is
true, and if we find we should guess X has the value c assuming M is not true, then we should
guess X has value c whether or not M is true. To see this, notice that if we put N = not M,
then IM + IN = 1, so as

X = X(IM + IN ) = XIM +XIN ,

we have

1 = E(IM + IN |K) = E(IM |K) + E(IN |K) = P (M |K) + P (N |K),

and therefore by the multiplication rule,

E(X|K) = E(XIM |K) + E(XIN |K) = E(X|M&K)P (M |K) + E(X|N&K)P (N |K)

= cP (M |K) + cP (N |K) = c[P (M |K) + P (N |K)] = c1 = c.

On the other hand, if we do not assume the multiplication rule, but instead assume the Savage
sure thing principle, then for any two unknowns X and Y, if it is the case that E(X|N&K) =
E(Y |N&K), then this is the same as saying

E(XIN |N&K) = EY IN |N&K)

which is in turn the same as saying

E([X − Y ]IN |N&K) = 0.

Then we note that certainly, since IN = 0 if N is false, that is to say

E([X − Y ]IN |N&K) = E([X − Y ]0|(not N)&K) = E(0|(not N),&K) = 0,

so our guess for [X −Y ]IN is the same, namely zero whether or not N is assumed true or false,
so by the Savage sure thing principle, we must have

E([X − Y ]IN |K) = 0,

and this means we have shown that

E(XIN |K) = E(Y IN |K).

That is we have shown on the basis of the Savage Sure Thing Principle, that if E(X|N&K) =
E(Y |N&K), then E(XIN |K) = E(Y IN |K), which means some form of rule must hold for
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determining E(XIN |K) from E(X|N&K) if the Savage sure thing principle holds. But our
arguments show that if such a rule holds in some form, then it must be the multiplication rule

E(XIN |K) = E(X|N&K) · E(IN |K).

We finished the class by noting that if A,B,C are any statements of which exactly one is
true and the others are false, then

1 = IA + IB + IC ,

so
X = XIA +XIB +XIC ,

and therefore
E(X|K) = E(XIA|K) + E(XIB |K) + E(XIC)

= E(X|A&K)P (A|K) + E(X|B&K)P (B|K) + E(X|C&K)P (C|K).

The end result is that in this situation

E(X|K) = E(X|A&K)P (A|K) + E(X|B&K)P (B|K) + E(X|C&K)P (C|K).

We finished by using the calculator’s statistical computation feature to calculate the pre-
ceding formula in an example. In applications, instead of just three statements there may be
hundreds, so calculators are necessary.
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6. LECTURE FRIDAY 22 JANUARY 2010

We have been writing E(X|K) for the expected value or optimal guess for X given we assume
K is true, and when new information is assumed, say statement N, then we have E(X|N&K)
for the expected value of X given we assume both N and K are true. We usually have K as
the statement of our background information which in any problem stays the same throughout,
so we will simplify our notation by writing

E(X|K) = E(X),

E(X|N&K) = E(X|N),

P (A|K) = P (A),

and

P (A|N&K) = P (A|N).

Thus, we do not write down the K explicitly when it is reasonably understood, but rather only
write in the given information if something new is given. Thus, for the general multiplication
rule, we have

E(XIN ) = E(X|N)P (N),

instead of the more lengthy

E(XIN |K) = E(X|N&K)P (N |K).

They both say the same thing provided that we understand K is given throughout.
In the last lecture, using the multiplication rule, we worked out the formula for expectation

that results whenever we have several statements of which exactly one is true. For instance if
A,B,C are statements for which we know exactly one is true and all the others are false, then
we have

SURE = A or B or C

which is the same as

1 = IA + IB + IC ,

and this means in particular that

1 = P (A) + P (B) + P (C),

and for any unknown X,

X = XIA +XIB +XIC .

Applying the addition rule for expectation gives

E(X) = E(XIA) + E(XIB) + E(XIC),

and applying the multiplication rule to each term then gives

E(X) = E(X|A)P (A) + E(X|B)P (B) + E(X|C)P (C).

There is nothing special here about the fact that there are three statements of which exactly
one is true, and in some applications there could be thousands. To make this useful requires
that we can actually work out the conditional expected values E(X|A), E(X|B), E(X|C),
and as well find the probabilities P (A), P (B), P (C). Obviously this could be laborious, but
for the expected values, often we choose the statements so that in each case, the value of X
is completely determined. Thus for instance, suppose that we have five statements of which
exactly one is true, denoted A,B,C,D, F. Suppose that if A is true, then we know X definitely
has the value vA, if B is true, then we know X definitely has the value vB , if C is true, then X
definitely has the value vC , if D is true, then X definitely has the value vD, and if F is true,
then X definitely has the value vF . In this case, we know
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E(X|A) = vA,

E(X|B) = vB ,

E(X|C) = vC ,

E(X|D) = vD,

E(X|F ) = vF .

Then our formula says

E(X) = vAP (A) + vBP (B) + vCP (C) + vDP (D) + vFP (F ).

Thus, knowing the values vA, vB , vC , vD, vF completely reduces the problem of computing E(X)
to the problem of calculating the probabilities

P (A),

P (B),

P (C),

P (D),

P (F ).

In short, the addition rule and the multiplication rule together reduce the problem of calcu-
lating expectation to the problem of calculating probability.

As an example, suppose we have the table below giving the information concerning the values
of two unknowns X and Y in case of of the events is true and as well the probabilities for the
events.

TABLE PROB Val(X) Val(Y) Val(XY)

A .15 2 3 6
B .2 −3 4 −12
C .3 5 4 20
D .2 5 2 10
F .15 2 3 6

Thus, the table gives the event names in the first column, in the next column is the column
of probabilities, so P (A) = .15 and P (C) = .3, for instance. The next column gives the values
for X in case of each event in the list, and so on. Thus if B is true, then X = −3 and Y = 4
which means that XY = −12 if B is true. Once the information is tabulated like this it is a
routine matter to put the columns into lists in the calculator. If we enter the probabilities in
La, the values of X in Lb, the values of Y in Lc, in the TI calculator, then we can put the
values of XY in Ld almost instantly by using the store command LbLc → Ld. The calculator
does all the multiplications for us all at once. Thus, in the table we do not need the values of
XY, they are merely there so you can easily see them. Also, to calculate the expected value of
X now just go to the STAT CALC menu and select the ”1-Var Stats” and when it comes up
on the screen, type after it Lb, La since the probability list must always go last. To calculate
the expected values of X,Y and XY all at once, select the ”2-Var Stats” and when it comes
up on the screen, after it type Lb, Lc, La, and hit the ENTER button. Notice the probability
list again goes last, the list of X values goes first and the list of Y values goes second. The
readout first gives the expected value of X and the other statistical calculations for X followed
by those for Y and finally you see Σxy which here will be the expected value of XY. I used
a = 1, b = 2, c = 3, so the probabilities were in L1, the values of X in L2, and the values of Y,
in L3. The readout gives the

E(X) = Σx = x̄ = 2.5,

E(Y ) = Σy = ȳ = 3.3,
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and

E(XY ) = Σxy = 7.4.

Notice that E(X) multiplied by E(Y ) is NOT E(XY ), since

(2.5)(3.3) = 8.25 6= 7.4.

This is an example showing that the general multiplication rule that we might suspect is in fact
FALSE-you cannot compute the expected value of a product by multiplying expected values,
and as we showed in the last lecture, this means that you cannot compute the expected value
of XY only using the expected values of X and of Y alone-more information will be required,
since if not, the retraction rule would imply that the expected value of the product is always
just the product of expected values. We will next see what this extra information is.

To deal with two unknowns, in general we have to allow for the possibility that one of them
actually contains information about the other. As an example, if we have a pond full of trout,
and if one of them is pulled from the pond let X be his length in inches and Y be his weight in
pounds. If you are given the information that the trout is longer than average for these trout,
then you would guess his weight is likely to be above average for these trout. Since we know
now that the expected value is the average as we see from examples, this leads us to think of
the relationship between two such unknowns as partially captured by how much knowing one
is above or below average influences us to to think the other is above or below average.

To examine this in more detail, we first point out that from our examples so far, we begin to
realize that if you know the actual average of population, then that is what you should guess
for something taken from the population. For instance, assume that the overall average of the
lengths of all the trout in the pond is 14 inches. If X is the length of a trout taken from the
pond which you cannot see, then your best guess as to the length of this trout is 14 inches.
That is to say, E(X) = 14. On the other hand, X − 14 is then your error and in this situation,
we call DX = X − 14 the deviation in length for this trout. Notice if the trout is of above
average length, then it has a positive deviation, whereas if it has below average length, then
it has a negative deviation. If we try to guess our error, we would try to guess the value of
DX = X − 14. But, from our rules of expectation, we know that

E(DX) = E(X − 14) = E(X)− 14 = 14− 14 = 0.

This means that we would guess our error is zero. But remember that the optimal guess
is the average, so what is happening is that the positive deviations are canceling the negative
deviations-all the errors are averaging out. To stop this from happening and thereby get a better
handle on the error of our guess, we should square the deviation and guess that. Precisely, we
should use

V ar(X) = E(D2
X) = E((X − 14)2)

to gauge our guess of our error in this situation. We call V ar(X) the VARIANCE of X.
To make up for having squared the deviations, we define the STANDARD DEVIATION,
denoted σX to be the square root of the variance of X, so

σX =
√
V ar(X).

The standard deviation is really our best reasonable way to gauge our error.
To get a handle on the way length and weight relate to each other, we can likewise consider

the product of deviations. Suppose that the overall average weight of the fish in the pond is 4
pounds and Y is the weight of the fish pulled from the pond. The product of the deviations is
then

DXDY = (X − 14)(Y − 4).
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If you are told that the fish from the pond has above average length, then you would reasonably
think that it is more likely than not that this fish is above average in weight. Of course it is not
certain, since there may be some long skinny fish in the pond, but these skinny fish are likely to
be rare, that is fish which are longer than average but weighing less than average. This means
that if DX is positive, then the same is likely to be true for DY . Thus, in this case, the product
DXDY is also positive. On the other hand, if you are told the fish from the pond is shorter
than average, so DX is negative, then you would be reasonable to guess that it weighs less than
average so that DY is also negative. Notice when both deviations are negative their product is
again positive as the product of two negative numbers is positive. We have realized now that
DXDY should very likely tend to be positive in this situation, so that if you had to guess a
value for this product your should guess a positive number. That is here it is reasonable that

E(DXDY ) > 0.

If this expected product of deviations E(DXDY ) is very large then we would think there is a
close relationship between length and weight for this population of fish, whereas if E(DXDY )
is close to zero, then we might think there is not a close relationship between length and weight
here. If the expected product of deviations is negative but large, then there is still a close
relationship between X and Y, but we call it a negative relationship in this case. In any case,
we call this the COVARIANCE of X and Y, denoted Cov(X,Y ). This means by definition

Cov(X,Y ) = E(DXDY ),

so we see right away, that V ar(X) = Cov(X,X), that is, the variance of X is just its covariance
with itself. Of course X should be very well related to itself, since if you are told X is above
average, then you know Y is above average in case Y = X is the same unknown. However,
we could be fooled in this situation if there is a lot of variation in the population of fish. In
other words, if the relationship is not very strong but there are enormous deviations, then the
products will be enormous leading to a large expected product or covariance. To compensate
for large deviations, we divide by the standard deviation of each unknown and call the result
the CORRELATION COEFFICIENT of X and Y which is denoted by ρ, the Greek letter
rho. Thus, by definition,

ρ =
Cov(X,Y )

σXσY
.

The correlation coefficient gives the true measure of how well X and Y relate. If it is near zero,
then there is not much relationship whereas if it is near ±1, then there is a strong relationship.
In fact, we will see that we can use regression analysis to guess a best prediction of Y when
we have the value of X, and when we do, the square of the correlation coefficient, ρ2, tells us
the amount of variation in Y that X accounts for, and this is called the COEFFICIENT OF
DETERMINATION.

To calculate ρ and ρ2 quickly with the calculator, make sure you have ”diagnostics on” by
going to the catalogue button (second function of a button on the bottom row), and scroll down
until you see ”diagnostics on” in the long alphabetical list. With the cursor on ”diagnostics
on”, hit the enter button several times until you see ”done” appear on the screen. Then go to
the ”linreg(ax+b)” in the CALC menu followed by Lb, Lc, La, with the data from the above
table, and pushing the enter button gives a readout with the table data above gives

a = −.0918918919

b = 3.52972973

r2 = .1280460789

r = −.3578352678.
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In the readout here, the reported value of r is the correlation coefficient ρ, so the reported
value of r2 is the coefficient of determination. This coefficient of determination is fairly small
and tells us that there is not a lot of use here in trying to predict Y from X in the tabulated
example.

7. LECTURE MONDAY 25 JANUARY 2010

Today we reviewed expectation, covariance, standard deviation, and correlation, and looked
at how they all relate in situations where there are two related unknowns, such as length and
weight of fish. The basic formulas are, when we have ANY two unknowns X and Y,

µX = E(X) = E(X|K),

DX = X − µX ,

Cov(X,Y ) = E(DXDY ),

σ2
X = V ar(X) = Cov(X,X),

ρ =
Cov(X,Y )

σXσY
,

ρ2 = coefficient of determination.

Remember µX then is just another symbol for the best guess for the unknown, it tends to be
referred to as the MEAN, but it is just the same as the expected value, E(X). It is convenient
to have this other expression for the mean or expected value, as always using E(X) in equations
and expressions can sometimes be hard to read. The second equation simply says the DX is
the deviation from the mean. Since your optimal guess is µX , we see that DX is just the error
you make.

Since

E(DX) = E(X − µX) = E(X)− µX = µX − µX = 0,

we conclude that if you have to guess your error, you would guess zero, but we can also conclude
from our rules and some algebra, that we also have

Cov(X,Y ) = E(DXDY ) = E[(X − µX)(X − µY )] = E(XY )− µXµY ,

σ2
X = V ar(X) = Cov(X,X) = E(D2

X) = E(X2)− (µX)2,

ρ =
E(XY )− µXµY

σXσY
,

Cov(X,Y ) = ρσXσY ,

where the last expressions in each of these first two equations results from multiplying out the
the expression inside the expectation and applying the expectation rules to the result, keeping
in mind that E(X − µX) = 0. When turned around, the first two equations also tell us that

E(XY ) = µXµY + Cov(X,Y ) = µXµY + ρσXσY ,

and

E(X2) = µ2
X + σ2

X .
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These last two equations tell us that when it comes to logical consistency in guessing, if you
cannot be certain of the values for X and Y, then you cannot simply multiply your guesses to
get the best guess for the product of two unknowns.

It is not immediately obvious, but in fact, using only our rules and some algebra, it can be
shown that

ρ2 ≤ 1,

and therefore

−1 ≤ ρ ≤ 1.

A case where ρ = 1 would be a case where there is perfect positive correlation between X and Y,
and the case where ρ = −1 would be a case where there is perfect negative correlation between
X and Y. A case where ρ = 0 would be a case where X and Y are completely uncorrelated. In
general, ρ is a number between negative one and one, the closer to one the better the positive
correlation, and the closer to negative one, the better the negative correlation. The coefficient
of determination is really the final arbiter or how well the two variables relate.

Typically, the numbers you would want to find in a situation with two related unknowns X
and Y, are the five numbers: µX , µY , σX , σY , and ρ. For the case of the fish in the pond, where
X is length and Y is weight, if you took a large sample, and calculated the means and standard
deviations and correlation in the data, these would estimate the true population values which
have the Greek symbols.

For now, we will assume we are given these values of means, standard deviations, and corre-
lation to see how it can be used to better your guess for Y when you are given the value of X.
To begin, let’s take an example with specific numbers. Suppose that, thinking of length of fish
in inches and weight of fish in pounds, for fish from a pond,

µX = 14,

µY = 5,

σX = 3,

σY = 1.7,

and

ρ = .7.

Remember, the mean or expected value of an unknown is always the best guess unless there
is additional information beyond the mere background information. Thus, if you are told a
fish has been taken from the pond and you need to guess its length, then you should guess 14
whereas if you need to guess its weight, you would guess 5. Of course, since ρ is 7/10, which
is positive, if you are told the fish is 20 inches long, then you would want to increase your
guess for the weight substantially above 5. Notice that the 20 is 6 units above 14, which is
two standard deviations above the mean, as the standard deviation in length is 3. Thus if the
correlation of length and weight were perfect (ρ = 1), you would guess that the weight is also
two standard deviations above the mean. Now the weight standard deviation is 1.7, so two
standard deviations is 3.4, and therefore with perfect correlation, the best guess for the weight
of a 20 inch fish is 8.4 pounds. However, we only have ρ = .7, so this in fact turns out to mean
that we should not increase our weight guess by two standard deviations, but only by (2)(.7)
standard deviations which is (.7)(3.4) = 2.18, and that results in a guess of only 7.18 for the
twenty inch fish. Notice that even with the correlation not being perfect, if you are told that
the fish has length 14 inches, then you should guess his weight is exactly 5 pounds.
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In general with two unknowns we look for a simple linear relationship, and this means that
if we graph the value y we guess for Y when the value of X is given to be the number x, this
straight line must go right through the point (µX , µY ), reflecting the fact that no matter what
the correlation, we have µY is still the best guess for Y when we are told that X actually has
the value µX . If the line has slope α, then the line must have equation

y = β(x− µX) + µY .

Notice that this can also be written as

y = α+ βx

where

α = µY − αµX .
From our example, we can see that the general formula for α is

α = ρ
σY
σX

.

To understand something about why these equations are used, we must realize that to say a
guess is best in some sense means that in some sense we are trying to minimize our error. But,
we obviously cannot know what our error will be until we actually can see what the true value
is, and that may even be impossible, so we even have to guess our error. We have already seen
that our actual error in the sense of the simple deviation is expected to be zero. This means
that when we guess, we also guess our error is zero. but remember that the guess for a square is
not just the square of the guess, so our guess for the squared deviation will usually be positive
and not zero. In fact, that is the variance, σ2. You might ask why the squared error is the
variance-maybe if you guess differently you could have an even smaller guess for the squared
error. Suppose that instead of µX you guess the number c. Your error is now

X − c = (X − µ) + (µX − c),
so using some algebra,

(X − c)2 = (X − µX)2 + (µX − c)2 + 2(µx − c)(X − µX).

Remember now that µX − c is just a number, say d. We have then

d = µX − c,

(X − c)2 = (X − µ)2 + d2 + 2d(X − µX) = D2
X + d2 = 2dDX .

But, E(DX) = 0 and E(D2
X) = σ2

X , so applying expectation to the previous equation we have

E[(X − c)2] = σ2
X + d2 + 2d(0) = σ2

X + d2.

Now, the best we can do to minimize this squared error is to make d2 as small as possible, since
any square is non-negative. Obviously, then the best one can do to minimize the guess for the
squared error is to set d = 0. Since d = µx − c, this means the best you can do to minimize
your guess for what the squared error will be is to choose c = µX .

In the case of two unknowns X and Y, if we try to use an equation of the form y = α + βx
to guess the value y of Y when we are given the value x of X, then we have the problem of
choosing the coefficients α and β. The criterion we use here is to try to minimize our guess for
the squared error again. Precisely, if we use the value a for α and b for β, then our guess for
the squared error is

E[(Y − [a+ bX])2]
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and in a similar fashion, we can rearrange algebraically to see that this can be expressed as a
sum of squared terms so the minimum is attained by choosing each to be zero. The result is

β = ρ
σY
σX

,

and

α = µY − βµX .
You use the standard deviations and correlation coefficient to find β, and you use the means
and β to find α. In the TI calculator, when you use the ”linreg(a+bx)”, the value of a in the
readout gives the value of α, and the value of b in the readout gives the value for β. When
sample data is used, the value for a reported is then an approximation of the true α, and the
value of b reported is an approximation for the value of β.
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8. LECTURE WEDNESDAY 27 JANUARY 2010

Today we discussed the difference between population data and sample data and the use
of sample data to estimate the various population parameters such as the mean, standard
deviation, variance, covariance, and correlation coefficient. In particular, we noted that in
several formulas a non-obvious correction factor

n

n− 1

shows up which gives best estimates in the case of the variance and covariance rather than
blindly using the sample data as if it were the whole population, which would lead to underes-
timates. We also noted that this factor completely cancels out when calculating the correlation
coefficient, so when using the calculator to calculate linear regression coefficients and correlation
coefficients, and coefficients of determination, we do not need to worry about the distinction
between sample and population. Thus, if data for whole populations or unknowns is entered
for the unknowns X and Y, then the reported value of r is in fact the value of ρ, the true corre-
lation coefficient, whereas if the data is merely sample data, the reported value of r is denoted
r in your text book and is merely an estimate of ρ, called the sample correlation coefficient.
Likewise, in the case of sample data, the reported value of r2 is merely an estimate of the true
coefficient of determination, ρ2 which tells how well the regression analysis actually works. In
many applications, a coefficient of determination as low as one tenth could be useful. However,
with such a low coefficient of determination, we should suspect other unknowns are lurking and
which should be searched for so as to improve guess work.

We noted that if we have a sample of values for an unknown X, then the sample mean x̄
gives an estimate of the true mean µX = E(X). If Y is another unknown and we have sample
data for Y, then its sample mean ȳ gives and estimate of µY = E(Y ). For instance, if we have
a sample of size n for X with sample mean x̄ = 7, then we would have

E(X|x̄ = 7) = 7,

since if the only information you have about X is the sample mean with value 7, then that
should be your guess for the value of X. You certainly have no basis for guessing a higher value
than 7 and you have no basis for guessing a lower value than 7. On the other hand, if the
sample size n is just n = 3, then you would not think of this guess as very reliable, whereas if
your sample size is n = 1000, then you would probably think this gives a fairly reliable guess.

Recall, that we have the useful computation formula for variance (recall the useful notation
DX = X − µX)

E(D2
X) = E((X − µX)2) = V ar(X) = E(X2)− (µ2

X).

We notice that as a consequence, whenever the mean of the squares equals the square of the
mean, then the variance and therefore the standard deviation must be zero. On the other hand,
every squared deviation is non negative, so if the variance is zero, then all deviations must be
zero, and this means the only possible value of X is µ. Thus, for the case of the dice in a box,
as there is more than one possible value, the standard deviation and variance are not zero, and
the mean of the square is more than the square of the mean. To see this easily in the simplest
example, suppose that X = IA is an indicator of event A. In this case, X2 = X, since the only
values an indicator can have are zero and one and these numbers each equal their own square.
We then have

E(X2) = E(X) = E(IA) = P (A),

whereas, since

E(X) = E(IA) = P (A),

we have
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[E(X)]2 = [P (A)]2.

Obviously, in this case, as a probability is between zero and one, the only way that P (A) can
equal its own square is for P (A) to be zero or one, meaning that A is either something we know
is certainly true or A is something we know is certainly false. Any time

0 < P (A) < 1,

we have P (A) is not equal to its square and thus the indicator of A is an unknown for which
the expected value of the square is different than the square of its expected value. Thus in
general, we cannot simply multiply our guess for X and Y in order to get the best guess for
the product XY.

This means that usually we have E(XY ) is different from E(X)E(Y ) = µXµY . Remember
we also have the formula

E(DXDY ) = Cov(X,Y ) = E(XY )− µXµY .
This shows that whenever the covariance is not zero, the mean of the product is different than
the product of the means. From sample data, you might suspect that just as x̄ and ȳ are the
best estimates of µX and µY , that x̄y gives the best estimate of the mean of XY and that
therefore

xy − x̄ȳ
gives the best estimate of Cov(X,Y ). Unfortunately, it can be shown using our rules that in
fact the best estimate of Cov(X,Y ) from the sample data for a sample of size n is the sample
covariance

cov(x, y) =
n

n− 1
[xy − x̄ȳ].

In particular, the best estimate for V ar(X) = σ2
X is the sample variance

s2
x =

n

n− 1
[(x2)− (x̄)2].

The sample correlation coefficient r is the estimate of ρ which is formed by putting these
estimates together, and so as

ρ =
Cov(X,Y )

σXσY
,

this leads to the sample correlation coefficient, denoted by r where

r =
cov(x, y)

sxsy
=

n
n−1 [xy − x̄ȳ]√

n
n−1 [(x2)− (x̄)2]

√
n
n−1 [(y2)− (ȳ)2

.

You can now see that all the correction factors n/(n − 1) in the formula for r simply cancel
giving the simpler calculation formula

r =
[xy − x̄ȳ]√

[(x2)− (x̄)2]

√
[(y2)− (ȳ)2

.

Always keep in mind that when using regression analysis, any sample data will give estimates
for the regression line in the calculator readout. Using the values of a and b in ”linreg(ax+b)”
to form the equation y = ax + b to use for guessing Y when X is given to you can always be
done, but you must look at the value of ρ2 to know if it has any reliability. For ρ2 near one
the linear regression is very reliable, whereas for ρ2 near zero, the linear regression is virtually
useless. We noted that if there is enough data, a value for r2 small but positive can sometimes
be evidence that there is correlation in situations where correlation is to be avoided.
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We pointed out that the sample data can be plotted in a scatter plot and if the picture shows
a reasonable trend, drawing the regression line totally by sight without looking at any numbers
can often lead to reasonable results. In many situations, it is actually the value of r2 that is
the only thing that needs to be calculated from the data so you can tell if the eyeball work has
any validity.

Using sample data examples, we worked some problems using regression and observed that
the calculations always alow the regression analysis to give a guess, but depending on the sample
data, the guess can be reasonable or not.
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9. LECTURE FRIDAY 29 JANUARY 2010

Today we discussed deviations, covariance, and variance. We noted that as DX = X−µX =
X − E(X) is the deviation of X from its mean for any unknown X, then certain things done
to unknowns are reflected in their deviations. For instance, if we double X, then all deviations
are doubled, which is to say that

D(2X) = 2DX .

For instance if A makes 10 thousand dollars more than B in annual salary, and all salaries are
doubled, then A makes 20 thousand dollars more than B. On the other hand, if all salaries
are simply increased by a fixed amount, say 5 thousand dollars, then A still makes exactly 10
thousand dollars more than B. In general then, for any constant c, we have

D(cX) = cDX .

If we have two unknowns X and Y we can form their total T, and notice that

DT = DX +DY .

For instance, if X is the daily balance in credit account A, and Y is the daily balance in credit
account B, then the deviation DX is the amount that the balance exceeds what is expected and
likewise for DY . If the daily balance for account A is on average one thousand dollars, and the
daily balance for account B is on average two thousand dollars, then if I have both accounts,
then my total daily balance for the two accounts together is T = X + Y and the average daily
balance is three thousand dollars. If today, account A is 500 dollars over the average for account
A, then its balance is 15 hundred dollars, and the deviation is 5 hundred dollars. If account B
today is 2 hundred dollars over average, then today its balance is 22 hundred dollars and the
deviation is two hundred dollars. Notice the total T is today 37 hundred dollars, which is 7
hundred dollars above what is average for T.

The simplest deviation to deal with is that for a constant, c. This is because E(c) = c, so

Dc = c− µc = c− E(c) = c− c = 0,

and therefore

Dc = 0, c constant.

That is, a constant certainly never deviates from its value-its value is certain. In particular,
we have

DX+c = DX +Dc = DX ,

or

DX+c = DX , c constant,

which goes along with our prior observation that adding a fixed amount to every persons salary
does nothing to the differences between various salaries.

Now, we need to use these observations to work out some simple rules for dealing with
variance and covariance. Remember that we have

ρσXσY = Cov(X,Y ) = E(DXDY ).

The right hand side can be used to work out some simple properties of covariance whereas in
problems with two unknowns you will be given means, standard deviations, and correlation to
calculate basic covariance. Thus, as multiplication is commutative, DXDY = DYDX , it follows
that

Cov(X,Y ) = Cov(Y,X).
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Compare this with ab = ba for multiplication of ordinary numbers. For dealing with a constant,
as Dc = 0, it follows that

Cov(X, c) = 0, c constant.

In particular, as V ar(X) = Cov(X,X), it must be the case that

V ar(c) = 0, c constant.

Since
DbX = bDX ,

we must have

Cov(bX, Y ) = bCov(X,Y ), b constant.

Thus

Cov(bX, cY ) = bcCov(X,Y ),

and as V ar(X) = Cov(X,X), this also means we have

V ar(cX) = c2V ar(X), c constant

so
σcX = |c|σX , c constant.

For the total of two unknowns, we have for T = X + Y,

DT = DX +DY ,

so for any unknown W, we have

DWDT = DWDX +DWDY ,

and therefore

Cov(W,T ) = E(DWDT ) = E(DWDX+DWDY ) = E(DWDX)+E(DWDY ) = Cov(W,X)+Cov(W,Y ).

This shows that in general,

Cov(W,X + Y ) = Cov(W,X) + Cov(W,Y ).

Again there is a similarity here with the ordinary distributive law for multiplication of numbers

a(b+ c) = ab+ ac.

Now, with ordinary numbers, we have

(a+ b)(c+ d) = ac+ ad+ bc+ bd.

This can be pictured with areas of rectangles by taking a horizontal side of length a+ b and a
vertical side of length c+ d. Marking off a length a from the lower left corner on the horizontal
edge and marking off a length c on the vertical edge we see four rectangles. The lower left has
area ac, the upper left has area ad, the lower right has area bc, and the upper right has area
cd. The total area is the sum of these terms and illustrates the above equation. We can do the
same schematically with covariance. Mark the horizontal edge and label the two parts as U
and W and then do the same with the vertical edge marking with X and Y. Then the lower
left rectangle inside is marked Cov(U,X), the upper left rectangle is marked Cov(U, Y ), the
lower right rectangle is marked Cov(W,X) and the upper right rectangle marked Cov(W,Y ).
We then see that

Cov(U +W,X + Y ) = Cov(U,X) + Cov(U, Y ) + Cov(W,X) + Cov(W,Y ).
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We can apply this to the variance of a total, since V ar(X) = Cov(X,X). This is similar to the
special case for numbers of squaring a binomial

(a+ b)2 = a2 + b2 + 2ab.

With covariance, it takes the form

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ).

Since

Cov(X,−Y ) = Cov(X, (−1)Y ) = (−1)Cov(X,Y ) = −Cov(X,Y ),

we can see that

V ar(X − Y ) = V ar(X) + V ar(Y )− 2Cov(X,Y )

in similar fashion to

(a− b)2 = a2 + b2 − 2ab.

For instance, if the covariance and X and Y happens to be zero then both V ar(X + Y ) and
V ar(X−Y ) will simply be V ar(X)+V ar(Y ), that is in the case of two uncorrelated unknowns,
the variance of the sum or difference is simply the sum of the variances, you do not subtract
variances for the case of a difference of two unknowns, the variance terms will always add. You
should try to use these little geometric pictures to help visualize how to deal with the various
terms.

As an example, suppose that we have two unknowns X and Y, with

µX = 70, µY = 80,

σX = 5, σY = 7,

ρ = .8.

To calculate the variance of X + Y, we must go through covariance, as

Cov(X,Y ) = ρσXσY = (.8)(5)(7) = (4)(7) = 28,

so

V ar(X + Y ) = V ar(x) + V ar(Y ) + 2Cov(X,Y ) = σ2
X + σ2

Y + 2[ρσXσY ]

= (5)2 + (7)2 + 2[(.8)(5)(7)] = 25 + 49 + (2)(28) = 25 + 49 + 56 = 130.

We now know that

V ar(X + Y ) = 130,

so the standard deviation of the total T = X + Y is

σT =
√

130.

Notice that to find the standard deviation of the total you must work with variances, to find
variance of the total requires working with covariances, so finally in the end once you find the
variance, you can take the square root to find the standard deviation of the total if it is needed.

We also reviewed the formula

E(XY ) = E(X)E(Y ) + Cov(X,Y ) = µXµY + Cov(X,Y ),

and its special case using X = Y,

E(X2) = [E(X)]2 + V ar(X) = µ2
X + σ2

X .
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Notice that this last equation is sort of like the Pythagorean Theorem. In fact it is closely related
to the Pythagorean Theorem. To remember it, think of a right triangle with the horizontal
and vertical sides marked as µX and σX respectively, then the hypotenuse is marked

√
E(X2).

We often need to deal with expected squares as when dealing with errors, we generally want to
minimize the expected squared error.

For instance, when dealing with two unknowns X and Y, to try to use X values to guess Y
values, we start by forming W = a + bX, and try to choose values for a and b so that a value
for X gives a value for W which gives a good guess for Y. Notice that

R = Y −W
is the error when using W to guess Y, so we want to choose values for a and b for which E(R2)
is minimum. Notice that

E(R2) = µ2
R + σ2

R = µ2
R + V ar(R) = µ2

R + V ar(Y −W )

= µ2
R + V ar(Y ) + V ar(W )− 2Cov(W,Y ) = µ2

R + σ2
Y + V ar(W )− 2Cov(W,Y ),

or simply

E(R2) = µ2
R + σ2

Y + V ar(W )− 2Cov(W,Y ).

Now, we have from our covariance rules

Cov(W,Y ) = Cov(a+ bX, Y ) = bCov(X,Y ) = bρσXσY

and

V ar(W ) = V ar(a+ bX) = V ar(bX) = b2V ar(X) = b2σ2
X .

When we substitute this into the previous equation, we have

E(R2) = µ2
R + σ2

Y + b2σ2
X − 2bρσXσY .

A little trick can be used to simplify this last equation. If we add and subtract the same thing
from σ2

Y ,

σ2
Y = (1− ρ2)σ2

Y + ρ2σ2
Y ,

and substitute this into our equation for E(R2), we have

E(R2) = µ2
R + (1− ρ2)σ2

Y + ρ2σY + b2σ2
X − 2bρσXσY .

Concentrate now on the last three terms and make a slight rearrangement:

ρ2σ2
Y + b2σ2

X − 2bρσXσY = (ρσY )2 + (bσX)2 − 2(ρσY )(bσX).

This last expression reminds us of

(c− d)2 = c2 + d2 − 2cd,

where c = ρσY and d = bσX . Thus, the last three terms are just (ρσY − bσX)2, which when
substituted into the previous equation for E(R2) now gives

E(R2) = µ2
R + (1− ρ2)σ2

Y + (ρσY − bσX)2.

The thing to notice here is that two of the three terms are squares so the smallest they can
possibly be is zero. Remember, we still have not chosen a and b, and we want to choose them
to give the smallest possible value to E(R2). When we look at the last squared term, then we
can make it zero by simply solving the equation

ρσY − bσX = 0,
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for b, since we have no control of the standard deviations, they are simply given. On the other
hand, this gives the simple equation for b,

b = ρ
σY
σX

.

To make the first square term zero, keep in mind we have now already chosen b, so we only
need a. But to make the first square term zero is simply to set µR = 0. Now, this gives

0 = µR = E(R) = E(Y−W ) = E(Y )−E(W ) = µY−E(a+bX) = µY−(a+bµX) = [µY−bµX ]−a.
This means, as b is already chosen, we have using that value of b, we should chose a to be

a = µY − bµX .
Thus, the correlation coefficient, ρ, and the standard deviations for X and for Y are sued to
determine b, and once b is found, we use the expected values of X and Y to determine a. Finally,
notice that with these optimal values for a and b, usually denoted by α and β, respectively, we
have both the first and last terms in the equation for E(R2) are zero and the result is

E(R2) = (1− ρ2)σ2
Y .

This fact is useful because as any square is non negative, we must have

0 ≤ E(R2).

But also σ2
Y ≥ 0, so therefore it must be true that

1− ρ2 ≥ 0,

and therefore

ρ2 ≤ 1.

This forces us to realize that

−1 ≤ ρ ≤ 1,

for any two unknowns X and Y. These equations of course depend on choosing the optimal
values for a and b denoted α and β, respectively which we found above to be

β = ρ
σY
σX

,

and

α = µY − βµX .
For instance for the example,

β = ρ
σY
σX

= (.8)
7

5
=

(4)(7)

52
=

28

25
= 1.12,

and

α = 80− β(70) = 80− (
28

25
)(70) = 80− (28)

14

5
= 80− (28)

28

10
= 80− 78.4 = 1.6.

This means that to use X to guess values for Y, we would use

W = 1.6 + (1.12)X,

so whenever we have a value x for X we have the best guess
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y = 1.6 + (1.12)x

is the value for Y. That is, in general,

E(Y |X = x) = α+ βx,

and in the example

E(Y |X = x) = 1.6 + (1.12)x.

So, if we are find out the value of X is 75, then our best guess for the value of Y is

E(Y |X = 75) = 1.6 + (1.12)(75) = 85.6.

In general, if we have data on two related unknowns concerning a population such as length
and weight in a population of fish, then using the data to calculate values of r and a and b gives
approximate values for ρ and α and β, respectively.
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10. LECTURE MONDAY 1 FEBRUARY 2010

Today we reviewed for TEST 1 to be given in class Wednesday 4 February 2010. We went
over PRACTICE TEST 1 ANSWERS SPRING 2010. Make sure that the version of the practice
test you use for review is the correct practice test and especially NOT practice test 1 from last
spring. The version for SPRING 2010 has been posted online since early Friday morning of last
week.

We reviewed the basic rules for mean, variance, covariance, standard deviation, correlation,
linear regression, probability, conditional probability, conditional expectation, and their appli-
cations to various problems.
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11. LECTURE WEDNESDAY 3 FEBRUARY 2010

TEST 1 IN LECTURE CLASS.

12. LECTURE FRIDAY 5 FEBRUARY 2010

We reviewed conditional expectation and probability and worked problems with Bayes’ The-
orem.

13. LECTURE MONDAY 8 FEBRUARY 2010

We discussed the general rules for counting. We denote by n(A) the number of things in the
set A. We noted the ADDITION RULE FOR COUNTING:

n(A ∪B) = n(A) + n(B), A, B, disjoint.

We noted that a useful way to denote the results of stepwise procedures is with a sequence
where the kth entry in the sequence denotes the result of the kth step of the process. In
particular, if we have a sequence of sets A1, A2, A3, ..., An and if the process consists of choosing
one item from each set, then the set of all sequences (a1, a2, a3, ..., an) gives the set of all possible
outcomes for the stepwise process, and this is also the CARTESIAN PRODUCT, P, of all
these sets, denoted

P = A1 ×A2 ×A3 × ...×An = {(a1, a2, a3, ..., an) such that ak in Ak, each k ≤ n}.
We noted that in this case, we have a simple multiplication result for n(P ), namely,

n(P ) = n(A1) · n(A2) · n(A3) · · · · · n(An).

We also see that in this situation, as a stepwise process, all the various steps are independent
of each other. But, in fact that is not necessary for the multiplication rule. Notice that n(Ak)
is the number of ways to perform the kth step of the process of choosing one item from each
of these sets. More generally, we can consider processes where the set of possibilities for the
outcome at step k may depend on the history of what the results were for the previous steps
but where the number of those possibilities does not depend on the history of the previous
steps. For instance, when you deal from a standard deck of cards, you have 52 possibilities for
the first card dealt, but what is possible for the second card depends on what was dealt on the
first card. On the other hand, no matter what card was dealt for the first card, there are only
51 possibilities for the second card, and no matter what cards are dealt for the first two cards,
there are 50 possibilities for the third card, and so on.

Thus, in general, if the number of ways to perform each step is independent of the particular
results on the previous steps, then the multiplication rule still works. We still use P to denote
the set of outcomes for the n step process, but it is no longer a cartesian product. That is, if
for each k, the number of ways to perform step k is mk independent of what came before in
the process, then for all n steps, the total number of outcomes is n(P ) where

n(P ) = m1 ·m2 ·m3 · · · · ·mn.

We call the the MULTIPLICATION PRINCIPLE FOR COUNTING.
As a particular example, we noted that the number of ways to arrange r things from a set of

n things is nPr which is calculated in the PRB menu of the MATH menu in the calculator. To
arrange r things from a set of n things, is for instance to place r letters into r given mailboxes,
when there are n letters in all to chose from. If the mailboxes are B1, B2, B3, ..., Bn, then
considering step k as the act of choosing one of the letters to go in Bk, there are n choices for a
letter to go in B1, so step one has n ways to be done, whereas then step 2 has only n− 1 ways
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to be done, step three likewise has only n − 2 ways to be done, and so on, until finally step r
has only n− (r − 1) = n− r + 1 ways to be done. This means

nPr = n · (n− 1) · (n− 2) · · · · · (n− r + 1).

To arrange all n things then there are n! ways where

n! = nPn = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1.
We read n! as ”n factorial”.

Now, we can express the nPr in terms of factorials using the formulas so far, but it is easier
to simply apply the multiplication principle for counting. We can view the problem of arranging
all n things as done in two steps. Step 1 arrange r of them and step 2 arrange the rest, that is
the remaining n− r things. According to the multiplication principle for counting, this means
that

n! = nPn = (nPr)([n− r]P [n− r] = (nPr)[(n− r)!],
and therefore, on solving this equation for nPr we find

nPr =
n!

(n− r)!
,

a useful formula expressing nPr in terms of factorials.
For instance, using your calculator, you can calculate 52 nPr 5, which is the number of ways

to deal out, in order, 5 cards from a standard 52 card deck, and you find it is 311875200, a fairly
large number. Thus, there is a first card, a second card, a third card, a fourth card, and a fifth
card, here, and it matters say whether you got the ace of diamonds first or second. In many
card games, it does not matter in which order you are dealt your cards, it only matters which
cards you get. For instance, when we speak of the number of 5 card hands from a standard
deck of cards, we do not care in which order the cards are dealt, we only care about which
cards we get as a final result of the deal. In general, we are often interested in the number
of ways to choose r things from a set of n things, and this number is denoted nCr in your
calculator. To calculate the number of 5 card hands from a standard deck, we need to calculate
52 nCr 5 = 2598960, a much smaller number than 52 nPr 5 = 311875200.

We can express nCr in terms of nPr using the multiplication principle for counting. Imagine
arranging r things from a set of n things done as a two step procedure. Step 1 choose the r
things to be arranged, and then Step 2, arrange all r of the things chosen in step 1. Notice
that Step 1 can be done in nCr ways and Step 2 can be done in rPr = r! ways, so by the
multiplication principle for counting,

nPr = (nCr)(r!)

which can be solved for nCr giving

nCr =
nPr

r!
=

n!

(n− r)!r!
.

We noted that this formula shows that the number of ways to chose r things from n things
must be the same as the number of ways to chose n − r things from a set of n things. This
may seem strange at first, but when you stop to think about it a minute, you can notice that
deciding which r things to include in what you chose is exactly the same as deciding which
n− r things not to include in what you chose. That is choosing what to include is the same as
choosing what to exclude.

A more useful formula relating these numbers is a result of the addition principle for counting
which have not really applied yet. This is the formula for Pascal’s Triangle
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[n+ 1]C[r + 1] = nCr + nC[r + 1].

To see why this is true, imagine a box containing n+1 blocks of which one is red and all the rest
are white. The outcomes for choosing r + 1 blocks can be separated into two sets of outcomes
by simply noticing that any time you chose r + 1 blocks, you either did or did not get the red
block. Let A be the set of all possible choices where you do get the red block and B be the
set of all possible choices where you did not get the red block. To create an outcome in A, you
first get the red block (there is only one way to do that as there is only one red block), and
next choose the remaining r blocks you need from the n white blocks in the box. Thus,

n(A) = 1 · (nCr) = nCr.

To create an outcome in B, you cannot use the red block, so you must chose all r + 1 blocks
from the n white blocks in the box, so

n(B) = nC[r + 1].

Since every outcome of choosing r + 1 blocks must fall in either A or B, we must have

n(A ∪B) = [n+ 1]C[r + 1].

Since A and B are clearly disjoint, by the addition principle for counting we have

[n+ 1]C[r + 1] = nCr + nC[r + 1].

We finished the class by using these counting methods to calculate the probability of being
dealt all five cards of the same suit when being dealt 5 cards from a standard deck of cards.
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14. LECTURE WEDNESDAY 10 FEBRUARY 2010

CLASS DID NOT MEET

15. LECTURE FRIDAY 12 FEBRUARY 2010

CLASS DID NOT MEET

16. LECTURE MONDAY 15 FEBRUARY 2010

CLASS DID NOT MEET

17. LECTURE WEDNESDAY 17 FEBRUARY 2010

CLASS DID NOT MEET

18. LECTURE FRIDAY 19 FEBRUARY 2010

CLASS DID NOT MEET
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19. LECTURE MONDAY 22 FEBRUARY 2010

Today we discussed distributions for unknowns, the cumulative distribution function for
an unknown, and the probability density function or probability distribution function for an
unknown. In particular, we discussed the binomial distribution and how to calculate it with
the calculator as well as the hypergeometric distribution and its calculation.

The CUMULATIVE DISTRIBUTION FUNCTION of the unknown X is usually
denoted FX and is the real valued function of the real variable x whose rule is

FX(x) = P (X ≤ x).

We observed that if b is a specific number for which P (X = b) is positive, then the graph of FX
has a jump at x = b. If FX does not have a jump at x = b, then it must be that P (X = b) = 0.
This does not mean that X cannot equal b.

We defined the PROBABILITY DENSITY FUNCTION for X, denoted fX , as the
function whose graph has the property that for any two numbers a, b with a < b, the area under
the graph between x = a and x = b gives P (a < X ≤ b). We observed that if FX does not have
a jump at x = b, then fX(b) is the slope of the tangent line to the graph of FX at the point
(b, FX(b)). On the other hand, we observed that if FX does have a jump at x = b, which means
that P (X = b) > 0, then the graph of fX would have to have ”infinite height” at x = b, which
seems contradictory. We resolve this issue pictorially by using spikes. If P (X = b) > 0, we put
a spike of height P (X = b) right over the point x = b on the graph. Thus, P (a < X ≤ b) is
the area under the graph of fX between x = a and x = b plus the heights of all the spikes over
points x with a < x ≤ b. For instance, if X is the number up on a loaded dice, then the graph
of fX consists of six spikes over the points x = 1, 2, 3, 4, 5, 6 whose TOTAL height is one. On
the other hand, if X is the length of a fish to be selected from a population of fish, then fX
would be a curve without spikes.

In case we have a population of fish with mean lengthµ = 40 and standard deviation σ = 5,
then the length of a fish, X, from this population, given we know nothing else about this fish,
would be governed by the normal distribution, so fX is a ”bell curve’. Generally, when a popu-
lation is normal, this is stated as an assumption, but in fact, it can be proven mathematically,
that whenever the only thing you know is µX and σX , then fX is the normal distribution.
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20. LECTURE WEDNESDAY 24 FEBRUARY 2010

Today we discussed the binomial and hypergeometric distributions and some of their appli-
cations.

21. LECTURE FRIDAY 26 FEBRUARY 2010

Today we reviewed the binomial and hypergeometric distributions for counting successes and
then discussed the Poisson distribution for counting successes. The situation for the Poisson
distribution is that there is no longer a number of trials, but rather an amount that is examined.
For instance, you might be counting the number of tadpoles in 5.23 gallons of pond water or
the number of bears in 24.6 square miles of forrest. Here, the only number that characterizes
the distribution is the number expected. If you expect 43.8 bears in the 24.6 square mile of
forrest, then you have the numerical information required to calculate the probability that you
will actually find 42 bears in that region of forrest. But in order for the calculation we do to
be valid here, we need an assumption. For the bears in the forrest the assumption is that bear
counts for disjoint parts of the forrest are independent of each other. Likewise for the tadpole
count the assumption would be that tadpole counts for disjoint regions of the pond water are
independent of each other. In that case, the Poisson distribution applies, and in your calculator,
the format is simple. If µ is what you expect, and X is the actual count, then

P (X = k) = e−µ
µk

k!
= poissonpdf(µ, k).

We worked several examples using the Poisson distribution in the calculator and observed that
in a sense, the Poisson distribution is a certain ”limit” of the binomial distribution. We also
observed that if W is the amount you must examine before finding the first success, then

P (W > x) = poissonpdf(µ, 0),

where µ is the expected count for the amount x. For instance, if we expect 6 trolleys per hour,
then we expect 1.5 trolleys in x = 15 minutes, so the probability we must wait more than 15
minutes for a trolley when on average they arrive at 6 per hour is

poissonpdf(1.5, 0) = .2231301601.
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22. LECTURE MONDAY 1 MARCH 2010

Today we began by reviewing the three counting distributions: binomial, hypergeometric,
Poisson. In each there is a sample size, but in the first two (binomial and hypergeometric), the
sample size is itself a count of the number of trials or observations made. In the case of the
Poisson distribution, the sample size must be measured. The only parameter you must know
of figure out for the Poisson distribution is the expected value, and is often expressed as what
is expected for a sample of one unit size. For instance, if I examine pond water and expect
to fine ten tadpoles per gallon of pond water, then in 5.3 gallons I expect to find 53 tadpoles.
If I am standing on the corner watching buses go by, and if the go by on average at ten per
hour, then I expect to see five buses go by in half an hour and fifteen buses go by in an hour
and a half. What distinguishes the binomial from the hypergeometric is that in the binomial
we must assume that all the trials are independent, so if the population is finite, we must be
drawing with replacement for the binomial to apply, whereas if we are tossing a coin over and
over to see if heads comes up, then the successive trials are reasonably assumed independent.
If a policeman is observing traffic with a radar gun to see which cars are speeding, and if he
watches the next one hundred cars go by, it is reasonable to assume that the different drivers are
independent of each other in their decision whether to speed or not, so it would be reasonable
to assume that the results of different observations as to whether a car is speeding or not are
independent of each other. Now, one could argue that in heavy traffic, if one car is speeding
then they are probably all moving together roughly so as not to bump into one another, since
no driver wants to have his trunk smashed for only going the speed limit. The assumption of
independence in practice needs to be examined carefully. For instance on a lonely stretch of
rural highway where cars are separated by large distances, it would be reasonable to assume
that the different cars are independent of each other as to whether or not they are speeding.
For the hypergeometric distribution we have the situation where we are drawing from a small
finite population without replacement. For instance, if we are going to draw twenty cards from
a standard deck of cards (without replacement) and count the number of diamonds we get,
then we would use the hypergeometric distribution if we can assume a ”fair deal” that is all
sets of twenty cards which could possibly be taken from the deck are all equally likely to be
the one we get. We reviewed the formulas and methods of calculating probabilities with these
distributions. We also discussed the distribution for the waiting ”time” W in the setting of the
Poisson distribution. Thus, if you expect to find µ per unit, then in time t you expect to find µt
and therefore if you had to wait more than t, which means W > t, then in time t you actually
saw none. Thus,

P (W > t) = poissonpdf(µt, 0).

Now as we discussed before, the Poisson distribution is actually simple to compute, and if the
count X is governed by the Poisson distribution with mean µ, then

P (X = k) =
e−µ(µ)k

k!
= poissonpdf(µ, k),

so putting k = 0 and replacing µ by µt we see that

P (W > t) = eµt.

But this means we can actually easily calculate the cumulative distribution function for the
waiting time W, since

FW (t) = P (W ≤ t) = 1− P (W > t) = 1− e−µt.
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The waiting time is an example of a continuous variable, since it must be measured, we
cannot simply count. All of the three counting distributions however are examples of sampling.
In the case of the binomial and hypergeometric, the sample size n is the number of trials.

We need to go on now to discuss sampling in general terms. After all, the main use of
sampling is in trying to find characteristics or parameters of populations that are effectively
infinite or much to large to possibly observe all the members of the population. If we want to
know the average length of all the salmon in the Pacific Ocean, it is not practical or desirable
to actually try to measure the length of every such salmon. We need to estimate with a a
large sample, but as soon as we admit that we must settle for such an estimate, the question
becomes what do we expect to get for the sample mean and how far off could it be from the
population mean. In order to answer questions such as these, we must consider sampling in
general somewhat theoretical terms-it is unavoidable.

To begin, suppose that X is a random variable, which means that X is the result of some
observation that can be repeated, such as measuring the length of a salmon caught in the Pacific.
Now to deal with sampling in general theoretical terms, we simply imagine that we want to
try to guess the result of sampling before actually doing it. Thus we will have a sequence of
observed values to guess

X1, X2, X3, ..., Xn,

where n is the sample size. Of course, if we knew the true mean of X denoted

µX = E(X),

then you would certainly guess that the value of each observation will also be µX , which is to
say that

E(Xk) = µX , for all k, 1 ≤ k ≤ n.
For instance, if I said we are going to take a sample of one hundred salmon from the Pacific,
and if you happen to know that the average length of all salmon in the Pacific is 31 inches, then
you would certainly guess in advance that the length of the fifth fish in the sample is going to
be 31 inches. After all, you certainly would not guess a number less than 31 and you certainly
would not guess a number more than 31.

Now, the first step in calculating the sample mean is to total all the observed values, so that
total in advance is also unknown to us, so we designate it as Tn, and this means

Tn = X1 +X2 +X3 + ...+Xn.

Since we just saw that our guess for each of these unknowns in the sum is µX and since there
are n such terms, it follows from the rules of expectation that

E(Tn) = nµX .

For instance, if the salmon in the Pacific average 31 inches in length, and if I catch one hundred
of them a lay them nose to tail on the dock and use a tape measure to measure the distance
from the tail of the first salmon to the nose of the last, then I will expect in advance to find
the length to be (100)(31) = 3100 inches.

The next step in calculating the sample mean is to take the sample total and divide by the
number of observations which is n, the sample size. Therefore, if we designate the sample mean
we will get as the unknown X̄n, which is of course also unknown to us before we actually take
the sample and compute it, then

X̄n =
1

n
Tn.

This means that by our rules of expectation
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E(X̄n) = E(
1

n
Tn) =

1

n
E(Tn) =

1

n
nµX = µX .

That is we finally arrive at a fairly remarkable result:

E(X̄n) = µX .

That means that whenever we take a sample, in advance of actually taking the measurements
we are expecting to get the true population mean or true expected value µX as the result for
the sample mean. Of course, we have already observed that in expectation theory, you do not
always get what you expect, and in fact in many situations you almost never get what you
expect. For instance, recall the dice in the box where X is the number up, so µX = 7/2 which
is not even possible to get for the number up. This means that when sampling, even though we
always expect the sample mean to be the true mean, in fact it most likely will not be, and we
need to know how far off it might be. That is, we need to know the standard deviations for Tn
and X̄n. Up until now, we have not said anything about the actual method of sampling, but to
calculate standard deviations, some assumptions must be made. A simple assumption to make
is that all observations are uncorrelated. Recall that if U and W are any two uncorrelated
unknowns, then

V ar(U +W ) = V ar(U) + V ar(W ),

so we can apply this to calculate V ar(Tn) if all observations are uncorrelated with each other.
In particular this is the case if all observations are independent of each other such as in re-
peated independent trials governed by the binomial distribution. Thus, assuming sampling
with uncorrelated observations (SUO), we have

V ar(Tn) = V ar(X1) + V ar(X2) + V ar(X3) + ...+ V ar(Xn).

Now the next thing we notice is that all the observations have the same distribution as X
and therefore all have the same variance. For instance, if you know that the chance of a
Pacific salmon being under 40 inches in length is 75 percent, and I ask what is the chance the
fifth salmon I catch will have length under 40 inches, then that is obviously 75 percent. Any
probability question about the length of the fifth salmon has the same answer as for the first
salmon. This means all the observations Xk have the same distribution as X and therefore the
same variance as X, namely σ2

X . Therefore,

V ar(Tn) = nσ2
X , using SUO.

Taking square roots then gives us the standard deviation for Tn, namely

σTn = [
√
n]σX , using SUO.

Thus, even though a sample total of one hundred salmon is expected to be one hundred times
as long as the average salmon length, the standard deviation of the total is only ten times as
big as the standard deviation in length for a single salmon. When we apply this to the sample
mean, we find

σX̄n = σ(1/n)Tn =
1

n
σTn =

1

n
[
√
n]σX =

σX√
n
,

or simply

σX̄n =
σX√
n
, using SUO.

This is a truly remarkable result and it explains exactly why large samples should produce
sample means close to the true mean. For instance, we will see that there is always a large
probability that observations fall within a few standard deviations of the true mean, say within
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ten standard deviations of the true mean to be extremely conservative. If the standard deviation
for the salmon is say 8 inches, and if we have a sample of size n = 10000, then

√
n = 100, so the

standard deviation of the sample mean X̄ is 8/100 = .08, so ten standard deviations is now less
than an inch. This means such a large sample is almost certain to give the true mean to within
an inch. We will soon see that in fact it is very likely to be much more accurate. However, you
can see from this that we can get as accurate as we like by taking samples sufficiently large and
with as high a probability as we like of being within the stated accuracy. Exactly how likely
we are to achieve a given level of accuracy with a given sample size will be the subject of most
of the rest of this course.
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23. LECTURE WEDNESDAY 3 MARCH 2010

Today we reviewed the basic facts about the sampling distribution, that is the the distribution
for Tn and for X̄n for sampling X with samples of size n. Remember, before we take a sample,
the observations are unknowns X1, X2, X3, ..., Xn whose total Tn is called the sample total and
whose average X̄n is called the sample mean. We observed that Xk has the same distribution
as X and therefore

E(Xk) = µX , all k ≤ n,
and

σXk = σX , all k ≤ n.
From these facts and the rules of expectation we find

E(Tn) = nµX ,

and

E(X̄n) = µX .

Thus any time we take a sample, we always expect the sample mean to be the true mean µX ,
before we actually look at the observation results. Of course, we know we usually do not get
what we expect. How far off the sample mean is from the true mean depends on the standard
deviation of X̄n.

If all observations are uncorrelated, we showed last time that

V ar(Tn) = nσ2
X ,

so

σTn = (
√
n)σX .

Since X̄n = (1/n)Tn, it follows that

σX̄n =
σX√
n
.

In particular, if all the observations are independent of each other, then they are all uncorrelated,
so these equations for standard deviations hold. When this is the case that all observations
are independent of each other, we say that we are doing INDEPENDENT RANDOM
SAMPLING (IRS). This means that for large samples we should be very likely to get a
sample mean near the true mean. Thus

σTn(IRS) = (
√
n)σX

and

σX̄n(IRS) =
σX√
n
.

To see how likely the sample mean is to be near the true mean for large samples we can
begin with a simple inequality known as Tchebeychev’s Inequality. For this inequality, we
begin by asking how likely it is that the distance from X to µX is at least kσX , where k is some
positive number that we will choose for convenience later. That is, what is

P (|X − µX | ≥ kσX) =?

This at first certainly looks like a difficult problem, but we have the tools to solve it easily to
our satisfaction. First, let A be the statement that |X−µX | ≥ kσX , so A is a factual statement
which is either true or false,
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A : |X − µX | ≥ kσX .
Thus, the probability we seek is simply P (A). Next, since two non-negative numbers stand in
a given size relation if and only if their squares are in that same size relation, we see A is the
same as

A : (X − µX)2 ≥ k2 · σ2
X .

Next, we perform a little mathematical trick. Consider the general inequality:

(X − µX)2 ≥ k2 · σ2
X · IA,

which is certainly either true or false, depending on the value of IA, that is depending on
whether A is true or false. Notice if A is true, then IA = 1, and the inequality just restates
A so the inequality is true if A is true. On the other hand, if A is false, then IA = 0, so the
left side of the inequality is zero, and as the right hand side is something squared, it is at least
zero, so the inequality is actually true even when A is false. Thus the inequality is generally
true, and we can therefore apply the expectation to both sides to get

E((X − µX)2) ≥ k2 · σ2
X · E(IA).

But now, just recall that by definition

E(IA) = P (A),

and also by definition,

E((X − µX)2) = V ar(X) = σ2
X .

When we substitute in these facts, we find simply

σ2
X ≥ k2 · σ2

X · P (A).

Now we can cancel the σX factors on both sides to find simply

1 ≥ k2 · P (A),

or in other words,

P (A) ≤ 1

k2
.

If we use the fact that P (not A) = 1− P (A), here, we can also conclude that

P (not A) ≥ i− 1

k2
.

Replacing A by the actual statement it is standing for now gives two equivalent inequalities
(either one is) called Tchebeychev’s inequality:

P (|X − µX | ≥ kσX) ≤ 1

k2

and

P (|X − µX | < kσX) ≥ 1− 1

k2
.

For instance, if we take k = 1, we find no useful information, since

1− 1

12
= 0.
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If k = 2, then we get

1− 1

22
=

3

4
,

which says that we always have at least a seventy five percent chance of being within two
standard deviations of the true mean. If we take k = 3, we find we always have at least 8/9 of
a chance of being within three standard deviations of the true mean. If we take k = 4, we find
we always have at least 96 percent chance of being within four standard deviations of the true
mean. If we take k = 10, we find we always have at least a 99 percent chance of being within
ten standard deviations of the true mean.

When we combine Tchebeychev’s inequality with the results for the standard deviation of
the sample mean X̄n, the results become very striking. For instance, if we have σX = 10, then
for n = 10000, we have

√
n = 100, so

σX̄n =
1

10
.

Thus ten standard deviations for X̄ here is only one unit. Therefore, by Tchebeychev’s inequal-
ity, any sample of this size has a 99 percent chance of giving a sample mean within one unit of
the true mean.

Obviously, with larger samples we can get as close as we want to the true mean with as much
certainty as we want, but the sample sizes would not be practical. Fortunately for statisticians,
there is a much more powerful theorem which comes to the rescue.

CENTRAL LIMIT THEOREM: As n tends to infinity, both Tn and X̄n become normally
distributed. In fact in practical terms, we will consider Tn and X̄n to be normal whenever
n ≥ 30.

We did calculations which showed with the normal distribution built into the calculator we
find easily that with a sample of only size 900 we are in fact 99.7 percent sure to have the
sample mean be within one unit of the true mean.
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24. LECTURE FRIDAY 5 MARCH 2010

Today we discussed the application of our sampling theory results to the counting distribu-
tions, the binomial, the hypergeometric, and the Poisson. We recalled that when sampling any
X, with the sample total denoted Tn and the sample mean denoted X̄n, we have

E(Tn) = n · µX ,
and

E(X̄n) = µX ,

but for standard deviations we must assume something about the sampling method. For Inde-
pendent Random Sampling (IRS), that is under the assumption all observations are independent
of each other, we have

σTn(IRS) =
√
n · σX ,

and

σX̄n(IRS) =
σX√
n
.

Often, in sampling we do not use IRS, since that allows the possibility of measuring or
observing the same member of the population twice. Thus, if we are sampling to determine the
mean blood pressure of a population, we would probably not want to accidentally measure the
same person’s blood pressure more than once. We say that we have a SIMPLE RANDOM
SAMPLE(SRS) if all sample of size n are equally likely to be the sample we actually choose
with our sampling method. For instance, when dealing cards, say a five card hand, we think
of the deal as being fair of all possible five card hands are equally likely to be the hand we
get and as well for our opponents in the game. However, it is clear that a SRS is not an IRS.
Obviously for instance, if you are dealt an ace on your first card, you know you are less likely
to get another ace than you were to receive the first ace. It turns out that there is a simple
correction factor which gives the variances and therefore the standard deviations when using
SRS. Thus,

V ar(Tn(SRS)) =
N − n
N − 1

· V ar(Tn(IRS)) =
N − n
N − 1

· n · V ar(X),

σTn(SRS) =

√
N − n
N − 1

· σTn(IRS) =

√
N − n
N − 1

·
√
n · σX ,

V ar(X̄n(SRS)) =
N − n
N − 1

· V ar(X̄n(IRS)) =
N − n
N − 1

· V ar(X)

n
,

σX̄n(SRS) =

√
N − n
N − 1

· σX̄n(IRS) =
N − n
N − 1

· σX√
n
.

We can therefore simply say that when using SRS, to calculate the standard deviations for
sampling, you must multiply the IRS results by the correction factor cSRS , where

cSRS =
N − n
N − 1

.

Lets put these results to work on the counting distributions. For instance when counting,
we are dealing with the basic variable X = IA, where A is the statement that you got a success
(one trial). Thus, you could be counting red blocks when drawing blocks from a box with or
without replacement. In this case, we have
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µX = E(X) = E(IA) = P (A) = p,

where p = P (A), the probability of success on a single trial is called the success rate. Thus,
if you draw 20 blocks from a box containing 30 red blocks and 70 white blocks and you are
counting the number of red blocks you get, every time you go to draw a block you have a
30 percent chance of success (getting a red block), whether or not you draw with or without
replacement. Drawing with replacement gives IRS, whereas without replacement gives SRS.
Either way, we see that Tn now gives the success count, so Tn is binomial if we use IRS and
hypergeometric if we use SRS. In either case, the expected value of Tn is the same

µTn = n · µX = n · p.
Thus, if we draw 20 blocks from the box of blocks, we expect to get 6 red blocks and whether we
are using IRS (drawing with replacement) or SRS (drawing without replacement) is irrelevant
to this fact. Notice that

P (Tn(IRS) = k) = binompdf(n, p, k) = (n [nCr] k)pk(1− p)n−k,
so the mean could be calculated directly from the distribution by summing values times proba-
bilities from 0 to n, but this would be a lot of work, and our sampling theory makes it obvious
that the result is simply np. Moreover, the calculation would be just as much or more work
using SRS, as

P (Tn(SRS)) = k) =
(R nCr k)([N −R] nCr [n− k])

(N nCr n)
,

so all these probabilities for k = 0 to k = n would have to be calculated, all values multiplied
by their probabilities and added, and we see from our theory that the result is guaranteed to
again be simply np. Of course, calculating variances and standard deviations directly from these
distributions would be even harder, but our sampling theory now gives the results very easily
as soon as we recall the standard deviation of X = IA. Here, we have X2 = X as X = IA only
takes values zero or one, so

V ar(X) = E(X2)− [E(X)]2 = E(X)− [E(X)]2 = p− p2 = p(1− p),
which is success rate multiplied by failure rate for the variance of an indicator of an event.
Therefore the standard deviation of X = IA is simply

σIA =
√
p(1− p).

As a result, we have

σTn(BINOMIAL) =
√
n
√
p(1− p) =

√
np(1− p) =

√
µTn(1− p),

and

σTn(HY PERGEOMETRIC) =

√
N − n
N − 1

√
np(1− p) =

√
N − n
N − 1

√
µTn(1− p).

For the Poisson distribution, we can recall that it can be considered as a limit of the binomial
distribution as the number of trials n → ∞, in a controlled way. That is, if T is the success
count here, and we are given the expected value µ = E(T ) as the count expected in a unit size
sample, then for very very large n, in a sample of size 1/n to expect to count µn = µ/n, so
as µ/n becomes very much less than one, we can ignore the possibility of ever having a count
above one. For instance, if we expect 6 buses per hour at our stop, then in one second we expect
1/600 of a bus, and as the chance of two buses in any one second period is essentially zero, we
can think of either one or zero buses as the only possibility during any given second. Thus,
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the count for one second is simply an indicator of whether a single bus comes or not. Thus,
as n becomes very very large, the success count for a sample of size 1/n can be considered to
be an indicator of whether a single success happens in that little sample, so if IA denotes this
indicator, then

T1/n = IA,

and

µ

n
= E(T1/n) = E(IA) = P (A) = pn,

so we regard
pn = µ/n

now as the success rate, and as there are n of these disjoint small samples of size 1/n in the
unit, and all are independent, we should have

poisson(µ, k) = lim
n→∞

binompdf(n, µ/n, k)

and that is just what we find experimentally with the calculator. In particular, as the success
rate pn tends to zero, the failure rate tends to one, so in the formula for the standard deviation
of the binomial we find

σT = lim
n→∞

σTn(BINOMIAL(n, µ/n) =
√
µT .

That is, the standard deviation of the Poisson distribution is always just the square root of the
expected value.
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25. LECTURE MONDAY 8 MARCH 2010

Today we reviewed for TEST 2 in class.

26. LECTURE WEDNESDAY 10 MARCH 2010

Today we had TEST 2 in class.

27. LECTURE FRIDAY 12 MARCH 2010

Today we discussed continuous distributions in general, as well as the uniform and normal
distributions. For a continuous unknown recall that we picture its distribution as given by a
curve of the form y = f(x) whose graph is never below the horizontal axis and where the total
area under the graph is one. Then, the probability P (a < X < b) is the area under the graph
of f between the limits x = a and x = b. Notice that as the probability of X being exactly a or
exactly b is zero, we have

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b).
Thus, we can approximate probabilities by simply looking at the picture of the distribution
curve. Notice that where the curve is high we are more likely to find values than where the
curve is low, for a given range length. That is, if the curve is lower from 8 to 18 than from
20 to 28, then the probability of X being between 8 and 18 is less than the probability of X
being between 20 and 28, even though we are considering the same length of a range of values,
namely ten units.

In general, when we look at the distribution of the continuous unknown X, the mean µ−E(X)
is the Balance Point of the distribution, which can be shown using the laws of physics. That
is if we assume the region under the distribution curve is made of uniform metal of uniform
thickness, then where that balances is the true mean µ.

The fact that P (X = c) = 0 for every value of c may take a little getting used to at first. To
see that it must be true, notice that we can make a narrow rectangle of height h and width d
where h is so high that the region under the graph of f from x = c− (d/2) to x = c+ (d/2) is
entirely contained in the rectangle and therefore,

P (X = c) ≤ P (c− [d/2] < X < c+ [d/2]) ≤ h · d.
But if you think that P (X = c) = p > 0, then I can choose d so small that hd < p and conclude
that P (X = c) < p, which would be a contradiction. This at first appears to be a paradox,
since when we measure a continuous variable, we always get some value. The resolution to this
conundrum is that in any practical setting, observing a continuous unknown always involves a
measurement. We discussed the fact that if X is a continuous unknown, then in practice that
means a measuring device is involved in observing X and that means a level of measurement
accuracy must always be considered. As already noted, for continuous X

P (X = c) = 0,

when c is any definite real number. On the other hand, if we measure X to two decimal
place accuracy, then the statement that X is observed to have value 7.34 really means that
X is somewhere between 7.335 and 7.345, which is a range of values, and the area under the
distribution curve for X between limits x = 7.335 and x = 7.345 can very well have a positive
value.

In general, if X is an unknown, we can consider Rn(X) as the result of rounding off X
to n decimal place accuracy. For instance, we can model counting unknowns with continuous
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unknowns, by simply rounding off to the nearest whole number. That is, if X is a continuous
unknown, and if X ≥ −(.5), then when we round off X to the nearest whole number to get
R0(X), then we can think of the value as the result of a count.

The simplest continuous distribution is the UNIFORM DISTRIBUTION. Here, we have
an unknown, and the only thing we know is the minimum value Min and the maximum value
Max. Since that is all we know, there is no basis for thinking any range of values more likely
than another if the lengths of the ranges are the same. Thus, all points of the distribution curve
must have the same height, h. Since the total area under the curve is one, it follows that

h · [Max−Min] = 1,

and therefore

h =
1

Max−Min
.

This means that the distribution curve is simply a horizontal line segment extending from the
point (Min, h) to the point (Max, h) in the coordinate plane. Then, the probability of a range
is simply

P (a < X < b) =
b− a

Max−Min
.

Also, the balance point is obviously the average of the minimum and maximum values, so

µX =
Min+Max

2
, X uniform.

Because of the Central Limit Theorem, the normal distribution is one of the most impor-
tant distributions in applications. For the normal distribution you only need the mean µ and
standard deviation σ. In fact, whenever you only know the mean and standard deviation of X,
then the distribution must be normal purely from the standpoint of your information.

We reviewed the Central Limit Theorem and used the calculator to show that the binomial
distribution for n = 40 and p = .45 is very well approximated by the normal distribution with

µ = np

and standard deviation
σ =

√
np(1− p).
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28. LECTURE MONDAY 15 MARCH 2010

Today we reviewed continuous distributions and particularly the normal distribution. We
began by observing that if X is any unknown and if RnX is the unknown whose value is the
result of rounding off X to n decimal places, then RnX is a discrete unknown and in fact
Yn = (10n)RnX has only integer values. Thus, if X ≥ 0, then Yn is like a counting unknown.
We noted that we can form the lower round LnX and the upper round UnX, where for LnX
we simply replace all decimal places after the nth with zeroes, and for UnX, we raise the nth

decimal place by one and replace all decimal places after the nth with zeroes. Obviously, both

LnX ≤ X ≤ UnX,
and

LnX ≤ RnX ≤ UnX.
It follows that

|RnX −X| ≤ UnX − LnX.
We can apply the expectation to these first two inequalities and find as well that

E(LnX) ≤ E(X) ≤ E(UnX)

and

E(LnX) ≤ E(RnX) ≤ E(UnX),

so it likewise follows that

|E(RnX)− E(X)| ≤ E(UnX − LnX).

On the other hand, it is also obvious that

UnX − LnX =
1

10n
.

Therefore, we have both

|RnX −X| ≤
1

10n

and

|E(RnX)− E(X)| ≤ 1

10n
.

The significance of these inequalities is that if we are working to n decimal place accuracy with
our measurements and using the results to compute expectations, then our resulting expectation
calculations will also have n decimal place accuracy.

We observed that we can picture the result of the calculation of area under a distribution
curve as likewise approximately the result of using the distribution for the discrete unknown
RnX. The distribution of RnX is best pictured as a series of spikes, and the corresponding area
under the distribution curve for X is formed by a large number of approximating rectangles.
We can see this more clearly. Suppose fX is the probability density function for X, and x is an
n decimal place number. We can consider the interval whose left edge is

x− = x− 1

2(10n)

and whose right edge is
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x+ = x+
1

2(10n)
.

The area A(x) under fX between these two limits is

A(x) = P (x− ≤ X ≤ x+).

But, then also

P (RnX = x) = A(x),

by definition of RnX. In the distribution picture for RnX, we think of the spike on x as
representing the probability that RnX has value x, so it has height px = A(x). Now notice

∆x = x+ − x− =
1

10n
,

it follows that

A(x) = (10n) · px ·
1

10n
= (10n) · px ·∆x.

This is the area of a rectangle whose base has length 1/(10n) and whose height is (10n)px. On
the other hand, as A(x) is the area under the graph of fX between limits x = x− and x = x+,
and since this region under the curve is very thin (for large n), it follows that to very good
approximation

A(x) =approx= fX(x) · 1

10n
= fX(x) ·∆x.

Therefore we approximately have

fX(x) ·∆x = A(x) = (10n) · px ·∆x,
and therefore it must be that

fX(x) =approx= (10n) · px,
or equivalently,

px =approx=
fX(x)

10n
= fX(x) · 1

10n
= fX(x) ·∆x,

gives very approximately the formula for the spike heights for the distribution of RnX. Alter-
nately, we can say for large n,

px = P (RnX = x) =approx= fX(x) ·∆x.
This means that if a < b are two n decimal place numbers, then

P (a ≤ RnX ≤ b) =
∑
a≤x≤b

px =approx=
∑
a≤x≤b

fX(x) ·∆x.

For instance, since the expected value of RnX is the sum of values multiplied by their proba-
bilities,

E(RnX) =
∑

x · px =approx=
∑

x · fX(x) ·∆x.
If g is any real valued function on the real line which is reasonable enough that it can be graphed
with paper and pencil, then g(X) is the unknown whose value is g(x) if X has value x. Then

E(g(RnX)) =
∑

g(x) · px =approx=
∑

g(x) · fX(x) ·∆x.
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In the limit as n→∞, the term on the right ”converges” to what is called the Riemann integral
of g · fX which is denoted∫

g(x)fX(x)dx = lim
n→∞

∑
g(x)fX(x) ·∆x,

whereas the term on the left converges to

E(g(X)) = lim
n→∞

E(g(RnX)).

We can therefore say that

E(g(X)) =

∫
g(x)fX(x)dx.

For instance, if B is a set of real numbers and if IB , denotes the indicator of the statement that
X is in B, assuming B is reasonably well behaved as a subset of the real line, then with g = IB ,
the integral as well as the sums only use terms for which x is in B and as well, for those values
of x we have IB(x) = 1. For instance, if B is the set of all numbers between a and b, then∫

IB(x)fX(x)dx = lim
n→∞

∑
a≤x≤b

fX(x)∆x = P (X in B).

It is customary to denote ∫
B

g(x)dx =

∫
IB(x) · g(x)dx,

for any function g, so we have

P (X in B) =

∫
B

fX(x)dx.

This is the precise mathematical statement that probability is given by area under the density
curve.
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29. LECTURE WEDNESDAY 17 MARCH 2010

Today we discussed the normal distribution and how to calculate a CONFIDENCE IN-
TERVAL and its MARGIN OF ERROR. We denote the margin of error in a confidence
interval as ME. Thus the purpose of a confidence interval is to give an estimate for the true
mean µX , for the unknown X based on sample data. If x̄ is the mean of our sample, then
obviously x̄ is the best guess for µX , based only on that sample data, however, there may be
error, and when we are required to have a certain confidence C in our statement including the
margin of error, then we will generally state that

µX = x̄±ME with confidence C

to mean that

P (x̄−ME ≤ µX ≤ x̄+ME) = C.

Here, we call C the LEVEL OF CONFIDENCE. We noted that when X̄n is normally
distributed we can always express

ME = zC ·
σX√
n
.

Let Z denote the standard normal random variable, so

µZ = 0

and
σZ = 1.

The number zC is chosen so that

P (−zC ≤ Z ≤ zC) = C.

Notice that −zC ≤ Z ≤ zC is the ”middle region” which leaves out two tails of total area 1−C
so by symmetry, each tail has area (1−C)/2. Therefore, the area to the left of zC is AC where

AC = C +
1− C

2
=

2C + 1− C
2

=
1 + C

2
,

which of course is simply the average of C and one. But, using the inverse normal in the
calculator, we have

zC = invNorm((1 + C)/2, 0, 1).

We worked examples of calculating confidence intervals and their margins of error using the
calculator. We also noted that usually we are given the sample data and the level of confidence,
and then we compute the margin of error, but we also need the standard deviation of X to use
this method. In the calculator go to the test menu and go down to the ”zInterval” and follow
the dialogue. If you do not have σX , then you must use s, the sample standard deviation in its
place, so you cannot use the ”zInterval” but instead must use the ”tInterval”.

We also noted that if you know σX , and if you are given C and an allowed margin of error
ME, then solving the margin of error formula for n we find

n = (
zC · σX
ME

)2,

where we always must round up to get our whole number value for the sample size. Thus,
this formula tells us how big the sample will have to be in order to achieve a desired level of
accuracy with our desired level of confidence.
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30. LECTURE FRIDAY 19 MARCH 2010

Today we had a review of confidence intervals and the normal distribution.

31. LECTURE MONDAY 22 MARCH 2010

Today we discussed the t−distribution and its use for calculating margins of error for confi-
dence intervals for means of normal populations using independent random sampling (IRS) in
the case where the population standard deviation is unknown.

The t− distribution is really a whole family of distributions parametrized by positive whole
numbers called the number of DEGREES OF FREEDOM, which we will denote by df.
When you have a single sample of size n, the number of degrees of freedom is simply

df = n− 1.

The t− distribution has the shape roughly of a standard normal bell curve but is not quite
as tightly centered about zero. As the df increases the distribution is more and more tightly
centered about zero until in the limit as df → ∞ the t−distribution becomes the standard
normal or z−distribution. Because of this we can think of the standard normal as being the
t−distribution for an infinite number of degrees of freedom.

The use of the t−distribution comes from the fact that when using observed values of X̄ to
estimate µX , if we know σX , then the margin of error for confidence level C is

ME = zC ·
σX√
n
,

so if σX is not known to us, then we need to use the sample data to estimate σX . Of course,
the sample standard deviation is designed precisely to do that. In fact, as an unknown, if
X1, X2, X3, ..., Xn are the sample observations to be made (so we do not know yet what they
will turn out to be), then

X̄n =
1

n
· Tn,

where Tn is the sample total

Tn = X1 +X2 +X3 + ...+Xn,

so we have

Tn = n · X̄n.

The sample deviations from the sample mean are the n numbers

X1 − X̄n, X2 − X̄n, ..., Xn − X̄n,

and notice that if we add them all up we have

Tn − n · X̄n = 0.
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This means we have n deviations but they are always related by an equation and this means
that the freedom of the deviations to vary themselves is cut from n dimensions down to n− 1
dimensions. This is also the reason for the fact that when calculating s2, the sample standard
deviation, we divide the sum of squared deviations by n − 1 instead of n. More specifically, it
is because of this that we can show using our rules of expectation and variance that

E[(X1 − X̄)2 + (X2 − X̄)2 + ...+ (Xn − X̄)2] = (n− 1) · σ2
X .

From this it follows that the sample variance is expected to turn out to be the true population
variance, but of course, as usual, you rarely get what you expect. We can define the new
unknown

S2
n =

(X1 − X̄)2 + (X2 − X̄)2 + ...+ (Xn − X̄)2

n− 1
so that the value of S2 is the observed sample variance, so S2

n is the sample variance unknown
and Sn is the sample standard deviation unknown. Then

E(S2
n) = σ2

X .

Recall that when we calculate the margin of error in a confidence interval when σX is known
we have the formula for the margin of error, denoted ME, which is simply

ME = zC ·
σX√
n
.

Here, zC is the point on the standard normal Z for which

P (|Z| ≤ zC) = C.

Keep in mind that

|Z| ≤ zC
is equivalent to

−zC ≤ Z ≤ zC .
To have error no more than x > 0 with probability C is to say that

P (|X − µX | ≤ x) = C

but the inequality

|X − µX | ≤ x
is equivalent to

|X − µX |
σX/
√
n
≤ x

σX/
√
n
.

But,

|X − µX |
σX/
√
n

= ZX̄n

is the standardization of X̄n, so that means the last inequality is the same as saying

|Z| ≤ x

σX/
√
n
.

When we compare this with

|Z| ≤ zC ,
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we see they have the same probability which is C precisely with

zC =
x

σX/
√
n
,

and therefore

ME = x = zC ·
σX√
n
.

Thus our margin of error formula is really coming from the standardization formula

Z = ZX̄n =
X̄n − µX√

n
.

If we replace σX by an observed value of Sn in our calculations, then we are using a new
unknown we call t instead of Z given by

t =
X̄n − µX
Sn/
√
n
.

It can be shown using the rules of expectation, that if X is normal, then assuming IRS, the
unknown t has the t−distribution for n − 1 degrees of freedom here. Therefore, we replace
zC by tC calculated with the t−distribution instead of the Z−distribution or standard normal
distribution.

We worked examples with the calculator and saw how to compute the margin of error using
the tInterval in the calculator’s TEST MENU.
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32. LECTURE WEDNESDAY 24 MARCH 2010

We reviewed confidence intervals for means and proportions.
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33. LECTURE FRIDAY 26 MARCH 2010

Answered questions about confidence intervals.
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34. LECTURE MONDAY 29 MARCH 2010

NO CLASS-SPRING BREAK

35. LECTURE WEDNESDAY 31 MARCH 2010

NO CLASS-SPRING BREAK

36. LECTURE FRIDAY 2 APRIL 2010

NO CLASS-SPRING BREAK

37. LECTURE MONDAY 5 APRIL 2010

NO CLASS-SPRING BREAK

38. LECTURE WEDNESDAY 7 APRIL 2010
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39. LECTURE FRIDAY 9 APRIL 2010
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40. LECTURE MONDAY 12 APRIL 2010
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41. LECTURE WEDNESDAY 14 APRIL 2010
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42. LECTURE FRIDAY 16 APRIL 2010
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43. LECTURE MONDAY 19 APRIL 2010
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44. LECTURE WEDNESDAY 21 APRIL 2010
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45. LECTURE FRIDAY 23 APRIL 2010
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46. LECTURE MONDAY 26 APRIL 2010
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47. LECTURE WEDNESDAY 28 APRIL 2010
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48. LECTURE FRIDAY 30 APRIL 2010
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49. LECTURE MONDAY 24 AUGUST 2009

We discussed the general rules for guessing unknown quantities so as to maintain logical
consistency. We use capital letters to denote unknown quantities and statements of unknown
truth value. In a given situation, we generally have some background information to start with,
which we denote by K. If X is an unknown quantity, then E(X|K) is the notation we use to
designate our guess for the numerical value of X given that we assume the statement K is
true. In a situation where K is well understood, we may drop it from the notation and write
simply E(X) for short to designate E(X|K), but we should keep in mind that there is always
a background information statement we are using to make our guess. Another notation which
we will some times use is the Greek letter µ which we tag with subscript X if necessary. Thus
for notation,

(49.1) E(X|K) = E(X) = µX = µ,

all indicate the same thing, namely our guess, with various symbols included in the notation
when necessary to avoid confusion. This will become clearer as you begin to use the notation
in problems.

We assume that our unknowns such as X are described in a way which makes it clear that
there is a value for the unknown, but we may have incomplete information about what that
value is. For instance, as a beginning example, suppose that we have a box sitting on the table
and inside, where we cannot see, is a single standard dice as used in the game of craps at the
casino. We could use X to denote the number (of spots) on the top face of the dice in the box.
Our background information K states that there is a definite face on top and it is in the box
where we cannot see inside. We know that there are six possibilities for the number on top, but
how should we choose a number for our guess. When we only consider a single such problem,
there does not seem any clear way to proceed. It is when we begin to consider several problems
and their relationships that we begin to realize that there should be some logical constraints
on how to guess in order to maintain logical consistency. We will use capital letters to denote
unknowns and statements, and lower case letters to denote numbers which we actually know.
For instance, the most obvious rule should be that if our information happens to tell us the
value of X, then that is the value we should guess. For instance if K says the dice is in the box
and the face with two spots is on top, then E(X|K) = 2 is the only thing that makes sense. In
this case, we observe that K implies the statement X = 2 and so if we base our guess on K,
then it only makes sense to guess E(X|K) = 2, that is to say, it only makes sense to guess that
2 is the value of X given we assume K to be true. More generally, if c is any definite number
and if K implies that X = c, so K tells us the value of X is c, then we should guess that X = c
if we are basing our guess on K. This gives our first rule.

NORMALIZATION RULE: If K implies that X = c, then

(49.2) E(X|K) = c.

More generally, instead of telling us the exact value of X our information K might only tell
us an inequality restricting possibilities for the value of X. For instance, in the dice example,
our background information telling us that the dice in the box is a standard dice as used in
the casino actually implies that 1 ≤ X ≤ 6. Thus, it certainly would not make sense to guess
8 is the value of X in this example. In fact we should also have 1 ≤ E(X|K) ≤ 6 in the dice
example. More generally, when dealing with any unknown, if a and b are definite numbers and
our statement K implies that a ≤ X ≤ b, then we should definitely restrict our guess to be a
number between a and b. To be precise, we will always assume the next rule is enforced.

POSITIVITY RULE: If K implies that a ≤ X ≤ b, then

(49.3) a ≤ E(X|K) ≤ b.
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In general, an unknown numerical quantity has only a numerical value as we will restrict
the units to be part of the description. For instance, suppose that K is the information that
outside there is a fish in an ice chest and X is the weight of the fish in pounds, then the value of
X is simply a number. This means that we can add unknowns. For instance if Y is the height
in feet of a specific tree outside which we can see off in the distance, then X + Y is defined to
be the result of adding the weight of the fish in pounds to the height of the tree in feet. You
may protest that it makes no sense to add those two numbers together, but there are many
cases where it does make sense, and it is simplest not to have to worry about the units as they
are built into the unknowns. If you have guessed the weight of the fish to be 30 pounds and
the height of the tree to be 60 feet, then it only makes sense to guess that the sum of the two
numbers is 90. Now suppose that we have two boxes on the table in front of us and in each
box is a bank book for a savings account, but we cannot see the balance on either bank book.
Suppose that we know the owner of each bank book and have some information about what
the balance of each might be. Suppose that X is the value of the bank book on the left and Y
is the value of the bank book on the right, both in US dollars. If K is the statement of what
I know about the owners of the bank books and the information describing the physical setup
here, and if I have already guessed that the bank book in the box on the left is in dollars worth
3000 and if I have already decided to guess the one on the right in dollars is worth 4000, then
it only makes sense that I should guess 7000 for the value of X + Y. That is, in any situation
where unknowns are added to form new unknowns, if I can guess each summand, then I just
add my guesses up to get my guess for the value of the sum of the unknowns. This is our next
rule which we will assume to be always true.

ADDITIVITY: If X and Y are any unknowns, then X + Y denotes the unknown whose
value is the sum of the individual numerical values, and with any background information K
we have

(49.4) E(X + Y |K) = E(X|K) + E(Y |K).

Suppose that the box on the table contains a gold nugget which we cannot see. It might be
very small or it might fill up the whole box. Let X be the weight in ounces of the nugget. Let
Y be the value of the nugget in dollars. Suppose that our background information tells us that
gold is worth 800 dollars an ounce. If we have guessed that the weight of the nugget is 3 ounces,
that means we have determined E(X|K) = 3, then we should guess the value of the nugget in
dollars to be 2400. Here K implies we have Y = 800X is true, and thus E(Y |K) = 2400, or
E(800X|K) = 800E(X|K). This gives us our final rule for the day.

HOMOGENEITY: If K implies that Y = cX, then

(49.5) E(Y |K) = E(cX|K) = cE(X|K).

To summarize, we have our four basic rules for guessing in order to maintain logical consis-
tency:

If K implies X = c, then E(X|K) = c.
If K implies that a ≤ X ≤ b, then a ≤ E(X|K) ≤ b.
E(X + Y |K) = E(X|K) + E(Y |K).
If K implies that Y = cX, then E(Y |K) = E(cX|K) = cE(X|K).
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50. LECTURE WEDNESDAY 26 AUGUST 2009

We began by reviewing the four basic rules of guessing.

NORMALIZATION RULE: If K implies that X = c, then

(50.1) E(X|K) = c.

POSITIVITY RULE: If K implies that a ≤ X ≤ b, then [50.1]

(50.2) a ≤ E(X|K) ≤ b.

ADDITIVITY: If X and Y are any unknowns, then X + Y denotes the unknown whose
value is the sum of the individual numerical values, and with any background information K
we have [49.4]

(50.3) E(X + Y |K) = E(X|K) + E(Y |K).

HOMOGENEITY: If K implies that Y = cX, then [49.5]

(50.4) E(Y |K) = E(cX|K) = cE(X|K).

We can use the guessing procedure on statements to evaluate how likely a statement is to be
true. The only type statements we consider are statements which are either true or false. We
do not deal with statements such as ”Mozart’s music is better than Bach’s”, in other words,
the statements we deal with are factual statements which are clearly either true or false. The
truth value of a factual statement we deal with may not be known to us from our background
information statement K. But, based on K we want to guess how likely a new statement is
to be true. The result is called probability. Suppose that K is our background information
statement and that N is a new statement. Suppose that K tells us something about N but
does not tell us the truth value of N. We use N to define a very special unknown called the
Indicator of N denoted by IN , with the provision that IN can only have value 0 or 1 according
to whether N is false or true. That is if we know N is true, then we know that IN = 1. If we
know that N is false, then we know that IN = 0. That is, knowing the value of IN is the same
as knowing whether N is true or false, the truth value of N. Now our rules for guessing do not
tell us how to proceed here if we do not know whether N is true or false. But, since IN is an
unknown, we will go ahead and define what we will call the Probability of N given K, denoted
P (N |K), by the following formula.

DEFINITION OF PROBABILITY

(50.5) P (N |K) = E(IN |K).

Just as with the E(X|K) notation, we drop the |K from the notation if no confusion results.
That is, if we are calculating several probabilities all with the same given information K, then
we would simply write P (N) for P (N |K). In other words, when we understand we are basing
our calculations on K, we often find it simpler to write P (N) and just keep in mind that actually
P (N) = P (N |K). We can be sure that 0 ≤ IN ≤ 1, since IN can only be either 0 or 1, and
therefore by the Positivity Rule, [50.1], we know that

(50.6) 0 ≤ E(IN |K) ≤ 1,

and therefore,

(50.7) 0 ≤ P (N |K) ≤ 1.



70 MATH-111 (DUPRÉ) SPRING 2010 LECTURES

If K implies that N is true, then this is the same as saying K implies that IN = 1, and
therefore by the Normalization Rule, [50.1], we must have P (N |K) = E(IN |K) = 1. If K
implies that N is false, then this is the same as saying K implies IN = 0, and again using
the Normalization Rule, in this case we find P (N |K) = E(IN |K) = 0. Thus, if K tells us N
is true, then P (N |K) = 1, whereas if K tells us N is false, then P (N |K) = 0. By [50.7], we
might say that if K does not tell us whether N is true or false, then P (N |K) should be a
number somewhere strictly between 0 and 1, and we can begin by thinking that the closer the
probability is to 1, the more likely N is to be true as judged with the background information
K.

Using logic we can combine statements using the logical connectives ”&, or, not”. Thus,
notN is the negation of statement N, so notN is true exactly if N is false. It is easy to see here
that in terms of indicators we can write

(50.8) InotN = 1− IN .

It then follows immediately from the Additivity and Homogeneity Rules that

(50.9) P (notN |K) = 1− P (N |K).

Thus, when the weatherman says there is 30% chance of rain, that is the same as saying there
is a 70% chance it will not rain.

In case we have two statements, say statement A and statement B, then we can form the
statement A&B which to be true requires that both of these individual statements be true. We
then easily check that

(50.10) IA&B = IAIB ,

so to get the indicator of A&B we simply multiply their individual indicator unknowns together.
Since ”&” goes with multiplication, we might guess that ”or” goes with addition, so we

might be tempted to guess that IAorB is the same as IA + IB . Here we have to keep in mind
that in logic, ”or” does not mean the exclusive ”or” of everyday talk. For AorB to be a true
statement, it only need be the case that at least one of these statements is true, but that allows
the possibility that they are both true. If both are true, then the value of IA + IB would be
2 and that is not allowed for an indicator. We need to subtract 1 exactly in the case they are
both true and subtract zero otherwise, that is we need to subtract IA&B . The result you can
easily check is that

(50.11) IAorB = IA + IB − IA&B .

It now follows immediately from our Addition and Homogeneity Rules that

(50.12) P (AorB|K) = P (A|K) + P (B|K)− P (A&B).

We use S to denote a statement which is true for sure such as ”1=1,” and we use Φ to denote
a statement which is false for sure such as 1 6= 1. Notice that IS = 1 and IΦ = 0. We then must
have P (S|K) = P (Sure|K) = 1 and P (Φ|K) = 0.

The fundamental rules of probability are simply [50.7], [50.12], and P (Sure|K) = 1.
In many situations we have some finite number of statements of which exactly one is true and

all the others are false, but K does not tell us which of these statements is the one that is true.
In this case their indicators must add up to 1 and hence their probabilities must add up to 1.
For instance, if we have statements A,B,C and exactly one is true and the other two are false,
then IA + IB + IC = 1, so when the Additive Rule and the definition of probability is applied,
we find that P (A|K) +P (B|K) +P (C|K) = 1. In any situation where our information K does
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not tell us any of these three statements is more likely true than another, we must accept all
three probabilities are the same, and as they add up to 1 we see each of these statements has
probability 1/3. The same would apply if there were 6 different statements and K does not
allow us to conclude any one more likely than another, then each of the 6 statements must have
probability 1/6 given K. For instance, for the case of the dice in the box where we cannot see it,
if that is the extent of our information, then we conclude that all faces are equally likely to be
the one on top so each has probability 1/6 of being the one on top. We call this the Principle
of Indifference. In general, if there are n statements and K tells us exactly one is true but gives
no information allowing us to judge any being more likely than the others, we conclude they
all have the same probability, 1/n. We generally refer to this as the Model of Equally Likely
Outcomes. In gambling situations, we generally say a game is FAIR when the model of equally
likely outcomes is in effect. Thus we speak of a fair pair of dice or a fair roulette wheel or a fair
lottery. For instance, if a box contains 3 red blocks and 2 blue blocks, and one block is removed
and we do not see which one has been removed, then with K the statement of these facts, if
R is the statement that the removed block is red, then P (R|K) = 3/5, since each block has
probability 1/5 of being the block that was removed, and three of these are red. Try making
up symbols for the statements that each of the 5 blocks is the one removed on the first draw,
and then assuming each has probability 1/5 demonstrate that P (R|K) = 3/5.

Returning to the equation 1 = IA + IB + IC when K tells us exactly one of the statements
A,B,C is true, if we multiply through each side by X, we arrive at the equation

X = XIA +XIB +XIC ,

and our Addition Rule then says

E(X|K) = E(XIA|K) + E(XIB |K) + E(XIC |K).

This means that if we can figure out how to deal with the computation of E(XIN |K) when
N is some new information, then it can be applied to each term of the preceding equation
to calculate the value E(X|K). The problem of how to compute E(XIN |K) leads to a new
rule called the Multiplication Rule which is our final fundamental rule. As this rule is more
complicated than the four basic rules, we will deal with this in the next lecture. But in a sense
it is the most important rule because it allows us to determine E(X|K) in many situations.
That is finally, our guess will be completely determined by our rules, so in a sense, it is not
really just guessing.
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51. LECTURE FRIDAY 28 AUGUST 2009

We have previously discussed four basic rules for guessing and defined the notation E(X|K)
for our guess of the value of the unknown X based on the information in the statement K.
The technical term mathematicians and statisticians use here is Expectation. Thus we refer
to E(X|K) as the Expected Value of X given K. We saw that the four basic properties of
E(X|K) are dictated by the requirement that guessing should be at least logically consistent
and consistent with addition of numbers. We also previously used these rules to determine the
rules of probability. But there is a final fundamental rule which we call the Multiplication Rule
which is more difficult than the four basic rules, and which is necessary for the determination of
expectation. The multiplication rule will in fact allow us to determine all expected values from
probabilities and those in turn can often be determined by the model of equally likely outcomes.
To get an idea of what is needed, recall that when we worked out the rules of probability from
the rules of expectation, we also pointed out that in many problems we are presented with the
situation of having some finite number of statements and K tells us exactly one of them is true
but does not tell us which one is true. In this case, recall, we know that their indicators must
add up to 1 and hence their probabilities do also. For instance, if there are three statements
A,B,C of which according to K exactly one is true but K does not say which of the three is
the one that is true, then we know

(51.1) 1 = IA + IB + IC ,

and thus we have 1 = P (A|K) + P (B|K) + P (C|K). But we can multiply both sides of [51.1]
by X and now arrive at the equation

(51.2) X = XIA +XIB +XIC .

We then find by the Addition Rule that

(51.3) E(X|K) = E(XIA|K) + E(XIB |K) + E(XIC |K).

Notice that we could apply this same method even if there were thousands of these statements
instead of only three. We can use computers to do the addition. But we still need to know
each term in the sum. This is the general problem. If N is some new statement, how do we
determine E(XIN |K)??? Well, remember that IN is 0 if N is false and 1 if N is true, and this
means that if N is false then XIN has the value 0 but if N is true then XIN simply has the
value of X itself. To determine E(XIN |K), we there for have to modify our guess for X based
on K to include two things: (1) the way to modify our guess due to the fact that the possible
values of X may be different if N is assumed to be true and (2) the way to modify our guess
due to the fact that K may not tell us the actual truth value of N, that is whether N is true or
false. We can see that if N is true, then we should begin by figuring out E(X|N&K) in order
to deal with (1). As far as (2) is concerned, the best that K can do is to tell us P (N |K). We
therefore have two numbers to begin with here, first the expected value of X given that both
N and K are actually true and second the probability of N given that K is true. The first is
an expected value and the second is a probability. We are looking for a way to combine these
two numbers to arrive at E(XIN |K), and which will always remain consistent with the four
basic rules. We will begin by assuming that there is some general rule here which is consistent
with the four basic rules. Suppose we imagine that there is such a general rule which is known
to an oracle, say the Oracle at Delphi, the voice of the God Apollo. The oracle knows the rule
and today is the day it is dealing with questioners who have questions about application of this
rule to their problems of guessing unknowns. In order to save time, since his calculation only
depends on the expected value and the probability, the oracle asks that each questioner not
bother him with the details of his specific unknown, but rather simply tell the oracle the two
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numbers, first the expected value and second the probability for his problem and present his
required offering of gold and then the oracle will announce the value of the result which is the
expected value of the unknown multiplied by the indicator of the new information statement.
Imagine you are in a long line before the oracle and you hear the person behind you talking to
the person behind him and you realize that you both have the same expected value to report
to the oracle, namely 8. This sparks your interest to listen further and you realize his unknown
is entirely different from yours but miraculously, his probability is the same number as yours,
namely .3, even though the new statement he is dealing with and his background statement
are both entirely different from yours. Notice that if we were dealing with the problem of
finding the expected value of a sum of unknowns, the process could work the same way and
you, knowing the Addition Rule could easily play the role of the oracle. But, we can outsmart
the oracle and save our gold. First, we realize that since we will both be reporting the same
pair of numbers to the oracle, the oracle will have to give the same answer in both cases. That
would allow us to split the cost and save half of our gold. But we can do even better. Suppose
that we think of the case where our background information K tells us that the value of X is
exactly 8. The oracle must give the same answer in this case as well. But in this case we have

E(XIN |K) = E(8IN |K) = 8E(IN |K) = 8P (N |K) = 8 ∗ .3 = 2.4

which means the final answer the oracle must give is simply 2.4, the product of our two numbers.
In fact, we see that the only way the oracle can operate and remain consistent with our four
basic rules is to simple multiply each pair of numbers it is presented with. This finally gives us
our Multiplication Rule, and obviously we see why it is so named.

MULTIPLICATION RULE:

(51.4) E(XIN |K) = E(X|N&K)P (N |K).

Mathematically, the multiplication rule is really the most fundamental rule, as it has so many
applications and can be used to give the addition rule for probability, even though we will not
demonstrate this here.

Returning to the situation where we have the three statements of which exactly one is true,
from [51.3] and the Multiplication Rule we have

E(X|K) = E(XIA|K) + E(XIB |K) + E(XIC |K),

so
E(X|K) = E(X|A&K)P (A|K) + E(X|B&K)P (B|K) + E(X|C&K)P (C|K).

This result gives us the general rule due to Bayes in the case of probability which allows us to
reduce the problem of guessing to the problem of calculating probabilities.

GENERAL BAYES RULE FOR EXPECTATION:
Any time we have a finite sequence of statements A,B,C, ... and our background information

tells us exactly one is true (so all others are false), then

(51.5) E(X|K) = E(X|A&K)P (A|K) + E(X|B&K)P (B|K) + E(X|C&K)P (C|K) + ...

can be used to determine the guess for the value of X once we have determined all the proba-
bilities of the statements A,B,C... and the guesses we would make in each case.

For instance, for the dice in the box, we can take statement A1 to be the statement that 1
is on the top face, and likewise define A2, A3, A4, A5, A6. If K says we cannot see in the box,
then each of these statements has probability 1/6 given K but obviously E(X|A1&K) = 1
and E(X|A2&K) = 2 and so on, so our previous results on probability tell us here that each
of these statements has probability 1/6, whereas the General Bayes Rule for Expectation tells
us that E(X) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. Notice that the multiplication rule together
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with the four basic rules has now determined what we should guess. In some sense, we have
removed the guesswork in guessing or in another sense, we have turned guesswork into an actual
process which leads to a definite result. Any two people following these basic logical rules must
arrive at the same result or else one of them has violated a rule of logical consistency or the
multiplication rule. We are often presented with a type of problem where we have a table giving
a list of all possible values of an unknown together with their probabilities. Then we know the
probabilities must add up to one, so if one of the entries in the probability list is missing we can
easily figure it out. To find the guess for the unknown, we simply multiply each value by its
probability and add up all the products, as that is what [51.5] is saying to do. In the TI-83/4
calculator, simply put the values in a list and the corresponding probabilities in another list so
that each value is on the same list level as it’s probability and then do the 1-var stat Lv, Lp,
where v is the list number of the value list and p is the list number of the probability list.

The multiplication rule can immediately be applied to give the rule for conditional probability
for calculating P (A&B|K). We just use the fact that by [50.10] we know IA&B = IAIB , so using
X = IA and N = B in the Multiplication Rule [51.4] we get

P (A&B|K) = E(IA&B |K) = E(IAIB |K) = E(IA|B&K)P (B|K) = P (A|B&K)P (B|K),

so finally we have the simple result.

CONDITIONAL PROBABILITY RULE:

(51.6) P (A&B|K) = P (A|B&K)P (B|K).

LAST SPRING THIS LECTURE ALSO INCLUDED THE FOLLOWING APPLICATIONS
WHICH WE WILL GET TO IN THE NEAR FUTURE.

The conditional probability rule has many applications, and we begin by reconsidering the
blocks in the box problem, where blocks are being drawn successively from a box one after
another without replacement. Suppose there are 3 red and 2 blue blocks in the box for a total
of 5 blocks and this is our background information together with the statement that we cannot
see what is in the box or tell by feel what color a block is. We must reach into the box and
grab a block and pull it out without seeing which block we have until we have already chosen
it. What is the chance that of the first two blocks drawn both are red? We will use R to denote
that the block is red. So we are asking, what is P (bothR)? We can notice that ”both R” is
the same statement as ”1stR&2ndR” and then apply the Conditional Probability Rule to find
easily

P (bothR) = P (2ndR|1stR)P (1stR) = (2/4)(3/5) = .3

Recall that in many situations we have some finite number of statements of which exactly
one is true and all the others are false, but K does not tell us which of these statements is the
one that is true. In this case their indicators must add up to 1 and hence their probabilities
must add up to 1. For instance, if we have statements A,B,C and exactly one is true and
the other two are false, then IA + IB + IC = 1, so when the Additive Rule and the definition
of probability is applied, we find that P (A|K) + P (B|K) + P (C|K) = 1. In any situation
where our information K does not tell us any of these three statements is more likely true than
another, we must accept all three probabilities are the same, and as they add up to 1 we see
each of these statements has probability 1/3. The same would apply if there were 6 different
statements and K does not allow us to conclude any one more likely than another, then each
of the 6 statements must have probability 1/6 given K. For instance, for the case of the dice in
the box where we cannot see it, if that is the extent of our information, then we conclude that
all faces are equally likely to be the one on top so each has probability 1/6 of being the one
on top. We call this the Principle of Indifference. In general, if there are n statements and K
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tells us exactly one is true but gives no information allowing us to judge any being more likely
than the others, we conclude they all have the same probability, 1/n. We generally refer to this
as the Model of Equally Likely Outcomes. In gambling situations, we generally say a game is
FAIR when the model of equally likely outcomes is in effect. Thus we speak of a fair pair of
dice or a fair roulette wheel or a fair lottery. For instance, if a box contains 3 red blocks and
2 blue blocks, and one block is removed and we do not see which one has been removed, then
with K the statement of these facts, if R is the statement that the removed block is red, then
P (R|K) = 3/5, since each block has probability 1/5 of being the block that was removed, and
three of these are red. Try making up symbols for the statements that each of the 5 blocks is
the one removed on the first draw, and then assuming each has probability 1/5 demonstrate
that P (R|K) = 3/5. If a second block is removed and we are told that the first block removed
was red, then P (2ndR|1stR&K) = 2/4. Try to figure out the meaning of P (1stR|2ndR&K).
Does this make sense?

The General Bayes Rule for Expectation can be used to formulate a useful rule for probability
by taking X in [51.5] to be the indicator of a statement. Can you figure out what this formula
should be?
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52. LECTURE MONDAY 31 AUGUST 2009

The teaching assistant Ms Xu discussed calculations with data and the use of the calculator.

53. LECTURE WEDNESDAY 2 SEPTEMBER 2009

Today we discussed the use of the TI-83/4(+) calculator to calculate one variable statistics
on sample and population data. To do the calculations, the data must first be entered into lists
in the calculator. To do that, one must first turn ON the calculator (lower left hand corner
button, its second function is OFF). The data lists are accessed by pressing the stat button
which across the top shows the menu of menus EDIT CALC TEST. At the bottom of the EDIT
screen menu will appear ”SetUpEditor”. Putting the cursor on ”SetUpEditor” and pressing
ENTER will put the lists into the standard factory format. With the cursor on ”Edit” at the
top of the EDIT screen menu, when ENTER is pressed the lists will appear in a grid. At the
top on the left is the first list L1, in the top middle is L2 and on the top right is L3. Scrolling
to the right will make more lists appear. The standard factory setting gives 6 lists, but more
lists can be created and named if necessary. To clear a list, put the cursor on the list name
at the top and then press the CLEAR button. This at first sight appears to do nothing, but
if the cursor is moved into the box below the list name, all the data in that list immediately
disappears and new data can be entered. To enter data into a list, move the cursor into the box
below the list name, type the numerical value of a data score and press enter. Repeating this
one can enter more possibly different numbers in a list than we will ever need in this course.
If a score has been left out, put the cursor on the score in its place and press ”2nd” followed
by ”DEL”, because the second function of the delete button is the insert operation. This will
push all those scores down and create a zero in the location where you wish to enter the score
that was left out. You then simply type the left out score and hit the ENTER key. To delete
a score, simply put the cursor on that score and press the DELETE button, ”DEL”. If our
data is just a list of numbers, we simply enter it into a list and then to calculate the statistics
for that data, we press the STAT button again and put the cursor on CALC at the top. This
immediately gives us the entire menu of statistical calculations the calculator can perform on
data. At the top of the list is ”1:1-Var Stats” and it is the default if you simply press ENTER.
To call another calculation instead, either move the cursor to that line in the menu or type the
symbol (number or letter as the case may be) for that line (it appears followed by a colon).
The list of symbols for the lines of any menu is 1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,... For instance
in the CALC menu the fourth line is ”4:LinReg(ax+b)”, and to call up LinReg(ax+b) we can
either move the cursor onto that line and hit ENTER, or simply type ”4” followed by ENTER.
When 1-Var Stats is called, one sees a blinking cursor. In TI calculators, the blinking cursor
represents the calculator asking you for information. In this case, the calculator needs to know
which list contains the data you want to have the calculator use for the statistical calculations.
The default is list 1 or ”L1”. Hitting ENTER will cause the calculator to calculate the statistics
on the data in ”L1”. If you want the calculations done on the data in list 2, you respond to
the blinking cursor by typing ”L2” which is accomplished by pressing ”2nd” followed by ”2”.
When you press ENTER, the statistical calculations will then be done on the data in list 2.

When you look at the readout of the statistical calculations, you see beneath the ”1-Var
Stats” the actual values calculated for the statistics: x̄ = mean of all scores, Σx = sum of all
scores, Σx2 = the sum of squares of all the scores (each score is squared and all those resulting
numbers are added up), Sx =the sample standard deviation, σx = the population standard
deviation, n = the data size (the number of scores in the list), and here you see preceding the
symbol n is a downward pointing arrow. In any readout, the downward pointing arrow signals
you that by scrolling down, you will be able to see more results than can be displayed on a
single screen. Scrolling down then shows: minX = the minimum score, Q1 = the first quartile
score (the score which separates the bottom 25 percent from the top 75 percent), Med= the
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median of the data (the score which separates the bottom 50 percent from the top 50 percent),
Q3 = the third quartile score (the score which separates the bottom 75 percent from the top 25
percent, and finally, at the very bottom of the readout appears maxX = the maximum score.

The mean, sum, data size, n, and the two standard deviations, Sx and σx are our first
concern. If the data represents all the blood pressure scores in an entire population, then if
John Doe is in the population, and X is John Doe’s blood pressure, our best guess for that
is µX = E(X|K) = x̄. That is, the population mean is our best guess, and if our data is
for the whole population, then the calculator symbol x̄ is actually representing the population
mean µX = E(X|K). Also, as Sx is the sample standard deviation and our data is for a whole
population, then we should ignore it and use the population standard deviation, σX = σx.
(notice the calculator calls the variable or unknown x instead of X in this case. If we want to
guess what our error will be when we use µX as our guess for John Doe’s blood pressure, then
σX is our best bet. We will see that in general, if X is any unknown, when using E(X|K) as
our guess for the value of X our best bet is that the error will be σX where

σ2
X = E((X − µX)2|K)

(more about this formula later). If we guess anything else, it will also appear that our error
will be more.

Notice that our error will depend on how much variation there is in the blood pressure scores
throughout the population. If everyone in the population has blood pressure 120, then the
mean is 120, and when we guess that, our error is zero. The more the variation, the larger our
error is likely to be, and also the larger the standard deviation computed for the data.

Suppose instead our data represents the blood pressure scores from a sample taken from the
population we are interested in. In this case, we will see that the sample mean is the best guess
for John Doe’s blood pressure, which is to say, if our background information is K and if x̄ is
the sample mean, then

E(X| x̄ & K) = x̄.

However, the σx calculated by the computer is no longer the population standard deviation. It
is merely the standard deviation for the sample considered as itself a population, and that is
not what we want. For instance, if there is only one score in the sample, then there is certainly
no deviation or variation in the data and the standard deviation would be zero, even though
the actual population might have plenty of variation. This points to the fact that since there
are fewer scores in a sample than in the whole population, generally, the sample data will have
less variation than the population as a whole. The sample standard deviation Sx is meant to
compensate for this fact of small variation due to a small number of scores in the sample (small
n). In the calculator, the relation between the σx and the Sx is simple. If you know the sample
size, n, then always

Sx = σx

√
n

n− 1
.

Why this is the case will become clearer much later in the course, but suffice it to say, that the
choice of this ”fudge factor” to modify the standard deviation from the sample data to get a
good estimate of the population standard deviation is chosen in an optimal sense, in fact, in
the sense that its square is expected to be the square of the population standard deviation in
the ordinary sense of expectation:

E(S2
x|K) = σ2

X .

The square of standard deviation is called VARIANCE. Thus the equation says that the sample
variance is expected to be the population variance.

Often, for population data we have scores and there probabilities or a list of scores and for
each score in the list we know the percentage of the population or sample having that score. In
this case, we enter the probabilities or percentages in another list, say L3, and call up the 1-Var
Stats and enter L1, L3 as answer to the blinking cursor. Each percentage or probability must
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be on the same level in the list as the score for which it is the probability or percentage. In this
case, the calculator does not know the actual number of scores or there is no such number, and
the calculator adds up the probabilities and gets n = 1. Here, the formula for Sx would have
zero in the denominator, so the calculator leaves out any value for Sx. It only reports σx as far
as standard deviation is concerned. If we have n = 100 for a sample, then 100L3 → L2 (here
the little arrow is the symbol for the store button on the lower left of the calculator-it has STO
and a little arrow head on it) stores the score frequencies in list 2, since the frequency of each
score is simply its probability (in the data) or percentage multiplied by 100. In this case, 1-Var
Stats L1, L2 will have the same values for x̄ and σx, but the Sx appears and you can check that
the formula above for Sx in terms of n and σx actually works.
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54. LECTURE FRIDAY 4 SEPTEMBER 2009

The teaching assistant Ms Xu discussed calculations with data and the use of the calculator.

55. LECTURE MONDAY 7 SEPTEMBER 2009

LABOR DAY. NO LECTURE.

56. LECTURE WEDNESDAY 9 SEPTEMBER 2009

Today we will begin learning how to deal with 2 related unknowns. In many situations there
are several unknowns to deal with, some are easy to measure and some are more difficult to
measure. In such a situation, we can imagine trying to develop a method for guessing the
value of the unknowns that are difficult to measure by simply using the ones that are easy
to measure. Let’s begin with a simple example. Suppose we have a tuna fish pulled out of
the Pacific Ocean. Let X be its length in feet and Y be its weight in pounds. For instance,
suppose that E(X) = µX = 4 and E(Y ) = µY = 300. Of course, either µX or E(X) = µX
here is short hand for E(X|K) where K is the statement of what we know about Pacific tuna
fish and contains the fact that the fish in question was pulled out of the Pacific and is in fact
a tuna fish. Now, it is generally easier to measure the length of a fish than its weight, since
measuring the length only requires a simple tape measure, whereas the weight requires a scale,
and moreover, if the fish weighs hundreds of pounds it has to be hoisted up onto the scale
which could be difficult. If we are given the additional information that the fish is 6 feet long,
we would probably be inclined to increase our guess for the weight of the fish beyond a mere
300 pounds. On the other hand, if the fish is only 2 feet long, we would likely want to guess
his weight to be less than 300 pounds. This merely expresses the idea that longer fish tend to
weigh more. But this is certainly not a hard and fast rule. We might sometimes find a long
skinny fish whose length is actually above average but whose weight is below average. This is
clearly not a common thing for tuna fish. Let us use the symbol DX = X − µX = X − 4 to
denote the deviation in length for a fish and so likewise DY = Y − µY = Y − 300. Notice that
if X = 6, then DX = 2, whereas if X = 3, then DX = −1.

To summarize, we are thinking here that a fish which is longer than average should tend
weigh more than average whereas a fish which is shorter than average should tend to have
weight below average. But these are only tendencies, not hard and fast rules which are certain.
In terms of deviations, we can say that if DX ≥ 0 then DY should tend to be greater than or
equal to zero, and therefore the product of deviations DXDY should tend to be greater than or
equal to zero. On the other hand, if DX ≤ 0, which means the fish is shorter than average, then
DY should tend to also be less than or equal to zero. Since negative times negative is positive,
in this case again we conclude that the product of deviations should tend to be greater than
equal to zero. Overall, we can assess this by evaluating E(DXDY ). We define the Covariance
of X with Y, denoted Cov(X,Y ) by the formula

Cov(X,Y ) = E(DXDY ).

We therefore have

Cov(X,Y ) = E(DXDY ) = E((X − µX)(Y − µY )).

One problem with the use of covariance to get an idea of how well two unknowns relate is that
the number could be large just because there is a lot of variation in the variables themselves.
For instance, if it is the case that all tuna fish are very close to 4 feet long and weigh close
to 300 pounds, then all the deviations will be small, so the products will be small and thus
the expected product will be small and that is the covariance. It might be the case that for
such a population of tuna the relation between length and weight is very good. In another
population of tuna, there might be enormous variation in length as well as in weight giving a
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large covariance when the relation between length and weight is not so good. To get a better
idea of the relationship, we need to compensate for the deviations within each unknown. To do
this, we simply use the covariance of each unknown with itself. This is called the Variance of
the unknown, that is, precisely, we denote by V ar(X) the variance of the unknown X which is
defined to be its covariance with itself:

V ar(X) = Cov(X,X).

It follows that

V ar(X) = Cov(X,X) = E(D2
X) = E((X − µX)2).

We define the Standard Deviation of X, denoted by σX , by the formula

σX =
√
V ar(X).

Remember, for populations or for samples, the square of the standard deviation is the variance
and the square root of the variance is the standard deviation. Do not get that backwards. In
the variance, we can notice that D2

X ≥ 0, and therefore

V ar(X) = E(D2
X) ≥ 0.

Because of this, the square root of the variance will always make sense, since variance can never
be negative.

We can now make use of the standard deviation to standardize the covariance to give an
intrinsic measure of the relationship between two variables. To do this we form the Correlation
Coefficient, denoted by the Greek letter ρ and defined by the formula

ρ =
Cov(X,Y )

σXσY
.

Therefore, we can see that

ρ =
Cov(X,Y )

σXσY
= E(

DX

σX

DY

σY
) = E(ZXZY ).

We have in the last expression introduced the notation for the Standardization of an unknown.
The standardization of X is denoted ZX and is the new unknown defined by

ZX =
DX

σX
=
X − µX
σX

.

The standardization merely converts to units of standard deviation. For instance, in our ex-
ample, if we have σX = .25, then a 3.5 foot fish has deviation −.5 and therefore standardized
length score of −.5/(.25) = −2. A standardized score of −2 just means here that the fish is 2
standard deviations below the mean which is .5 feet below the mean, and as the mean is 4, this
means 4− .5 = 3.5. When we look at the formula

ρ = E(ZXZY )

keeping in mind that the Z stands for standardizing the unknown, we can see that the correlation
coefficient gives a standard measure of the relationship between two unknowns. On the other
hand, from the formula defining ρ, we see that we can calculate the covariance when we know
the correlation coefficient and the standard deviations simply using the formula

Cov(X,Y ) = ρσXσY ,

just multiply the three numbers when you have them all.
Now, clearly a large value for ρ indicates a strong positive relationship between the two

unknowns, whereas a value near zero would indicate their relationship is not of much use. To
see how to use this information, let us imagine that we want to find a simple linear expression
of the form a+ bx so that when we know the length x of a particular fish, we calculate a+ bx
to get our guess for the weight of the fish. We would have to chose the numbers a and b in
advance somehow. What we would be doing is trying to use the unknown a + bX to guess Y.
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For simplicity, put W = a+ bX. If we know X, then we know W exactly through the equation
W = a+bX, and we use that as our guess for the value of Y. That is in symbols, more precisely,

E(Y |X = x) = a+ bx.

For instance, if we have decided in advance that we should use a = 375 and b = 3, then when
we see fish that is 6 feet long we guess the weight to be 175 + 3 ∗ 6 = 375 + 18 = 493. Of course,
I have just pulled the values a = 375 and b = 3 out of thin air here, so this method is so far
fairly worthless. We need to have a criterion for picking the numbers a and b.

To optimize our choice of a and b, we need to consider that what we need to do is minimize
our error in guessing somehow. To do this, we notice that our error or Residual denoted R is
given by

R = W − Y = (a+ bX)− Y.
Overall, the negative errors may appear to balance the positive errors, so to get rid of that
possibility, we take the attitude that we want to overall minimize the squared residuals which
means, we want to minimize E(R2). Now, using our basic rules for expectation and a lot of
algebra which would probably put you to sleep, we can get the following useful equation for the
expected squared residual, which we can call the regression residual equation:

E(R2) = [E(R)]2 + (1− ρ2)σ2
Y + (ρσY − bσX)2.

At first, this equation probably looks like a nightmare, but it has a couple of simple features
which make the solution to our problem fall right out. Because, we can notice that two of the
terms on the right side are squares. A term which is a square can never be negative, so the
smallest it can possibly be is zero. For instance, setting ρσY − bσX = 0 makes the last term
zero, and this equation is easily solved for b giving

b =
ρσY
σX

as the optimal choice for b, the number we call the Regression Slope. On the other hand, if
we set E(R) = 0, then the first term on the right vanishes. Since R = (a + bX) − Y, we have
from our rules for expectation that E(R) = a+ bµX −µY , and therefore setting E(R) = 0 gives
the equation a+ bµX − µY = 0 and this means

a = µY − bµX .
We therefore have

b =
ρσY
σX

and

a = µY − bµX = µY − ρ
σY
σX

µX

as fairly simple equations giving the optimal choice for the numbers a and b which we use for
our regression equation. Finally, notice that when we use the optimal choices for a and b, then
both squared terms in the residual regression equation vanish and it simplifies to

E(R2) = (1− ρ2)σ2
Y .

This is a very useful fact, since first of all, it tells us that ρ2 ≤ 1, and therefore, −1 ≤ ρ ≤ 1.
This is because as R2 ≥ 0, it follows that E(R2) ≥ 0, whereas we already know that σ2

Y ≥ 0.
This forces 1 − ρ2 ≥ 0. The second thing this equation tells us is that the fraction 1 − ρ2 of
the variance of Y is in the squared error, so it must be that ρ2 is the fraction of the variance
of Y that is being accounted for with the regression equation being used to guess Y. That is,
if ρ2 = .8, then our expected squared error will be only 80 percent of what it would have been
if we did not use the regression equation. If I do not measure the fish, I will guess his weight
as 300 pounds, and will expect a certain squared error in this guess. If I measure the fish and
use the optimal regression equation to guess the weight of the fish, I cut my expected squared
error down to only 80 percent of what it would have been.
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For more details on these facts or to see the residual regression equation proven using the
basic rules for expectation and algebra, you can go to THE EXPECTATION PRIMER down
near the bottom of the MATH-111 page on my website. This is not rocket science, it merely
requires the basic rules of expectation we worked out in class the first week of class and high
school algebra. The interesting thing here is that the residual regression equation by this
method is completely general, whereas in typical statistics classes only special cases are proven
using calculus of several variables, which puts the foundation of regression analysis even beyond
a student who has had the typical first year freshman calculus course.

The equations require that we know the means and standard deviations for each of our two
unknowns and as well we need to know the correlation coefficient relating the two unknowns.
If we have sample data for the pair of unknowns, then we can enter the data in two lists in
the calculator as paired data. For instance in case of length and weight of fish, we enter the
lengths in one list and the weights in another list in such a way that the length of each fish is
on the same line as its weight. The 2-Var Stats in the calculator will give the sample means
and sample standard deviations. The LinReg(a+bx) will give the sample estimates for a, b, ρ,
and ρ2. The sample estimate of ρ is called the Sample Correlation Coefficient and has the
symbol r. Thus in the LinReg readout in the calculator you will only see the values of a, b, r
and r2 reported. These then are used to work out the optimal guess given the sample data. We
can say that if N is the statement of our sample data which results in specific values a and b
for the regression equation, then

E(Y |(X = x)&N) = a+ bx.

If at first you only see a and b reported in the readout of LinReg and you need r and r2, you
must turn on the diagnostics in your calculator. Once this is done, it will stay on until you turn
them off, so just leave them on for the duration of this course. To turn on the diagnostics in your
calculator, notice that the second function of the zero button is CATALOG. When you go to
the catalog you find the entire listing of all functions in the calculator which is fairly enormous,
but all are arranged alphabetically. Go down the list until you see the line ”diagnosticOn”
and with the little arrow head beside this line press the enter button a few times until you see
”done”. Henceforth you will always see both r and r2 right below a and b in the readout of the
LinReg. Notice there are both LinReg(ax+b) and LinReg(a+bx). I have chosen to use the later
form which is further down in the list of the Stat CALC menu because if is more in line with
symbols used in your textbook. If you use the wrong one it will simply give the of the values
for a and b. For instance if you use the expression a+ bx for regression but use LinReg(ax+b)
in the calculator, your reported readout value for a will be what you should use for b in the
regression expression and your reported readout value for b will be what you should use for a
in the regression expression.
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57. LECTURE FRIDAY 11 SEPTEMBER 2009

Today we discussed the properties of covariance and variance which follow from the rules for
expectation and a little algebra. The first useful fact is that

Cov(X,Y ) = Cov(Y,X)

because if DX is the deviation of X from its mean, then Cov(X,Y ) = E(DXDY ) and multipli-
cation does not depend on order: DXDY = DYDX . Also, the additivity of expectation means
that if we have any three unknowns, say W,X, Y, then

Cov(W,X + Y ) = Cov(W,X) + Cov(W,Y ).

This is just like the distributive law

a(b+ c) = ab+ ac,

is we think of Cov(X,Y ) as some kind of multiplication of X and Y. For instance, just as in
algebra we know

(a+ b)2 = a2 + b2 + 2ab,

here with covariance, we find

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ).

Here you should keep in mind that

σ2
X = V ar(X) = Cov(X,X).

Therefore we can alternately write the formula for V ar(X + Y ) as

σ2
X+Y = σ2

X + σ2
Y + 2ρσXσY .

In this last equation, we have also used the formula Cov(X,Y ) = ρσXσY which gives the
covariance in terms of the correlation and standard deviations. From these equations, we see
that the variance and covariance must come into play when we want to find the standard
deviation for X + Y when we only know σX , σY , and ρ.

Another useful equation which follows from the rules of expectation and the definition of
covariance is that

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(XY )− µXµY = µXY − µXµY .
In particular, this shows that if X and Y are correlated, then the expected value of the product
will be different than the product of expected values. In particular, applying this to variance,
as V ar(X) = Cov(X,X), we see that

σ2
X = V ar(X) = E(X2)− µ2

X .

From this we see that the mean of the square is always at least as big as the square of the mean.
Moreover, the only way the two can be equal is for the variance to be zero. For an unknown
to have zero variance means the unknown can only have a single value-it is a constant. Put
another way, any time there is more than one possible value for something, if we want to guess
its square we should guess more than the square of our guess for the thing itself. How much
more is exactly the variance, according to these equations.

If c is a constant, then its deviation from its mean is zero, since µc = c and therefore Dc = 0.
Thus D2

c = 0 and therefore σc = 0. If we add a constant c to an unknown, it does nothing to
the variance, since in the formula for V ar(X + c) all the terms containing σc are zero. Thus,

V ar(X + c) = V ar(X).

For instance, if X is the salary of a worker in Duckburg and if everyone gets a five thousand
dollar raise, then all the relative differences in salary stay the same. If you made 7 thousand
dollars more than your neighbor before the raise, you still do after the raise. On the other hand,
if all salaries are doubled, then all the differences between salaries double as well which doubles
the standard deviation. If c is any constant, then V ar(cX) = c2V ar(X), and σ(cX) = |c|σX ,
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since the square root of c2 is the absolute value of c, which we donote by |c|. Thus, for any
number c, the equation

|c| =
√

(c2)

defines its absolute value. For instance, | − 4| = 4 whereas |4| = 4. In general, if we rescale X
to form the new unknown Y = bX + c, then

E(Y ) = bE(X) + c,

but for standard deviation we have only

σY = |b|σX ,

since the addition of the constant c to bX has no effect on standard deviation,

σY = σ(bX) = |b|σX .

As an example, suppose that the mean salary in Duckburg is 50K dollars with standard deviation
10K dollars. If everyone gets a 5K raise plus 20 percent of their original salary, then for a person
with salary X, his new salary is Y = 5 + X + .2X = (1.2)X + 5. This means the new means
salary will be (1.2)50 + 5 = 65 thousand dollars whereas the new standard deviation will be
(1.2)10 = 12 thousand dollars.

Let us return now to probability and some simple typical quiz problems about drawing
blocks from a box. These problems illustrate the utility of thinking about probability in terms
of information. Any time two set-ups are the same as far as the information is concerned, all the
probabilities will be the same. Consider a box containing 5 blocks of which 3 are red and 2 are
blue. Suppose blocks are drawn one after another from the box. Let R be the statement that a
given drawn block is red and B the statement that a given drawn block is blue. For instance,
”2ndR” is the statement that the second block drawn is red. Obviously, P (1stR) = 3/5. If we
ask for P (2ndR|1stR), we can realize that for the draw of the second block, it is the case that we
know there are two red blocks and two blue blocks in the box, so P (2ndR|1stR) = 2/4 = 1/2.
On the other hand, there seems to be a problem about asking for P (1stR|2ndR). Does this
make sense? Actually, we can make sense out of this. The question is asking you to give the
probability of drawing a red block on the the first draw if you can somehow know that you will
get a red block on the second draw. How could this possibly be? Let us suppose that instead of
blocks in the box we have playing cards in the box. Let’s say a whole deck of cards in the box.
Drawing cards from the box is just like being dealt a hand of cards. When we play cards, we
do not insist that the dealer put all the cards in a box and shake it up and then draw randomly
from the box of cards. We generally shuffle the deck and then simply deal cards from the top
of the deck one after another. Notice, that as far as information is concerned, the situation is
the same. You do not know which card is where in the stack, so any card can be anywhere.
For instance, one fourth of the cards are spades, so if we ask for the probability that the first
card dealt is a spade, then it is 1/4. However, the probability the second is a spade given the
first was is 12/51. If I tell you that the card underneath the top card is a spade, then you know
the second card dealt will be a spade. The probability that the first is a spade given that the
second is a spade is therefore again 12/51. The same is the case with the blocks. Just imagine
the blocks are stacked but you cannot see the stack. If I ask you the chance the top block is
red given that the block right beneath it is red, the probability is obviously simply 2/4=1/2.
But, informationwise, the situation is the same whether we are drawing blocks from the box or
drawing blocks off the top of a stack one after another. The time factor is an illusion here, you
should think of the future as already having been determined, you are just not aware of what
it is. Where you know the future, it works for you just the same as knowing the past, as far as
probability is concerned.
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58. LECTURE MONDAY 14 SEPTEMBER 2009

Today we reviewed for TEST 1 scheduled for Wednesday 16 September 2009.
When reviewing the formulas for linear regression, we noted that from the formula for the

optimal a and b giving the linear regression W = a+ bX for Y on X, since

b = ρ
σY
σX

,

gives the regression slope which we think of as rise over run for the regression line, and as

a = µY − bµX ,
we can see that the equation

E(Y |X = x) = a+ bx

for computing the best guess for Y when given the value of X, dictates that

E(Y |X = µX) = µY .

Indeed,
E(Y |X = µX) = a+ bµX = (µY − bµX) + bµX = µY .

Thus if we graph the equation y = a+ bx, whose graph we call the regression line, then we see
it must always pass though the point (µX , µY ). This means that we can alternately compute
E(Y |X = x) by simply using the regression slope b and the deviations from the mean. For
instance, suppose

µX = 100, µY = 200, σX = 4, σY = 20,

and ρ = .5. Since the regression line passes right through the point (100, 200), if we are told
that X actually has the value 100, then we should guess 200 for Y. Notice that the rise over the
run or regression slope is just

b =
(.5)20

5
= 2.

If we know that X is 110, then we would increase our guess for Y above 200 by the amount
(2)(10) = 20, so our guess for the value of Y should be 220. If we know that X is 115, this
is 15 above the mean for X and therefore we should increase our guess for Y by the amount
(2)(15) = 30 and therefore our guess should be 230.

Lets for the moment imagine a situation of perfect correlation, so ρ = 1. The our regression
slope is just

b =
σY
σX

.

This means that if X is known to be one standard deviation above the mean, then we should
guess that Y is also one standard deviation above the mean. If we know X is 2 standard
deviations below the mean, then we should guess that Y is two standard deviations below the
mean. In the previous example, if we change the value of ρ to 1, then the regression slope is
b = 20/4 = 5. If we know X is 108, then we would know that X is two standard deviations
above the mean so we should guess Y is two standard deviations above the mean which is
2(20) = 40 above the mean for Y so

E(Y |X = 108) = 200 + 2 ∗ 20 = 200 + 40 = 240.

With perfect correlation, the number of standard deviations that X is from the mean dictates
the number of standard deviations from the mean for Y we should guess, which we then simply
add to µY = 200. Of course the same applies if X is below the mean, but we are then subtracting
instead of adding. Thus, if we know X is 88, then that is 12 below the mean, and since the
standard deviation for X is 4, this means that X is 3 standard deviations below the mean, so
we should guess Y is also 3 standard deviations below the mean. As the standard deviation
for Y is 20, three standard deviations is 60, so we guess Y is 60 below its mean of 200 or
200 − 3(20) = 200 − 60 = 140. Now, lets go back to the case where ρ = .5. Then we see that
when the run is σX = 2, then the rise is ρσY = .5(20) = 10. That is if we know X is one standard



86 MATH-111 (DUPRÉ) SPRING 2010 LECTURES

deviation above its mean, then now instead of guessing Y to be one standard deviation above
its mean, we would correct for the correlation coefficient of ρ = .5 by guessing Y to be only 1/2
a standard deviation above its mean, which is therefore (1/2)20 = 10, so we guess the value of
Y is 200 + 10 = 210. In general, we can standardize X and Y by setting

ZX =
X − µX
σX

and likewise for Y. Thus in our example we have

ZX =
X − µX
σX

=
X − 100

2

and

ZY =
Y − µY
σY

=
Y − 200

20
.

Thus a value of x = 108 for X is the same as a value

zX =
108− 100

2
=

8

2
= 4

which means we should guess ZY has value zY = ρzX = (1/2)4 = 2. Notice that

Y = µY + σY ZY ,

so that if we know the value of ZY , then we know the value of Y. For instance, in the case at
hand, we have Y should be guessed as having value

y = 200 + 20(2) = 240.
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59. LECTURE FRIDAY 18 SEPTEMBER 2009

Today we discussed Bayes’ Rule for computing probabilities in situations which can be broken
down into all the various alternatives. If for instance, we know exactly one of the statements
A,B,C is true, then for their indicators we know that

1 = IA + IB + IC ,

so on multiplying through by any unknown X, we have

X = XIA +XIB +XIC ,

and therefore
E(X|K) = E(XIA|K) + E(XIB |K) + E(XIC |K).

But to each term on the right hand side we can apply the multiplication rule

E(XIN |K) = E(X|N&K)P (N |K).

The result is sometimes called Bayes’ Rule:

E(X|K) = E(X|A&K)P (A|K) + E(X|B&K)P (B|K) + E(X|C&K)P (C|K).

The expectation calculation is thereby broken down into the calculation of expected values in
each of the separate cases. If you know the probability of each case being the one to happen,
then the expected value is the sum of products, each term the product of the expected value in
one case multiplied by the probability that case actually is the case.

In particular, we can take the unknown X to itself be the indicator of a statement, say D.
Remembering that

P (N |K) = E(IN |K)

for any statement N, by definition, and recalling that

IM&N = IMIN ,

the expectation equation for Bayes’ Rule becomes a probability equation, also sometimes called
Bayes’ Rule:

P (D|K) = P (D|A&K)P (A|K) + P (D|B&K)P (B|K) + P (D|C&K)P (C|K).

The multiplication rule can be turned around to give

E(X|N&K) =
E(XIN |K)

P (N |K)

and in case of probability

P (M |N&K) =
P (M&N |K)

P (N |K)
.

Dropping the background information K, we have for short,

P (M |N) =
P (M&N)

P (N)
=

P (BOTH)

P (GIV EN)
.

Combining this with Bayes’ Rule we could for instance calculate the conditional probabilities
P (A|D), P (B|D), P (C|D).

In an applied situation, we dealt with the example of the Acme Widget Corporation which
has three widget factories, A,B, and C. If we know the percentage of defective widgets coming
from each factory, if we know the percentage of total widget production coming from each
factory, then we can calculate the probability a widget is defective. Then, using the formulas
above, if we have a defective widget, we can calculate the probability it came from factory A.
Likewise, we can do the same for factories B and C.

In case there are only two categories A and B, then B =notA. In such a situation, a problem
will be dealing with just two statements, so it is sometimes not immediately clear which is to
play the role of the different cases and which is the statement playing the role of D above. But
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if you are confused as to which way to proceed here, just pick a way to proceed, and if it is
the wrong way, you will quickly find that the problem information does not give you what you
need, so then go back and try the other way. Specifically, if we are dealing with say M and N,
if we try to use the cases M and notM, then we will need the conditional probabilities P (N |M)
and P (N |notM). Thus, if we realize that we are given P (N |M), then the cases must be M and
notM, whereas if we see we are given P (M |N), then the cases must be N and notN.

As an example, suppose we have a student, Sam, taking a multiple choice test which is
machine graded. Suppose that it is the case that each question has 5 possible answers to choose
from and the answer must be marked on an answer sheet. If Sam knows the answer, we suppose
he has a 90 percent chance of marking correctly, whereas if he does not know the answer, he
has only a 20 percent chance of marking correctly. Suppose he knows the answers to 70 percent
of the questions on the test. We want to know the percentage of questions he marks correctly
and if we see a question marked correctly, we want to know the chance he actually knew the
answer. We begin by choosing symbols. Let’s use K for the statement he knows the answer to
the question and C for the statement the answer to the question is marked correctly. Do we
have P (K|C) given to us in the problem information? The answer is no. How about P (C|K).
That is the chance he marks correctly given that he knows the answer, which is given to us as
90 percent. Thus the two cases we consider are C and notC. Using Bayes’ Rule, we then find
that

P (C) = P (C|K)P (K) + P (C|not K)P (not K) = (.9)(.7) + (.2)(.3) = .63 + .06 = .69.

We therefore know that the probability he marks a question correctly is 69 percent. If we see
a correctly marked question the chance he actually knew the answer is P (K|C), and this is

P (K|C) =
P (K&C)

P (C)
=
P (C|K)P (K)

P (C)
=
.63

.69
=

63

69
=

21

23
.

This is about 91.3 percent (to three significant figures). Notice that the numerator is one
of the terms in the calculation of P (C). This will always be true in these Bayesian analysis
problems, so when you do the calculation for the probability in the denominator, keep track of
the individual terms before adding them all up, so you can then simply look at the total and
pick out the correct term for the numerator. This will save you time and effort.



MATH-111 (DUPRÉ) SPRING 2010 LECTURES 89

60. LECTURE MONDAY 21 SEPTEMBER 2009

Today, we began by demonstrating that Bayes’Rule and Baysian analysis can be used to
calculate probabilities that we have already calculated using the information view of probability
theory, which at first appear paradoxical because of time ordering. Specifically, consider a box
containing 3 red blocks and 2 blue blocks. The experiment is to draw the blocks one after
another from the box without replacement. As far as information is concerned, this is the same
as having a stack of blocks and the experiment is to draw the blocks from the stack from the
top down one after another, such as is done when dealing cards from a deck (stack of cards). If
the two processes were not the same as regards the state of our information, then card dealers
in casinos would have to draw cards from a box that has been shaken instead of dealing from
a shuffled deck. If I ask for the probability that the second block is blue given that the first is
red, there is no problem in visualizing this to be 2/4, since we can imagine that there has been
one red block removed as we start to make the second draw, so the box contains 4 blocks of
which 2 are red and 2 are blue. If I ask for the probability that the first block is blue given
that the second block is red, there seems to be a problem visualizing what this means from
the standpoint of drawing the blocks one after another from the box, but it does not seem to
be a problem at all in the second way of viewing the experiment in terms of a stack of blocks.
In the second view, the given information merely states that the block in the second position
from the top is red, so for the positions unknown to us there are 4 blocks of which 2 are red
and 2 are blue, so the chance a blue block is on top is simply 2/4. This is the same result as
in the reverse time order. In symbols, let B be ”blue” and R be ”red”. Accepting this view
that the two experimental setups are equivalent, we can quickly figure complicated conditional
probabilities such as

P (3rdB|1stR & 2ndR) =
2

3
.

In terms of the stack, telling you the top two blocks are red lets you know that for the bottom
three positions there are 2 blue blocks and only one red block, so the chance the third position
contains a blue block is simply 2/3. It is also clear in the stack picture, that without any
information about what block is where, if I ask for the probability that the third block is blue,
it is 2/5, whereas in the block drawing picture, it sometimes appears confusing as to what is
meant by the probability that the third is blue. You must keep in mind that probability is
about the state of your information. If I ask what is the probability that the third block drawn
is blue, you must imagine that you have no way of knowing what the results of the first two
draws were. If someone else drew the blocks from the box where you could not see the results,
and after all the blocks are drawn we ask what is the chance that when we ask the experimenter
the result of the third draw we will be told that it was blue, then that probability is what we
are seeking. We see that the experimenter could be arranging the blocks in a row as he takes
them out of the box in order to keep track of the results. A row of blocks is clearly equivalent
to a stack of blocks as far is the information is concerned.

Now let’s use Bayesian analysis to compute these probabilities from the rules of probability
directly, without using the information view. For instance, we can say that either the second
block will be red or it will not be red for sure, so we can write using Bayes’ Rule:

P (2nd B) = P (2nd B|1st R)P (1st R) + P (2nd B|1st not R)P (1st not R)

= (
2

4
)(

3

5
) + (

1

4
)(

2

5
) =

(2)(3) + (1)(2)

(4)(5)
= (

2

5
)(

3 + 1

4
) =

2

5
.

The final result here is the same as we found quickly by viewing the blocks as being stacked.
Now lets work out the probability that the first is red given that the second is blue using the
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Bayesian analysis. We have

P (1st R|2nd B) =
P (2nd B & 1st R)

P (2nd B)
=
P (2nd B|1st R)P (1st R)

P (2nd B)
=

( 2
4 )( 3

5 )

( 2
5 )

=
3

4
.

Notice, how much quicker it is to view the blocks as stacked and think of the given information
as telling us there is a blue block in the second position in the stack, so the chance the top
block is red is simply 3 out of 4, or 3/4.

We next began the theory of counting which is necessary for dealing with similar problems
involving many more objects. For instance, if we are dealing cards from a standard deck
of 52 cards, we might ask the probability that if we deal five cards we get two of the same
denomination which is called a pair. You should keep in mind that a standard deck of cards
has 4 suits: Spades, Hearts, Diamonds, Clubs, and 13 denominations: Ace, 2,3,4,5,6,7,8,9,10,
Jack, Queen, King. Here, the problems in merely counting up the different possibilities become
substantial, and it is useful to keep in mind a few simple counting principles. The first is so
obvious, that it might seem too simple to state, but sometimes, it is crucial. To begin, suppose
we have any two sets A and B, say both contained in the set S. By

A ∪B = {x ∈ S : x ∈ A or x ∈ B}
we mean the set theoretic union of A and B which is a new set consisting of the members of A
and B all thrown in together to form a single set, whereas by

A ∩B = {x ∈ S : x ∈ A & x ∈ B}
we mean the set theoretic intersection, that is the set consisting of exactly what the two sets
have in common, or their overlap. if F is any finite set, we denote by n(F ) the number of
members of F. Next, suppose that the sets A and B have nothing in common or no overlap,
that is in set language they are disjoint, expressed in symbols as

A ∩B = ∅.
For instance, suppose I have two boxes, one red and one blue, each having some finite number
of things inside. Suppose I dump the contents of the two boxes in a third box which is green.
If A is the set of original contents of the red box, if B is the set of original contents of the blue
box, and if C is the set of contents ending up in the green box, then

C = A ∪B,
and obviously as A ∩B = ∅, we must also have

n(C) = n(A) + n(B),

or generally,
n(A ∪B) = n(A) + n(B), A ∩B = ∅.

This simple fact sort of expresses the idea of conservation of ”stuff” in some sense. It is called
the Addition Rule for counting. For instance suppose I ask how many 5 card hands have all
hearts or at least 4 diamonds and one club. Let A be the set of all possible 5 card hands having
all hearts and let B be the set of all 5 card hands having 4 diamonds and one club. Then since
a hand cannot have both all hearts and 4 diamonds and a club, the two sets are disjoint. It
follows that if C is the set of all 5 card hands having either all hearts or 4 diamonds and a club,
then C = A ∪B, and therefore,

n(C) = n(A) + n(B).

We see the Addition Rule allows us to break down the counting problem into parts.
The next rule is called the Multiplication Rule and is the rule for counting the number of

distinguishable outcomes in a stepwise procedure. Suppose we consider a procedure which takes
several steps. What you do in life could be considered a sequence of steps. Starting from this
morning, for instance, Step 1: you got out of bed, Step 2: you got dressed, Step 3: you gathered
up your laundry and put it all in the washing machine,..., and obviously, at each stage of this
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process you have many alternatives. In general, the alternatives you have available at each
step of your life depends heavily on the choices you have previously made. However, when it
comes to counting problems, there are many situations where the number of options you have
available at each stage of a process will NOT depend on the particular choices which preceded.
The card dealing experiment is a prime example. Suppose you are dealt the first 5 cards from
the top of a shuffled deck of cards, turned up one after another in a row. The order in which
cards appear is important here. This game is called 5 card showdown and in Poker one bets
after each card is turned up, so the order in which the cards appear is important to the players.
The number of cards you have available for the first card dealt to you is 52, since you have
no idea of where any particular cards are positioned in the stack. Once you are dealt a card,
you only have 51 cards available for the second card dealt to you, independent of what you
got on your first card. Likewise, when you consider what is available for the third card, you
know there are 50 possibilities no matter which two cards you received for the first two dealt.
The number of possibilities for each step is totally independent of what came before-totally
independent of the prior history. This is certainly not the situation in life in general, but it
is here. Now, keep in mind that the cards available at each stage DO depend on what came
before, it is just that the NUMBER of cards available does not depend on what came before. If
I get the Ace of Hearts as the first card dealt, then it is not possible to get the Ace of Hears as
the third card dealt. We want to count the number of possible outcomes of dealing out 5 cards
from a shuffled deck. Well we have 52 possibilities for the first step, and for each of those 52
possibilities there 51 possibilities for the second step resulting in (52)(51) possibilities for the
outcome of the first two steps. Notice the outcome of the first two steps is a two card hand
with an ordering of the cards-there is a first card and a second card. Getting the Ace of Hearts
followed by the Ace of Clubs is a different outcome than getting the Ace of Clubs followed by
the Ace of Hearts. To specify an outcome of this process, we need to specify what happens on
each draw. Thus to actually specify an outcome we need to write down a sequence of 5 cards
which are all different. The answer to the question of the number of outcomes is to count the
number of all such sequences. Clearly there are 52 possibilities for the first card or first entry
of the sequence, there are for each of these 52 possibilities then 51 possibilities for the second
card, so (52)(51) possibilities for the first two cards or first two entries in the sequence, and for
each of these (52)(51) possibilities for the first two cards, there are 50 possibilities for the third
card for a total of (52)(51)(50) sequences of three cards, and so on. Clearly there are

(52)(51)(50)(49)(48)

possible outcomes for the game of 5 card showdown simply simply as far as the cards dealt are
concerned. For instance, if we ask how many ways are there to arrange all the cards in the
deck, or how many results are possible for shuffling the whole deck, that would be

(52)(51)(50)...(3)(2)(1).

which is an astronomical number-in fact it is astronomical in comparison to astronomical num-
bers. In fact,

(52)(51)(50)...(3)(2)(1) > 8 ∗ 1067.

This is an 8 followed by 67 zeroes. For short we denote this product of all the consecutive
integers in the sequence 1, 2, 3, ..., r by the symbol

r! = (1)(2)(3)...(r),

which is read ”r factorial”. Obviously these numbers get big very fast as r increases. Now, back
to the problem of computing (52)(51)(50)(49)(48). We could do this easily with the calculator,
but if we were going to deal out 13 cards, it would be tedious. Fortunately the PRB menu if
the MATH menu has the factorial on line 4 of the menu, so factorials can be quickly calculated.
Notice also, that we can express the number of arrangements of 5 cards taken from the deck in
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terms of factorials as

(52)(51)(50)(49)(48) =
52!

48!
=

52!

(52− 5)!
.

This last expression makes it clear what the answer is if we deal out 13 cards in order instead
of only 5. We just replace the 5 with 13 in the expression. This means there are

(52)(51)(50)(49)(48) =
52!

48!
=

52!

(52− 5)!

ways to arrange the top 13 cards in the deck. This type of counting arrangements comes up so
often that it is useful to have a notation for it. We denote by P (n, r) the number of ways to
arrange r things chosen from a set of n things. Thus

P (n, r) =
n!

(n− r)!
.

Here the capital P stands for permutation which is the mathematical word for arrangement. In
the calculator, to calculate the number of arrangements look for the symbol ”nPr” in the PRB
menu of the MATH menu. Then to calculate P (52, 5), you begin by typing 52, then hit the
MATH button and put the cursor on PRB, and then type the number of the line on which you
see ”nPr” or else put the cursor directly on it and press the enter button. At this point you
should see ”52 nPr” on your screen so then type the 5 and you should then see ”52 nPr 5” on
your screen. At that point, you hit the enter button and the calculator gives you the answer.

These counting formulas for permutations are an illustration of the general counting principle
we call the Multiplication Rule. In a stepwise procedure, if the number of options at each stage
is independent of the history, and if mk denotes the number of options available for the kth

step, k = 1, 2, 3, ..., n, then the total number of outcomes or sequences for all n steps is the
number N which is the product of all the numbers available for each step:

N = m1m2m3...mn.
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61. LECTURE WEDNESDAY 23 SEPTEMBER 2009

Today we continued our discussion of methods of counting. We reviewed the Addition Rule
and the Multiplication Rules given in the previous lecture. We observed that

n(A ∪B) = n(A) + n(B)− n(A ∩B),

when counting finite sets. We reviewed the use of the Multiplication Rule for counting arrange-
ments, and the formula for P (n, k), which gives the number of ways of arranging k things taken
from a set of n things. Specifically, we have

P (n, n) = n! = (1)(2)(3)...(n)

and more generally, we have

P (n, k) =
n!

(n− k)!

giving the number of ways to arrange k things chosen from a set of n things. We discussed the
fact that we define 0! = 1 in order to make the two formulas consistent in case k = 0.

Next, we dealt with the number of WORDS which are obtained by rearranging symbols.
The number of ways to (re)arrange the letters ABCD is obviously (4!). In case of a word like
MISSISSIPPI, we see that as some of the letters are alike, we cannot distinguish for instance
which S went where in the rearrangement. Each arrangement is called a WORD even though
it may not appear in any dictionary. For a mathematician, a word is simply an arrangement
of symbols, which we may as well take to be a string of symbols. Let us call this number of
arrangements x as we do not actually know what it is. To count the number of ways in this
case, we form new distinguishable symbols. From the M tag it to get M1, the first new symbol.
From the four I’s we get the new symbols I1, I2, I3, I4, from the four S’s we get S1, S2, S3, S4,
and from the two P ’s we get the two symbols P1, P2. Notice these new symbols are just the
result of putting tags on the original symbols so as to make them all different. We can easily
count the number of ways to arrange the eleven new symbols as they are all different, so it is
(11!). The key to finding x, the number of ways to arrange the untagged symbols is to realize
that the job of arranging the tagged symbols can be accomplished as a two step procedure
where Step 1 is to arrange the untagged symbols. After all, if you see an arrangement of the
tagged symbols, you cannot tell whether it was accomplished by actually rearranging the tagged
symbols or accomplished by rearranging the untagged symbols and then attaching the tags as
the last step. Thus there are

(1!)(4!)(4!)(2!)

ways to put the tags on the untagged symbols once they have been arranged, so we must have,
by the Multiplication Rule

x[(1!)(4!)(4!)(2!)] = 11!,

and therefore

x =
11!

(1!)(4!)(4!)(2!)

gives the number of ways to arrange the letters MISSISSIPPI. It is useful to have a symbol
for this. We will write

C(11; 1, 4, 4, 2) =
11!

(1!)(4!)(4!)(2!)
.

Notice that the sum of the numbers after the semi-colon is the number before the semi-colon.
The order of the numbers after the semi-colon clearly does not matter. Thus

C(11; 1, 4, 4, 2) = C(11; 2, 4, 1, 4).

Moreover, if the numbers after the semi-colon do not add up to the number before the semi-
colon, we assume that the last number was just left out. Thus,

C(11; 1, 4, 4) = C(11; 1, 4, 4, 2)
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whereas

C(11; 4, 1, 2) = C(11; 4, 1, 2, 4).

More generally, if we have a set n objects of which k1 are all alike and considered indistin-
guishable among themselves, of which another subset of k2 are considered all alike and indis-
tinguishable among themselves, and so on, say we have m different types of objects which can
be distinguished, k1 of the first type, k2 of the second type and so on and finally km of the last
type, then we must have

k1 + k2 + ...+ km = n

and the number of distinguishable arrangements of the objects is C(n; k1, k2, ..., km) which is
given by the formula

C(n; k1, k2, ..., km) =
n!

(k1!)(k2!)...(km!)
= C(n; k1, k2, ..., km−1).

As a special case, suppose that there only two types, type A and type B. For instance we
could be asking for the number of words which can be formed with the letters AAABBBB.
Such a word has 7 positions in which letters must be filled in, and notice as soon as we fill in
the three A’s, the whole word is determined as all the rest of the positions will be filled in with
B’s. Thus, the job of making a word here is equivalent to the job of choosing the 3 positions
from the 7 available in which to put the A’s. Notice also, that it does not matter in which order
we decide which of the positions will get an A. It only matters which of the seven positions are
chosen. Thus,

C(7; 3, 4) = C(7; 3) = C(7; 4)

gives the number of ways to choose 3 things from a set of 7 things, and we see that that is the
same as the number of ways to choose 4 things from a set of 7 things.

In general, then

C(n; r, n− r) =
n!

r!(n− r)!
= C(n; r) = C(n;n− r)

gives the number of ways to choose r things from a set of n things. Clearly, the number of
ways to choose r things from a set of n things is the same as the number of ways to choose
n− r things from a set of n things, as determining which r things to choose is the same job as
determining which n− r things not to choose. You can form a club by either choosing who will
be in the club or deciding who is not in the club.

To see the relationship between the number of ways to arrange r things chosen from n, notice
that such an arrangement can be accomplished in two steps where the first step is to choose
the r things from the n things and the second step is to arrange the r things you have chosen
on the first step. This means we must have

P (n, r) = C(n; r)P (r, r)

and therefore

C(n; r) =
P (n, r)

P (r, r)

and of course, when we use the formulas

P (n, r) =
n!

(n− r)!
and

P (r, r) = r!,

we see that

C(n; r) =
n!

r!(n− r)!
= C(n; r, n− r),

just as before.
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We computed the number of ways to play 5 card showdown-dealing out 5 cards one after
another where the order in which the cards appear is important. It is

P (52, 5) = 311, 875, 200

which is a very big number. When we talk about a 5 card hand, we do NOT care about the
order in which the cards are dealt, we just care about which 5 cards we received in the deal.
the number of 5 card hands is therefore

C(52; 5) = 2, 598, 960.

clearly a very big number, but small in comparison to the number of things that can happen
in dealing out 5 card showdown. In the game of Poker, there are only 5 card hands even if the
game is played with more than 5 cards. Different hands are of different value, and if you are
playing a game with more than 5 cards, then you use the best 5 to ”play”. The best hand is a
Royal Flush which consists of the Ace, King, Queen, Jack, and Ten, all of the same suit. For
the 4 suits, let us use the symbol H for Heart, D for Diamond, C for Club, and S for Spade. For
the different denominations, let us use the symbol A for Ace, K for King, Q for Queen, J for
Jack, T for Ten, 9 for 9, 8 for 8, and so on. The a Heart Royal Flush is AH,KH,QH, JH, TH.
There is only one such hand out of all 2598960 possible Poker hands, so your chance of getting
the Heart Royal Flush when dealt 5 cards from the standard 52 card deck is

1

2598960
,

a very small probability.
In general, for calculating the probabilities of the various Poker hands, it is useful to key in

on the number of denominations in the type of hand. As an example, if you want to calculate
the probability of getting a hand with two pair when dealt 5 cards, you can begin by noticing
that such a hand can only have 3 different denominations, so step 1 in forming such a hand
would be to choose the 3 denominations from the 13 available. That can be done in C(13; 3)
ways. The next step would be to decide which one of the three chosen denominations is not to
be paired or else choose which two of the denominations are to be paired. This can be done in
3 = C(3; 1) = C(3; 2) ways, and next, for the denomination not to be paired, choose one of that
denomination. This can be done in C(4; 1) = 4 ways. Next for each of the two denominations
to be paired, choose two cards of that denomination. That can be done in C(4; 2) = 6 ways for
each of those two denominations, and it does not matter the order in which one does these last
two choices. Multiplying all the numbers of ways for each of the steps, we find that there are

C(13; 3)C(3; 1)C(4; 1)C(4; 2)C(4; 2) = (286)(3)(4)(6)(6) = 123, 552

ways to form a 5 card hand containing two pair, no more and no less. For instance, a hand
with 4 of a kind is not counted here as such a hand only has 2 denominations. this means that
the probability of being dealt a hand containing exactly two pair is

123552

2598960
= .0475390156,

or just under 5 percent.
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62. LECTURE FRIDAY 25 SEPTEMBER 2009

Today we calculated the number of 5 card Poker hands of each type. Remember there are

C(52; 5) = (52 nCr 5) = 2, 598, 960

possible 5 card Poker hands. For each type of hand, we imagine a stepwise process for actually
making such a hand which involves therefore a sequence of decisions. You want to make sure
that any possible hand of the given type could be the result, and also you should make sure
the process you are thinking of has the property that any change in any decision at any step
will definitely change the final outcome. As last time, we note that for many types of Poker
hand, a key characteristic is the number of different denominations that type of hand has. The
different types of hands (followed by their number) in decreasing order of power are:

ROYAL FLUSH: C(4; 1) = 4

STRAIGHT FLUSH (INCLUDING ROYAL FLUSH):

C(4; 1) · C(10; 1) = 4 ∗ 10 = 40

STRAIGHT FLUSH BUT NOT ROYAL FLUSH:

40− 4 = 36

FOUR OF A KIND:

C(13; 2) · C(2; 1) · C(4; 4) · C(4; 1) = 78 ∗ 2 ∗ 1 ∗ 4 = 624

or alternately a slight variation in process:

P (13; 2) · C(4; 4) · C(4; 1) = 156 ∗ 1 ∗ 4 = 624

FULL HOUSE (PAIR & 3 OF A KIND):

C(13; 2) · C(2; 1) · C(4; 3) · C(4; 2) = 78 ∗ 2 ∗ 4 ∗ 6 = 3744

or alternately a slight variation in process:

P (13; 2) · C(4; 3) · C(4; 2) = 156 ∗ 4 ∗ 6 = 3744

FLUSH (ALL OF THE SAME SUIT INCLUDING STRAIGHT FLUSH):

C(4; 1) · C(13; 5) = 4 ∗ 1287 = 5148

FLUSH BUT NOT STRAIGHT FLUSH:

5148− 40 = 5108

STRAIGHT (INCLUDING STRAIGHT FLUSH):

C(10; 1) · [C(4; 1)5] = 10 ∗ (45) = 10 ∗ (210) = 10 ∗ 1024 = 10, 240

STRAIGHT BUT NOT STRAIGHT FLUSH:

10240− 40 = 10200

THREE OF A KIND:

C(13; 3) · C(3; 1) · C(4; 3) · C(4; 1) · C(4; 1) = 286 ∗ 3 ∗ 4 ∗ 4 ∗ 4 = 54, 912

TWO PAIR:

C(13; 3) · C(3; 2) · C(4; 2) · C(4; 2) · C(4; 1) = 286 ∗ 3 ∗ 6 ∗ 6 ∗ 4 = 123, 552

ONE PAIR:

C(13; 4) · C(4; 1) · C(4; 2) · C(4; 1) · C(4; 1) · C(4; 1) = 715 ∗ 4 ∗ 6 ∗ 4 ∗ 4 ∗ 4 = 1, 098, 240
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NOTHING (NO PAIR NOR STRAIGHT NOR FLUSH):

C(13; 5) · C(4; 1) · C(4; 1) · C(4; 1) · C(4; 1) · C(4; 1) = 1287 ∗ (45)− 10200− 5108− 40

= 1317888− 10200− 5108− 40 = 1, 302, 540

Thus, for the different hands in non-overlapping types we have

ROYAL FLUSH:..........................................................4
NON-ROYAL STRAIGHT FLUSH:..........................36
FULL HOUSE:.........................................................624
FOUR OF A KIND:...............................................3744
FLUSH BUT NOT STRAIGHT:............................5108
STRAIGHT BUT NOT FLUSH:..........................10200
THREE OF A KIND:..........................................54, 912
TWO PAIR:.......................................................123, 552
ONE PAIR:.....................................................1, 098, 240
NOTHING:.....................................................1, 302, 540

GRAND TOTAL:............................................2, 598, 960

Of course to calculate the probability of being dealt any of these types of hands, you simply
divide the number for that type in the table by the grand total of C(52; 5) = 2, 598, 960, which
is the total number of possible 5 card Poker hands. In particular, the probability of nothing is

P (NOTHING) =
1302540

2598960
= .501177394,

which means there is a roughly 50 percent chance of getting nothing and a 50 percent chance
of getting something whenever you are dealt 5 cards from a standard 52 card deck, the chance
of getting nothing being only very slightly better than the chance of getting something.
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63. LECTURE MONDAY 28 SEPTEMBER 2009

NO CLASS TODAY BECAUSE OF YOM KIPPUR.

64. LECTURE WEDNESDAY 30 SEPTEMBER 2009

Today we discussed independence for pairs of statements or events, sequences of independent
trials for a repeatable experiment, and the binomial and multinomial distributions.

We say that statement A is Independent of statement B, provided that knowing B is true
does not effect the probability that A is true, that is more precisely, A is independent of B if
and only if

P (A|B) = P (A).

Since the multiplication rule tells us that always

P (A|B)P (B) = P (A & B),

we see that A is independent of B if and only if

P (A & B) = P (A)P (B).

But this last condition would be true if and only if B is independent of A, so we see that the
following five statements all say the same thing:

A is independent of B,

P (A|B) = P (A),

P (A & B) = P (A)P (B),

P (B|A) = P (B),

B is independent of A,

that is, if any one of the above five statements are true, then all are true. If any one of the
above five statements is true for A and B, we say that A and B are mutually independent, and
thus we know all five are true.

Suppose that we have a repeatable experiment and that we have say 3 mutually exclusive
statements about the outcome for any one single trial of the experiment. For instance, suppose
we are tossing a dice over and over, and

A = {1, 2}

B = {3, 4}
C = {5, 6},

so we know that each time the dice is tossed, the outcome is A or B or C. When we toss the
dice 4 times, the outcome can be specified by a sequence of symbols or a ”word”. For instance,
the word

ABAC

means that on for the first toss A is true, on the second toss B is true, on the third toss,
A is true, and on the fourth toss C is true. Thus all the outcomes for the sequence of four
tosses are four letter words using the alphabet A,B,C. Notice that the word ABAC indicates
in particular that A happened twice, but that is not the only outcome where A happens twice.
If the outcome (sequence of outcomes) had been instead AABC or AABB, it would again be
the case that A happened twice. But if we ask for all outcomes where A happens twice and B
happens once, we would have all possible four letter words obtained by rearranging the letters
of the word AABC. We know that number is

C(4; 2, 1, 1) = C(4; 2, 1) =
4!

2!1!1!
,
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using the same counting method we used to count the number of ways to rearrange the letters in
the word MISSISSIPPI. On the other hand, assuming the successive tosses are independent,
we know that

P (AABC) = P (A)P (A)P (B)P (C) = [P (A)]2[P (B)]1[P (C)]1.

In fact if WXY Z is any word which results from rearranging the letters AABC, then

P (WXY Z) = P (W )P (X)P (Y )P (Z) = [P (A)]2[P (B)]1[P (C)]1.

As a result, if T is the statement that A happened twice and B happened only once, which
means that C must happen once, then

P (T ) = C(4; 2, 1, 1)[P (A)]2[P (B)]1[P (C)]1.

For more detail, let S be the set of all words which result from rearranging the letters in the
word AABC. We then have

n(S) = C(4; 2, 1, 1).

For each W ∈ S, we have

P (W ) = P (A)P (A)P (B)P (C) = [P (A)]2[P (B)]1[P (C)]1,

whereas these words in S are all mutually exclusive outcomes. We therefore have

IT = ΣW∈SIW ,

so

P (T ) = E(IT ) = ΣW∈SE(IW ) = ΣW∈SP (W )

= ΣW∈S [P (A)]2[P (B)]1[P (C)]1

= C(4; 2, 1, 1)[P (A)]2[P (B)]1[P (C)]1.

In these situations of dealing with words, it is convenient to use the expression Ak to be the
word formed by simply repeating the letter A sequentially k times, that is the k−letter word
with only the letter A. Then we can include such an expression in a word, so AABC = A2BC.
Thus, all words in S are rearrangements of A2BC.

More generally, if we have a repeatable experiment with possible outcomes of typesA1, A2, , , , Am
and if we perform n independent trials, we can ask for the probability that we have r1 results
of type A1, and r2 results of type A2, and so on, so rm results of type Am. Let us call this
outcome the statement T (r1, r2, ..., rm). Notice we must have

r1 + r2 + ...+ rm = n.

All the words representing outcomes for which T (r1, r2, ..., rm) is true are the words gotten by
rearranging the letters of the single word

Ar11 A
r2
2 ...A

rm
m .

We then have, using the same reasoning as before, that in general,

P (T (r1, r2, ..., rm)) = C(n; r1, r2, ..., rm)[P (A1)]r1 [P (A2)]r2 ...[P (Am))]rm .

Again, this is because the statement T (r1, r2, ..., rm) is simply that the outcome is any one of
the C(n; r1, r2, ..., rm) words which can be obtained by rearranging the letters of Ar11 A

r2
2 ...A

rm
m

and each has the same probability, namely

P (Ar11 A
r2
2 ...A

rm
m ) = [P (A1)]r1 [P (A2)]r2 ...[P (Am))]rm .

Of particular interest is the case where n = 2 and on each trial either A happens or it does
not. In this case, the distribution giving the probability that A happens exactly k times in n
trials is called the binomial distribution. We worked an example with the binomial distribution
using the calculator’s distribution menu.
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For instance, if a policeman is hiding behind a tree with a radar gun watching 100 cars go
by, and if in general 30 percent of the cars speed, then he should expect to find 30 speeders,
but the chance of that is actually very small. There are 101 possibilities here for the number of
cars he finds speeding: 0,1,2,3,...,100. If we ask for the chance that he finds 27 cars speeding,
it would be

binompdf(100, .3, 27) = C(100; 27)(.3)27(.7)73.

The binomial distribution in the calculator is in the distribution menu which is the second
function of the ”VARS” button. Here is is useful to think of the number T that he will find
speeding as an unknown, so we have E(T ) = 100(.3) for the expected value of T, and we say
that T has the binomial distribution binomial(100, .3) and loosely speaking, we say that T
is binomially distributed here. More generally, if we have n independent trials with success
probability p, on any one individual trial, then we say T, the total number of successes in n
trials is binomially distributed or more precisely, has the distribution binomial(n, p). In that
case,

P (T = k) = binompdf(n, p, k) = C(n; k)pk(1− p)n−k.
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65. LECTURE FRIDAY 2 OCTOBER 2009

Today we discussed the hypergeometric and binomial distributions and how to tell which to
use.

In general, to say we know the distribution of the unknown X is to say that no matter what
two numbers a and b are given us, we can always give

P (a < X ≤ b).

If X is a count such as the number of times heads comes up when a coin is tossed 30
times, then we know that X can only have whole number values and in this case, we know the
distribution as soon as we know

P (X = k)

for every possible whole number k. For instance, in this case,

P (2 < X ≤ 5) = P (X = 3) + P (X = 4) + P (X = 5).

For the case of unknowns which are counts, we will deal mainly with the hypergeometric,
the binomial, and the Poisson distributions. The Poisson distribution will be discussed after
Test 2. For Test 2, you will need to know the hypergeometric and binomial distributions.

In general, the situation for these two counting distributions (binomial or hypergeometric)
is the situation of repeated trials. There are two cases which predominate.

CASE A: you have some finite population (say a deck of cards or a box of blocks or a room
full of people) and you are drawing repeatedly from the population WITHOUT REPLACE-
MENT. In this case, the successive draws are NOT INDEPENDENT OF EACH OTHER. If
some property is counted out of what you drew (the number of diamonds, the number of red
blocks, the number with high blood pressure), then the count has the HYPERGEOMETRIC
DISTRIBUTION.

CASE B: you are drawing WITH REPLACEMENT from a finite population, or you have an
effectively infinite population-a situation where you can repeat the experiment ad infinitum and
on each trial probability of success is the same no matter what you know about the previous
results. For example, tossing a dice over and over an counting the number of times an even
number comes up, or tossing a coin over and over and counting the number of times heads
comes up.

For instance, suppose that you have a box containing 20 blocks of which exactly 5 are RED.
If we draw 10 blocks one after another, then the number R of red blocks we will get is an
unknown before we actually draw the 10 blocks. Let Rk be the statement that kth draw results
in a red block. Clearly we know in either CASE A or CASE B, each time we draw a block we
have a 25 percent chance it will be red,

P (Rk) = P (get red block) =
1

4
.

Thus in either case we know that

E(R) = (10)(
1

4
) =

5

2
= 2.5.

However, it is obvious that in CASE A

P (2ndRed|1stRed) 6= P (2ndRed) =
1

4
,

whereas in CASE B it is obvious that

P (2ndR|1st) = P (2ndR) =
1

4
.

That is we have

P (R2|R1) 6= P (R2) = .25
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in CASE A, whereas in CASE B we have

P (R2|R1) = P (R2).

In CASE A, the result of the second draw is DEPENDENT on the result of the first draw, red
blocks are getting use up each time one is drawn. If we see that the first 5 blocks drawn are
red in CASE A, then we know it is impossible to ever draw another red block as they have all
been used up. In CASE B, since blocks are being replaced after each draw, we could in fact end
up with R = 10 even though there are only 5 blocks in the box. If we are tossing a dice and
counting the number of times a 6 comes up, there is no limit to the number, then no matter
how many times we get a 6, we know it is always possible to get a 6 on the next toss with the
same probability as on the first toss. Of course, if we toss a dice 99 times and get 6 on every
toss, then we are pretty sure the next toss will result in a 6, whereas if we had never tossed the
dice before, we would assume a probability of 1/6 for the chance of getting a 6. The point is,
that after we know the probability of tossing a 6 and are sure of it, then the probabilities do not
change as we continue to toss the dice. The successive tosses are independent in this situation.
In either the dice toss or the box of blocks situation, the essential property of CASE B is that
as we are about to do each trial, the experimental set up is back to its original state as far as
our information is concerned. To make this clearer, consider the experiment of drawing cards
successively from a standard deck. In CASE A, the deck is initially shuffled, so we have no idea
where any specific cards are in the stack. In CASE B, each time a card is drawn, we record the
result, put the card back in the deck and reshuffle the deck. Now, the deck changes its physical
state after each reshuffle, but our information is the same after each reshuffle-we have no idea
where any specific card is.

If you understood the method of calculating probabilities for Poker hands which we went
over in a previous lecture, then calculating the probabilities in the case of the hypergeometric
distribution is easy. For instance, in the case of the box of 20 blocks of which 5 are red, if we
draw 10 without replacement, we know we expect 2.5 red blocks. If we ask for the probability
that R = 3, we have to calculate the total number of ways to choose 10 blocks from the box,
C(20; 10), and calculate the total number of ways to draw 10 blocks so as to get exactly 3 red
blocks, which is C(5; 3)C(15; 7), since to get exactly 3 red means to choose three red and then
choose 7 not red. Thus, in CASE A,

P (R = 3) =
C(5; 3)C(15; 7)

C(20; 10)
.

More generally, suppose we have a finite population of size N from which we draw n things,
and suppose we count the number X which has some specified property S. Suppose that we
know that there are exactly M of the things in the whole population which have the property
S. In CASE A, we draw without replacement and

P (X = k) =
C(M ; k)C(N −M ;n− k)

C(N ;n)
.

We call this the formula for the HYPERGEOMETRIC DISTRIBUTION. Notice the numerator
is the number of ways to actually choose the n objects so as to get exactly k with property S.
For to do this, you must step one choose k of the M things which have property S and step two
choose the remaining n− k things from the N −M things in the population which do not have
property S. In general, the things with the property we count are called successes. Thus M
here is the size of the population of successes and N −M is therefore the size of the population
of failures.

Now lets consider CASE B. The successive draws are done with replacement, or there are
so many blocks in the box and so many red blocks in the box that for all practical purposes
no matter how many red blocks we draw, there is no significant difference in the probability
the next will be red, or the situation is like tossing the dice or flipping a coin. All trials are
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independent of each other, so each outcome can be specified as a word using two symbols S
and F, here S stands for success and F for failure. Thus,

SSFFSSFFFF

in the case of the block drawing with CASE B, that the first two blocks were red, the next
two were not red, the next two were red and the last four were not red. No matter how these
symbols are ordered, the probability of such an outcome is simply

P (S)4P (F )6.

But if we ask for P (X = 4), then we have to realize that there are many such sequences which
end up with the result that we got exactly 4 successes. The number of such sequences is simply
the number of ways to arrange these symbols to make a 10 letter word with exactly 4 S’s. This
we know is simply C(10; 4). Thus,

P (X = 4) = C(10; 4)P (S)4P (F )6.

In general, we write

p = P (S)

and call this the success probability or the success rate. It is the probability of success on a
single trial, in either CASE A or CASE B. However, we now see that if we put

q = P (F ) = 1− P (S) = 1− p,

then q is the failure rate or failure probability and in n trials,

P (X = k) = C(n; k)pkqn−k.

This is the formula for the BINOMIAL DISTRIBUTION. This distribution is in your calculator
in the distribution menu as discussed in the last lecture. When you see pdf on the end of the
name of the distribution for a counting unknown, in your calculator, it stands for probability
distribution function and means that it gives the probabilities P (X = k) for any value of k you
enter in proper format. When you see cdf it stands for cumulative distribution function and
gives the probabilities P (X ≤ k) for any value of k you enter in proper format. Thus, in CASE
B, the format is

P (X = k) = binompdf(n, p, k)

and

P (X ≤ k) = binomcdf(n, p, k).

Be careful to notice that for the case of a counting unknown,

P (X < k) = P (X ≤ k − 1) = binomcdf(n, p, k − 1).

For counting unknowns, ”less than” and ”less than or equal to” are very different.
Finally, we discussed the example of airline overbooking. If an airline knows that 90 percent

of the people show up for their reservations and they do not want a lot of empty seats flying
around, then they will overbook and hope that there are enough seats for those that show up.
If there are 300 seats on a plane and 325 reservations, then there is a problem if more than 300
show up. We want to know the probability of this problem. Let X be the number of people who
show up. It is reasonable that as far as the airline knows, all the reservations are independent of
each other in the sense that if the twenty third person on the list shows up, we still no nothing
more about the others on the list. Therefore the probability of a problem can be calculated
in two ways and either gives the same result-just stay consistent with your point of view. The
first way is the probability we want is

P (X > 300) = 1− P (X ≤ 300) = 1− binomcdf(325, .9, 300).
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The other way is to think in terms of the failures. If Y is the count of failures, then the failure
rate is q = .1, that is alternately, we think of failure as success and success as failure. We are
now interested in the probability

P (Y < 25) = P (Y ≤ 29) = binomcdf(325, .1, 29).

If you do the calculations, you find the same answer either way, which is of course merely a
reflection of the fact that probability is a logically consistent theory.
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66. LECTURE MONDAY 5 OCTOBER 2009

Today we discussed problems on the practice test related to counting and reviewed for Test
2. We noted that using Pascal’s Triangle, the numbers C(n; r) for small n can be quickly
calculated because of the formula

C(n; r) + C(n; r + 1) = C(n+ 1; r + 1).

To see why this must always be true, imagine that we have a box containing 101 blocks of which
100 are white blocks and just one block is red. Imagine we want to draw 38 blocks without
replacement from this box. Notice that if you draw 38 blocks from this box, then either you
did on did not get the red block. Thus the total number of ways to do this job is the number
of ways where you do get the red block added to the number of ways where you do not get the
red block. To get 38 blocks so as to get the red block, step 1 choose the red block (only one
way-there is only one red block, C(1; 1) = 1) and step two, choose the other 37 blocks from the
remaining 100 white blocks, C(100; 37) ways. Thus there are

C(1; 1)C(100; 37) = C(100; 37)

ways to get 38 blocks out of the box so that one of them is the red block. On the other hand,
if asked to get 38 blocks from the box so as to not get the red block, then all 38 blocks must
be taken from the 100 white blocks. Thus

C(100; 37) + C(100; 38) = C(101; 38).

There is obviously nothing special about the numbers 100 and 37 here, so in general, if we have
n+ 1 blocks in the box of which n are white and one is red, and if we draw r+ 1 blocks without
replacement, then we either do or do not get the red block, so

C(n; r) + C(n; r + 1) = C(n+ 1; r + 1).

Obviously, the number of ways to choose nothing from the empty set is 1, so C(0; 0) = 1. In
fact, it is obvious that for any n we must have

C(n; 0) = 1 = C(n;n),

since there is only one way to choose nothing and there is only one way to take everything. We
also know that

C(n; 1) = n = C(n;n− 1),

since there are n ways to choose a single thing from a set of n things, and there are n ways to
leave one thing behind taking all but one thing which means n ways of choosing n − 1 things
from the n things. Thus, if we arrange the numbers C(n; r) for fixed n all in a horizontal row,
as

C(n; 0) C(n; 1) C(n; 2) ... C(n;n− 2) C(n;n− 1) C(n;n),

then for sure we will see
1 n C(n; 2) ... C(n;n− 2) n 1.

We can then use the formula for Pascal’s Triangle

C(n; r) + C(n; r + 1) = C(n+ 1; r + 1)

to fill in the terms in the line for choosing from n + 1 things giving the numbers C(n + 1; r)
from the line for choosing from n things.
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We start off with the line for choosing from nothing, n = 0. Of course it only has the single
number 1 = C(0; 0). We then fill in below the lines for higher values of n using the formula for
Pascal’s Triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

Each number in the array is the sum of the two numbers above closest to it, so it can easily
be written down as shown, and it provides the numbers C(n; r) quickly for n ≤ 9.
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67. LECTURE WEDNESDAY 7 OCTOBER 2009

Today we had TEST 2 in lecture class.

68. LECTURE FRIDAY 9 OCTOBER 2009

Today we discussed the Poisson distribution. We began by discussing the difference between
discrete and continuous quantities. For us, the difference is simple. If you are dealing with
something you count, then its a discrete quantity, whereas if you are dealing with something
you have to measure with some form of measuring device, then it is a continuous quantity.
Thus, height, weight, blood pressure, volume, area, length, time, are all continuous quantities.

We have already dealt with continuous unknowns, but we have not dealt with the specific
technicalities of their distributions, whereas we have done so for two discrete counting distri-
butions: the hypergeometric and the binomial, which in reality are whole infinite families of
distributions. In particular, an important parameter of these distributions is the sample size,
which is the number of trials, denoted n. For these distributions, it is obviously a discrete
quantity. It tells the number of things examined where we were counting successes. However,
sometimes we count successes when the amount we examine must be specified by a continuous
quantity. For instance, we could stand at a trolley stop for two hours and count the number
of trolleys that arrive during that time. The unknown we are observing here is discrete, but
the sample size is now a continuous quantity. This tells us we cannot be dealing with either
the binomial or hypergeometric distributions. In this situation, we are dealing with the Pois-
son distribution. Here, we must assume that disjoint intervals of time are independent of one
another. That is, we assume that if we watch from 5pm to 7pm, and if we see 3 trolleys arrive
between 5pm and 5:15 pm, then that does not give us any help in guessing what will happen
between 5:15pm and 5:45pm, as the two intervals of time are disjoint. Notice the two time
intervals actually do have 5:15pm in common, but we shall see that for continuous quantities,
a single point is negligible.

For the Poisson distribution, the only parameter is the expected value, µ. Thus, if X is the
number of tadpoles in a gallon of water taken from a pond in the swamp, and if we assume that
the numbers of tadpoles in disjoint volumes of water are independent of each other, and if we
expect 7.3 tadpoles per gallon ”on average”, then the entire Poisson distribution is determined
by the number 7.3. If we examine a particular gallon of pond water here, the probability of
finding 6 tadpoles is

P (X = 6) =
(7.3)6e−7.3

6!
= poissonpdf(7.3, 6).

In general, if X is any unknown count having the Poisson distribution with mean µ, then

P (X = k) =
µke−µ

k!
= poisonpdf(µ, k).

We note the fact that we can make sense of adding up an infinite number of numbers here
(summing a series) and that

eµ =

∞∑
k

µk

k!
.

Notice that for the Poisson unknown with mean µ, the probability P (X = k) is simply the
result of dividing the kth term of the series by eµ. Since the sum of the series is eµ, this means
that the sum of the probabilities must be 1. That is,

∞∑
k

P (X = k) = 1.
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Of course, you can notice right away that if we have any sequence of positive numbers

b1, b2, b3, ...

and if the series has a sum, say

S =

∞∑
k

bk,

then we can form a distribution for a counting unknown by setting

P (X = k) =
bk
S
,

since then all the probabilities are guaranteed to add up to 1. However, this procedure usually
does not produce anything practical.

If we need to know P (X ≤ k), then we calculate using the cdf in our calculator. Thus, for
the Poisson distribution,

P (X ≤ k) =
∑
i≤k

P (X = i) = poissoncdf(µ, k).

We also noticed that if X is governed by the Poisson distribution with mean µ, then it can
be easily rescaled to deal with different sample sizes. For instance, is we expect µ = 6 trolleys
per hour on average at the trolley stop, then we expect 3 in a half hour and twelve during two
hours. Thus if asked for the probability that 4 trolleys arrive between 5pm and 5:30pm, the
answer is

P (X = 4) = poissonpdf(3, 4).

If asked the probability that 2 trolleys arrive between 5pm and 5:15pm, we note that during
one quarter hour we expect 6/4 = 1.5 trolleys to arrive, so the answer is

P (X = 2) = poissonpdf(1.5, 2).

We can notice in the trolley example, that during a single minute we expect µ = 1/10 trolleys
to arrive. We can view this as being equivalent to having a 10 percent chance of seeing a whole
trolley during any given single minute. Since all the successive single minutes are independent
of each other, we might guess that it is reasonable to try using the binomial distribution. To
do this, we regard the hour as consisting of 60 independent trials, each having a ten percent
chance of success. In fact, if we do this we find that for k near 6,

binompdf(60, .1, k) =ap= poissonpdf(6, k).

Here I use

=ap=

to denote ”approximately equal”. If we replace the one minute intervals by six second intervals,
then there are 600 disjoint 6 second intervals making up the full hour, and in each we expect
µ = 1/100 trolleys to arrive or alternately, we can think that there is a one percent chance of a
whole trolley arriving in a give 6 second interval. In this case, we find that the approximation

poissonpdf(6, k) =ap= binompdf(600, 1/100, k)

is much more accurate. In fact, for any Poisson unknown X with mean µ is what is expected
per unit size sample, we can regard the unit as a disjoint union of n smaller samples of size
1/n. Then in each we expect the count to be µ/n. When we choose n so large that µ/n is small
and much less than 1, we can regard this as saying that µ/n is the probability the count will be
exactly 1 for that small sample examined, and the unit sample becomes n independent trials
for getting a whole to appear. We then find that as n gets very very large, the approximation
can be made extremely accurate

P (X = k) = poisson(µ, k) = binompdf(n, µ/n, k),
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for k near µ. How near k has to be to µ will depend on how big n is taken to be. In fact, it can
be shown precisely that for any k, we have

lim
n→∞

poisson(µ, k) = binompdf(n, µ/n, k).

The last topic of the lecture was the use of the Poisson distribution to determine probabilities
for a continuous unknown, the waiting time. For instance in the trolley example, we can ask
what is the probability that I have to wait more than 15 minutes for a trolley. Notice that is
exactly the same as saying the for the first fifteen minutes zero trolleys arrive. If trolleys arrive
at 6 per hour, then in fifteen minutes I expect 1.5 trolleys, so if W is the waiting time, we have

P (W > 15) = poisson(1.5, 0).

In general, if t ≥ 0, then during t hours, we expect µt trolleys to arrive, so the probability we
must wait longer than than time t is

P (W > t) = poisson(µt, 0).

For instance, in the example we have t = 1/4 hour, so µt = 6 ∗ 1/4 = 1.5. We can also recall
here that

poissonpdf(µ, k) =
µke−µ

k!
,

so this means that

P (W > t) =
(µt)0e−µt

0!
= e−µt.

Thus,
P (W ≤ t) = 1− P (W > t) = 1− e−µt.
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69. LECTURE MONDAY 12 OCTOBER 2009

Today we began by reviewing the difference between continuous and discrete quantities. In
practical terms, to determine the value of a discrete quantity we generally have to count,
whereas to determine the value of a continuous quantity we generally have to measure. We
then reviewed the counting distributions including the Poisson distribution from the last lecture.
We noted that of the three counting distributions, only the Poisson distribution has the sample
size specified as a continuous quantity. The amount of ”stuff” examined to determine the count
has a continuous measure. For instance, if we watch a trolley stop for 2.3 hours and count the
number of trolleys that arrive, then even though the unknown here is discrete, the sample size
is the amount of time we watch which must be measured. For the hypergeometric and binomial
distributions, there is always a number of trials, denoted by n since it is the sample size. Thus,
to determine which distribution to use, if the question asks the probability of a certain number
of successes, and if there is a continuous amount examined, then we would check that the
assumptions of the Poisson distribution are in effect. If the sample size or amount examined for
successes must be a whole number of trials, then we either have the hypergeometric or binomial
distributions. In that case, if we are drawing without replacement from a finite population,
then the distribution is hypergeometric, otherwise, we would check to see that the trials are
independent, in which case the distribution of the count is binomial.

We reviewed the computations of Poisson probabilities and reviewed the fact that the waiting
time distribution can be calculated using the Poisson distribution. That is, if we expect µ per
unit time, and if W is the time we will have to wait, then

P (W > t) = poissonpdf(µt, 0) = e−µt,

and therefore

P (W ≤ t) = 1− e−µt.
We discussed the idea of representing distributions with pictures. In the case of a discrete

counting distribution, the picture is naturally formed by putting a horizontal axis with the
possible values of the count equally spaced on the horizontal axis, and then using a chosen
vertical scale, we draw a spike over each possible value whose height is the probability of that
value.

In the case of a continuous unknownX, it is generally the case that there are whole continuous
ranges of possible values. For instance, if we deal with blood pressure, and if you expect my
blood pressure is 120, and if x is some number between 100 and 140, you probably would not
be able to rule that out as being my blood pressure before you measure my blood pressure.
Again, we represent the possible values on a horizontal axis, but now we cannot restrict to
whole numbers. We deal with this pictorially by imagining that there is a continuous curve
above the horizontal axis which has the property that the area under the curve between limits
a and b, that is the area trapped under the curve and above the horizontal axis between the
vertical lines through x = a and x = b, actually gives the probability that X is between a and
b. We call the function fX whose graph gives this curve the Probability Density Function
for X. Thus, in the case of my blood pressure, if you had a picture of the curve representing
the probability density function for my blood pressure, then the area under that curve between
x = 100 and x = 140 would give the probability that my blood pressure will turn out to be
in that range. In general here, then the total area under the whole probability density curve
between limits −∞ and ∞ must be equal to 1, since whatever the value of X is, we know it
satisfies

−∞ < X <∞,
for sure.

In general, if X is any unknown, it could be a mixture of continuous and discrete. Its picture
would have a density function as well as a possible countable infinity of spikes. If A is the total
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area under the density curve and T is the total of the heights of all the spikes, then we have
the constraint

A+ T = 1.

Here, if two numbers a and b are given, then to find P (a < X ≤ b), we compute the area
under the density curve between these two limits and as well we add up the total heights of all
the spikes we find in that range, and the sum is the probability we are looking for. However,
in practical problems, we almost never run into the situation where we have this mixture of
continuous and discrete. Thus, in practical terms, unknowns are usually continuous (no spikes
in the picture) or else discrete (only spikes in the picture).

The first continuous distribution we encountered above was that for the waiting time. We
saw that if W is the waiting time, then when we expect µ successes in a sample size of one unit
(of time or volume or length or area and so on), we can calculate using the equation

P (W > t) = 1− e−µt

and

P (W ≤ t) = 1− e−µt.
If we look at the graph of y = e−µt as t varies from 0 to ∞, we see that it is continually
decreasing, getting to zero at ∞, so the probability of waiting forever is zero. Likewise, we see
that as t increases therefore the probability of waiting no more than time t is increasing, getting
to 1 at ∞. If we ask for the probability that your waiting time is between the limits a and b,
with a < b, then that must be

P (a < W ≤ b) = P (W ≤ b)− P (W ≤ a) = 1− e−µb − [1− e−µa] = e−µa − eµb.

We therefore have a way of calculating all probabilities for the waiting time unknown, so we
have the entire distribution.

The first thing to notice about a continuous unknown X is that if v is any real number, the
probability that X takes the exact value v must be zero. For this would be the area between
the limits x = v and x = v. There is no area between. It is as if our method is telling us
to find the area of the spike whose height is the height of the density curve over the precise
point v on the horizontal axis-there is no area of in a geometric line segment such as a spike.
Thus, the probability my blood pressure is exactly 120 is zero!! How can we reconcile this fact
with the idea that we expected my blood pressure to be 120, and when the measurement is
carried out, the result is actually a number. The answer here is that whenever we observe a
continuous unknown, we must always measure and measurement always has limits to accuracy.
Thus, in any application of a measuring device there is always a specified level of accuracy for
the measurement. If we want to measure my blood pressure to 2 decimal place accuracy and
if the value reported is 123.46, then that really means that my blood pressure was somewhere
between 123.455 and 123.465, and that is a continuous range of possibilities. So, there will be
positive area trapped under the density curve between these two limits, and thus there will be
a positive probability of such an observed value. In general then if X is any unknown and x is
any real number,

P (X = x, exactly) = 0,

but if x is a two decimal place number, then very possibly

P (X = x, to two decimal place accuracy) > 0.

We finally discussed the normal distribution. If X is normal with mean µ and standard
deviation σ, then

fX(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )2 .

This probably looks very mysterious at first glance, but the fraction in front of the e is just a
normalization factor to make the total area under the density curve equal to 1, which we know
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must be the case for any density curve. We can next notice that

x− µ
σ

= z,

the standard score. Thus, if we put A = σ
√

2π, then the density for the normal distribution
becomes simply

fX(x) =
1

A
e−z

2/2.

Evidently, A must be the area under the curve

y = e−z
2/2

where z is dependent on x. This means that the probabilities are really only depending on the
standard scores, so we could standardize everything and then calculate probabilities. If Z is a
standard unknown, it has mean zero and standard deviation one. Thus we have

fZ(z) =
1√
2π
e−z

2/2 =
1

A
e−z

2/2,

that is here the area under the curve
y = e−z

2/2

as a function of z is just A =
√

2π, and the probabilities are determined by simply converting
everything to standard scores. Thus, if µX = 120 and σX = 15, then the probability that X is
within one standard deviation of the mean is P (105 < X < 135) whereas the probability that
X is within two standard deviations of the mean is P (90 < X < 150). We then have

P (105 < X < 135) = P (−1 < Z < 1)

and
P (90 < X < 150) = P (−2 < Z < 2).

If X is normally distributed, then we can calculate the probability density curve using the
distribution menu

fX(x) = normalpdf(x, µ, σ).

To actually calculate a probability, we must calculate an area under the curve between two
given limits. Thus,

P (a < X ≤ b) = P (≤ X ≤ b) = normalcdf(a, b, µ, σ).

You can check for instance that

normalcdf(105, 135, 120, 15) = normalcdf(−1, 1, 0, 1)

with a value of about 68 percent. This tells us that about 68 percent of any normal population
is within one standard deviation from the mean. You can also check that

normalcdf(90, 150, 120, 15) = nomalcdf(−2, 2, 0, 1)

with a value of about 95 percent. This tells us that about 95 percent of any normal population
is within 2 standard deviations of the mean. Likewise,

normalcdf(75, 165, 120, 15) = normalcdf(−3, 3, 0, 1)

with a value of about 99.7 percent, which tells us that about 99.7 percent of any normal
population is within 99.7 percent of the mean. If you are only dealing with percentages to the
nearest whole percent, then 99.7 rounds off to 100 percent. Thus, in many practical situations
we can think of the whole normal population as lying within 3 standard deviations of the true
mean. When we come across an observation that is more than 3 standard deviations from the
true mean, we should either think of it as remarkable or possibly caused by some problem.
Thus, if someone’s blood pressure is three standard deviations above the mean, they probably
need immediate medical attention.
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70. LECTURE WEDNESDAY 14 OCTOBER 2009

Today we continued discussing the normal distribution. We began recalling the distribution
f = fX for a normal unknown with mean µ and standard deviation σ is given by

f(x) =
1

σ
√

2π
e−z

2/2, z =
x− µ
σ

,

so z is simply the standard score for x. We looked at the graph of

Y1 = e−.5X
2

using the graphing capability of the calculator and noted that geometrically it has the same
shape as the normal distribution, or what in everyday language is called the ”bell curve”.

Next, we did some calculations of probabilities with the normal distribution. Remember,

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b) = normalcdf(a, b, µ, σ),

for any two numbers a and b with a ≤ b. Also remember, for any a we have

P (X = a exactly) = 0

and therefore also

P (X = b exactly) = 0,

which accounts for why all the different inequality conditions above have the same probability.
As a matter of fact, since the calculator calculates areas under the distribution by integration,

and as integration from right to left is the negative of integration from left to right, we can find
that always, for any two numbers a and b it is true that

normalcdf(a, b, µ, σ) = −normalcdf(b, a, µ, σ).

This means that if you accidentally put the larger number in before the smaller number, the
answer will be a negative number. But we know probability can never be negative, so if you get
a negative answer, the first place to look for your mistake here is to check you put the numbers
in correctly. We will see that in certain situations, it is useful to put the larger number first.

Suppose we ask for the probability of being below average in a normal population. By
symmetry of the distribution, we see that must be 50 percent, no calculation required. What
is the chance of being exactly average? That has to be ZERO! Remember, the probability of
any value happening exactly is zero. Likewise, then, the probability of being above average is
exactly 50 percent.

Sometimes we want to know a probability such as the probability of being less than a specific
number x. This is apparently the area under the distribution curve from x all the way left to
−∞. We call such a region under the curve a tail and its area is called a tail area. More
specifically, since the region extends to the left all the way to negative infinity, we call it a left
tail. There is no way to enter −∞ into the calculator. Using any very very large number with a
negative sign in front will give an approximate answer. To get the most accurate answer using
the calculator, we can notice that in case µ ≤ x, we just have

P (X ≤ x) = P (X ≤ µ) + P (µ < X ≤ x) = .5 + normalcdf(µ, x, µ, σ).

In case x < µ we want to subtract the the area between x and µ from 1/2 and this is the same
as adding with the limits entered in reverse order, so we have

P (X < x) = P (X ≤ x) = P (X ≤ µ)− P (x < X ≤ µ)

= .5− normalcdf(x, µ, µ, σ) = .5 + nomralcdf(µ, x, µ, σ).

Notice this means that we have in either case, no matter whether or not x exceeds µ that we
can always calculate the left tail area as

P (X ≤ x) = .5 + normalcdf(µ, x, µ, σ).
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You can think of this as being the result of getting from −∞ to x by going through µ. The 1/2
gets you from −∞ to µ and the normalcdf(µ, x, µ, σ) gets you from µ to x and the computer
does not care where x is in relation to µ.

In case of a right tail, that is a region described by X ≥ x, we calculate its area in case x < µ
as

P (X > x) = P (X ≥ x) = P (X > µ) + P (µ ≤ X ≤ x)

= .5 + normalcdf(x, µ, µ, σ) = .5− normalcdf(µ, x, µ, σ).

If x ≥ µ, then we want to subtract the area between µ and x from 1/2, so we get

P (X ≥ x) = .5− normalcdf(µ, x, µ, σ),

which is again the same result. Thus, if we call The right tail area A+ and the left tail area
A−, then we have

A± = .5∓ normalcdf(µ, x, µ, σ),

in general.
Another type of problem we often encounter is the problem of calculating a probability of

being within a certain distance d from a specific number c. To say the distance from X to c is
less than d is the same as saying

|X − c| < d

which is also the same as saying

c− d < X < c+ d.

Therefore,

P (|X − c| < d) = normalcdf(c− d, c+ d, µ, σ).

Finally we have problems where the information effectively gives us an area under the dis-
tribution curve and we want the boundaries of the region. For instance, if we know µ and σ for
a specific normal population, we might want to know the score x for which 90 percent is below
x and only 10 percent is above x. This means we want to solve the equation

P (X < x) = .9.

Notice this is going backwards, we have the probability, we want to know the boundary score.
Whenever we go backwards in mathematics we call it inversion, and here we use the inverse
normal in the calculator. Thus, we have

x = invNorm(.9, µ, σ).

In general, if we want to know the cut off score for a given left tail area A, the score is x given
by

x = invNorm(A,µ, σ).

We refer to these scores as centile scores in every day language. Thus, invNorm(.9, µ, σ) is the
90th percentile score. If you beat this score, you are in the top 10 percent. If you do not beat
this score, you are in the bottom 90 percent. We would thus also call this score the upper 10
percentile score.

If we want to know the score x for which P (−x < X < x) = .8, then we notice that from
symmetry

.2 = P (not [−x < X < x]) = P (X < −x) + P (X > x) = 2P (X < −x) = 2P (X > x).

Thus P (X > x) = .1 and P (X ≤ x) = 1−.1 = .9.We therefore have again x = invNorm(.9, µ, σ).
Notice that .9 is half way from .8 to 1. In general, if we want x so that

P (−x < X < x) = A,

then

P (X < −x) = P (X > x) =
1−A

2
,
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so

P (X < x) = 1− 1−A
2

= A+
1−A

2
=

1 +A

2
.

This means

x = invNorm(
1 +A

2
, µ, σ).

Here, notice that (1 + A)/2 is the average of A with 1, or what is the same thing, we can see
that (1 +A)/2 is half way from A to 1.

71. LECTURE FRIDAY 16 OCTOBER 2009

NO LECTURE TODAY BECAUSE OF FALL BREAK
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72. LECTURE MONDAY 19 OCTOBER 2009

Today we discussed Thebeychev’s inequality, sampling distributions, and the CENTRAL
LIMIT THEOREM. We noticed that if we are sampling the unknown X, then we are actually
creating a sequence of new unknowns

X1, X2, X3, ..., Xn,

where n is the sample size and Xk is the future value of the kth observation. Then we form the
sample total denoted Tn given by

Tn = X1 +X2 + ...+Xn

and the sample mean denoted X̄n and given by

X̄n =
1

n
Tn.

We showed that
E(Tn) = nµX

and
E(X̄n) = µX ,

so in particular, whenever we take a sample, our best guess in advance of looking at the data
is that the sample mean will turn out to be the true mean.

Notice that as the sample observations are all really observations of X, they all have the
same distribution as X and therefore in particular, they all have the same mean and standard
deviation. For instance, just to take an example, suppose we have a population of tuna fish.
Let X be the weight of a tuna fish selected from this population and which is lying out in the
parking lot, where you cannot see it. If you think there is a 30 percent chance that this tuna
fish weighs between 300 and 325 pounds, then the same could be said of the weight of the third
tuna fish in our sample, which is X3. After all, the only thing we know about these tuna fish is
that they both come from the same population. Thus, whatever we know about probabilities
of various values of X can equally well be applied to X3 or any other Xk, with 1 ≤ k ≤ n.

This means all the sample observations X1, X2, ..., Xn must all have the same distribution as
X and therefore in particular, they must all have the same mean as X, which is µX , and they
must all have the same standard deviation as X, namely σX . That is, to emphasize the point,
for every k,

µXk = E(Xk) = E(X) = µX ,

and, as well,
σXk = σX ,

or what is the same thing, by squaring both sides of this last equation,

V ar(Xk) = V ar(X).

To see why these equations for the expected value of the sample total and the expected value
of the sample mean are true, we first use the Addition Rule of expectation as applied to Tn.
We have

E(Tn) = E(X1 +X2 + ...+Xn) = E(X1)+E(X2)+ ...+E(Xn) = µX1
+µX2

+ ...+µXn = nµX ,

and therefore, as far as the sample total is concerned,

E(Tn) = nµX .

But then for the sample mean X̄n we have

E(X̄n) = E(
1

n
Tn) =

1

n
E(Tn) =

1

n
nµX = µX ,

and therefore,
E(X̄n) = µX .
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Notice these equations say for instance, that if the mean weight of tuna fish is 300 pounds,
and if I know this then I would guess any sample of these tuna fish would have mean weight 300
pounds, before I actually see the data. If I know 10 of these fish are in the back of my friends
pickup truck, then I would guess the load is 3000 pounds. Of course, typically we know that
when it comes to unknowns, we often do not get what we guess or expect, and to guess how
far off our guess would be from reality depends on standard deviations. Thus we need to also
find the standard deviations for Tn and X̄n. To do this we need assumptions on covariances of
the various observations. The simplest assumption is that they are all zero which is the case if
they are all independent of each other.

We observed that for this simplest assumption, Independent Random Sampling (IRS), that
is if all the sample observation unknowns X1, ..., Xn are pairwise independent of each other,
then

σTn =
√
n σX ,

and

σX̄n =
1√
n
σX .

To see why the equations for standard deviation are true, under the assumption of indepen-
dent random sampling, we know that all the covariances between the various observations are
zero. Recall that if X and Y are independent variables, then Cov(X,Y ) = 0 and therefore

V ar(X + Y ) = V ar(X) + V ar(Y ).

Applied to our sample total, the assumption that all these sample observations are independent
means that

V ar(Tn) = V ar(X1) + V ar(X2) + ...+ V ar(Xn) = nV ar(X)

or

V ar(Tn) = nV ar(X),

so taking square roots of both sides gives

σTn =
√
nσX .

As far as the standard deviation of the sample mean X̄n is concerned, it is often referred to as
the Standard Error of the Mean, and we have

σX̄n = σ(1/n)Tn =
1

n
σTn =

1

n

√
nσX =

1√
n
σX ,

so finally we have

σX̄n =
1√
n
σX .

The Central Limit Theorem says that as n, the sample size, tends to infinity, the distributions
for Tn and for X̄n become normal. In practice, this means that if n ≥ 30, we will assume these
distributions are normal.

Tchebeychev’s inequality says that for any unknown X and for any positive number k, it is
always true that

P (|X − µX | ≥ kσX) ≤ 1

k2
.

The amazing thing about this inequality is that it is always true, we need not make any
assumptions about X and combined with our above facts about sampling distributions with
IRS, it tells us that if we take a large enough sample we will be very likely to find our sample
mean is very close to the true population mean. In fact, it means that no matter how close we
need to be to the true population mean, and no matter how sure we need to be of the result, then
we can insure this by making the sample size large enough. However, the Central Limit Theorem
comes in to play in sampling situations much more strongly than Tchebeychev’s inequality, and
guarantees that sample sizes much smaller than required by Tchebeychev’s inequality will suffice
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to give accurate estimates of population means. However, the proof of central limit theorem,
though possible with our level of theory is beyond the level of difficulty we will deal with.

The proof of Tchebeychev’s Inequality, on the other hand, is actually very easy and uses
only the basic definitions, so we will give that proof here. Remember that

σ2
X = E((X − µX)2),

by definition, and that
|X − µX | ≥ kσX

if and only if
(X − µX)2 ≥ k2σ2

X .

Let A stand for the statement that |X − µX | ≥ kσX . Thus, in terms of A, Tchebeychev’s
Inequality says merely

P (A) ≤ 1

k2
.

Now A is equivalent to
(X − µX)2 ≥ k2σ2

X .

And as A is a statement, it is either true or false, so let IA be the indicator of A. Thus, IA is
an unknown, and it is either one or zero. It is one if A is true and zero if A is false. Now, we
can form the unknown

k2σ2
XIA,

and we can ask how it compares to
(X − µX)2.

That is, we consider the inequality between unknowns

(X − µX)2 ≥ k2σ2
XIA.

We will now see that the above inequality is actually true. After all, if A is false, then the right
hand side is zero and the square of any number is at least zero, whereas if A is true, then the
right hand side of the inequality is k2σ2

X but when A is true, this is less than or equal to the
left hand side, by definition of what statement A says. The inequality has to be true whether
or not A is!! We therefore know from our basic rules of expectation, that

E((X − µX)2) ≥ E(k2σ2
XIA) = k2σ2

XE(IA).

But by definition of probability,
P (A) = E(IA),

and also by definition,
σ2
X = E((X − µX)2),

so
σ2
X ≥ k2σ2

XP (A),

and after canceling, we have
k2P (A) ≤ 1,

so finally

P (A) ≤ 1

k2
,

which is Tchebeychev’s Inequality.
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73. LECTURE WEDNESDAY 21 OCTOBER 2009

Today we discussed the application of the formulas for mean and standard deviation of the
sampling distributions for sample total and sample mean. If X is any unknown for which
repeated observations can be made, and if we take a sample, the sample data before we see
the data is a sequence of unknowns X1, X2, ..., Xn all having the same distribution as X and
therefore the same mean and standard deviation as X. We denote the sample total by Tn and
the sample mean by X̄n. Notice they are capitalized as they are new unknowns-before we look
at the sample data, we do not know their values. We found that

E(Tn) = nµX

and
E(X̄n) = µX .

Moreover, if we use independent random sampling (IRS) so all observations are independent of
each other, then

σTn =
√
nσX ,

and

σX̄n =
1√
n
σX .

We also discussed the Central Limit Theorem which says as n tends to ∞ that Tn and
X̄n become normally distributed. Moreover, in practical applications, we assume these two
unknowns are normal whenever n ≥ 30.

We observed that if we are trying to keep a lamp lit with a bunch of light bulbs, then the
amount of time we keep the lamp lit is an example of a sample total, and so if X is the life
of a light bulb from a certain population of light bulbs, and if we choose n bulbs from this
population, then the time we expect to keep our lamp lit is nµX . For instance, if a typical bulb
is expected to last 750 hours, then we expect for 10 of these bulbs to be able to provide 7500
hours of light and 100 of these bulbs to provide 75000 hours of light. If σX = 25 hours, then
to calculate the probability that we get at least 7000 hours from 10 bulbs, we must know the
distribution of T10. If we know the population of bulbs is normal, then so are T10 and X̄10.
Thus we can say

P (get 7000 hours of light) = P (Tn ≥ 7000)

= .5 + normalcdf(7000, 7500, 7500, 25 ∗
√

10) =ap= 1,

so we can be virtually certain to be able to have at least 7000 hours of light from our 10 bulbs
if we assume that X is normal. If we have 100 bulbs, then we do not need to assume that X
is normal to use the normal distribution in the probability computation. The Central Limit
Theorem allows us to assume that Tn and X̄n are both normal as n ≥ 30, if n = 100. Thus, the
probability that 100 bulbs will keep our lamp lit for at least 74000 hours is

P (T100 ≥ 74000) = .5 + normalcdf(74000, 750 ∗ 100, 750 ∗ 100, 25 ∗
√

100) =ap= .999999,

which means again that we are virtually certain to have at least 74000 hours of light from the
100 bulbs.

In case of average life for 10 bulbs, if we ask for the probability that 10 bulbs have an average
life between 753 and 757 hours, then assuming X is normal, the so is X̄10, and therefore

P (753 ≤ X̄10 ≤ 757) = normalcdf(753, 757, 750, 25/
√

10).

For 100 bulbs we do not need to assume normality as the Central Limit Theorem gives it to us,
and automatically

P ((753 ≤ X̄100 ≤ 757) = normalcdf(753, 757, 750, 25/
√

100).

Notice in all these examples how the formulas for mean and standard deviation come in.
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74. LECTURE FRIDAY 23 OCTOBER 2009

Today we discussed the sampling distribution and how the distributions for sample mean
X̄n and sample total Tn depend on whether we are doing independent random sampling (IRS),
or Simple Random Sampling (SRS). For sampling the unknown X remember we are creating
new unknowns X1, X2, ..., Xn for a sample of size n, and all these unknowns have the same
distribution as X so in particular they all have mean µX and all have standard deviation σX .
We can refer to these new unknowns X1, X2, ..., Xn as the sample observations. When we
use IRS, all the sample observations are independent of each other. For instance, in a finite
population, to have IRS, we must sample with replacement. For SRS, we sample without
replacement in such a way that all subsets of n things from the population are equally likely.
For instance, when you deal a hand of 5 cards from a standard deck of cards, if the deal is fair,
then any 5 cards are just as likely as any other 5 cards-all possible 5 card hands are equally
likely and each has probability one out of 2598960. If we replace each card and shuffle after
dealing it, then we would have an IRS.

Recall that we always have

E(X̄n) = µX

and

E(Tn) = nµX ,

but for standard deviations of these unknowns we assumed IRS, and the result was

σX̄n(IRS) =
1√
n
σX ,

and

σTn(IRS) =
√
nσX .

To begin understanding how SRS works, we recall the problem of determining probabilities
when drawing colored blocks from a box. If the box contains 3 yellow blocks, 3 red blocks, and
2 blue blocks, then we know that to analyze the probabilities for SRS, that is drawing blocks
without replacement, we can think of the blocks as stacked (like a deck of cards), and the
successive draws are simply performed by repeatedly selecting the block at the top of the stack.
We recall that for instance, to calculate the probability that the second block is red given that
the first is red and the third is yellow, we simply imagine we are told the top block in the stack
is red and the third block in the stack is yellow, and we see immediately that this conditional
probability is 2/6. But also, it is just as clear that the probability the fourth block is red given
the first is red and the third is yellow is also 2/6. In fact, we see that however the second draw
result is dependent on our knowledge of the results of the first and third draws, the fourth draw
result has the exact same dependence on the first and third draws. But also notice, that if we
ask for the probability that the second is red given that the first yellow and the fourth is red,
we still get 2/6. In fact, we are seeing that the result of each draw has the same dependence
on another draw as any other draw depends on any other draw. This would also be the case
if the blocks were numbered instead of colored, and for observing any numerical unknown in
a finite population, it is the same as drawing numbered blocks from a box. That is to say in
mathematical terms, for SRS, all the sample observations have exactly the same correlation or
covariance with each other:

Cov(Xk, Xl) = bn,

for some number bn which does not depend on the particular pair (k, l) if k 6= l. Moreover,
these sample observation correlations cannot have any dependence on the sample size n, since
when you are making the kth and lth observations, it is not even necessary to know how many
observations you will go on to make. Thus, we have

bn = b
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independent of n. To look at this another way, since the correlation is the same for any pair of
observations in the sample, it is the same as the correlation of the first observation with the
second observation, but this only depends on the results of the first two draws no matter what
the sample size n as long as n ≥ 2. Of course, if k = l, then

Cov(Xk, Xl) = Cov(X,X) = σ2
X .

We therefore see that for a sample of size n we must have

Cov(Xk, Tn) = (n− 1)b+ σ2
X ,

because when we expand the expression on the left side using

Tn = X1 +X2 + ...+Xn,

we have

Cov(Xk, Tn) = Cov(Xk, X1) + Cov(Xk, X2) + ...+ Cov(Xk, Xk) + ...+ Cov(Xk, Xn).

Notice each term Cov(Xk, Xl) where k 6= l has the value b but the term where k = l has the
value σ2

X . Since there are n− 1 terms where k 6= l, it follows that

Cov(Xk, Tn) = (n− 1)b+ σ2
X ,

and also we see this result does not depend on k, since k does not appear in the expression
on the right hand side here. That is to say, we have discovered that in SRS, all the sample
observations have exactly the same correlation with the sample total. For SRS of size n, let us
denote this by cn(SRS), so

cn(SRS) = (n− 1)b+ σ2
X .

Then we must have

V ar(Tn) = Cov(Tn, Tn) = Cov(X1, Tn) + Cov(X2, Tn) + ...+ Cov(Xn, Tn) = ncn(SRS).

This means that

σ2
Tn = ncn(SRS).

Next, we can observe that if we take an SRS of size n = N, where as usual N is the population
size, then the sample total is fixed, it cannot change from sample to sample, since there is only
one SRS of size n = N, namely the sample consisting of the whole population. Thus TN is
actually a constant, and therefore its variance is zero, and therefore

0 = V ar(TN ) = NcN (SRS),

so as N 6= 0,

cN (SRS) = 0.

Since

cN (SRS) = (N − 1)b+ σ2
X ,

this means

b = − σ2
X

N − 1
.

Now, we know b, so we can calculate cn(SRS) and find

cn(SRS) = (n− 1)b+ σ2
X = σ2

X −
n− 1

N − 1
σ2
X = [1− n− 1

N − 1
]σ2
X

=
(N − 1)− (n− 1)

N − 1
σ2
X =

N − n
N − 1

σ2
X ,
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so we have

cn(SRS) =
N − n
N − 1

σ2
X ,

and

Cov(Xk, Xl) = − 1

N − 1
σ2
X .

Since

σ2
Tn = V ar(Tn) = ncn(SRS),

we now have

σ2
Tn = V ar(Tn) =

N − n
N − 1

nσ2
X .

Taking square roots we get

σTn(SRS) =

√
N − n
N − 1

√
nσX .

But, we know already that

σTn(IRS) =
√
nσX ,

so this means that

σTn(SRS) = [σTn(IRS)]

√
N − n
N − 1

.

We also have X̄n = Tn/n, so

σX̄n(SRS) =
1

n
σTn(SRS)

= [
1

n
][σTn(IRS)]

√
N − n
N − 1

= [σX̄n(IRS)]

√
N − n
N − 1

,

so

σX̄n(SRS) = [σX̄n(IRS)]

√
N − n
N − 1

,

as well. That is to say, the expression √
N − n
N − 1

should be simply viewed as the correction factor for converting from IRS to SRS when calcu-
lating standard deviations for sampling distributions. We can notice that this correction factor
is obviously 1 for all practical purposes when the population is enormous in comparison to the
sample size. When the sample size is about 10 percent of the population size, then the factor
is close .95, which means that using the IRS values of standard deviation introduces about a 5
percent error. If the sample size is about 5 percent of the population size, then the correction
factor for SRS is about .975, so the error is about 2.5 percent. If the sample size is about one
percent of the population size, then the error is only about a half of a percent. If the sample
size is only about one tenth of one percent of the population, then the correction factor is
about .9995, so the error is only about one twentieth of one percent. You can see here that for
populations that are very large in comparison to the sample size, the difference between SRS
and IRS is negligible.

Another thing to notice here is that as

Cov(Xk, Xl) =
−σ2

X

N − 1
,

that for large populations the correlation between observations is negligible, but in any case it
is always negative, no matter the population size. You can think about that as being reasonable
because any time you see something larger than average when sampling, that means the other
observations are less likely to be above average, if you sample without replacement.
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Our main application of this correction factor will be in computing standard deviations for
counting unknowns. The difference between a binomial counting unknown and a hypergeometric
counting unknown is just the difference between IRS and SRS, so we must have

σbinomial = σhypergeo

√
N − n
N − 1

.

Since we will find it is easy to see that

σbinomial =
√
np(1− p)

gives the standard deviation of a binomial count with success rate p and n independent trials,
this means that

σhypergeo =
√
np(1− p)

√
N − n
N − 1

.

Of course if R is the size of the population of successes, then p = R/N in the case of the
hypergeometric count.
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75. LECTURE MONDAY 26 OCTOBER 2009

Today we reviewed the results from last week for the sampling distributions for Tn, and
X̄n = Tn/n, the sample total and sample mean unknowns. We had seen that when sampling
the random variable X, that is, an unknown which can be repeatedly observed, then we are
actually creating a whole sequence X1, X2, ...Xn, of observation unknowns all having the same
distribution as X and therefore having the same mean µX and standard deviation σX . We saw
that

E(Tn) = nµX ,

and

E(X̄n) = µX .

However, as usual, we don’t often get what we expect, so we must also be interested in finding
the standard deviations for these unknowns. To do that, we began by assuming Independent
Random Sampling (IRS) which means we assume all the observation unknowns are independent
of each other. We found then

σTn =IRS=
√
nσX

and

σX̄n =IRS=
σX√
n
.

Alternately, we can write

[σTn ](IRS) =
√
nσX

and

[σX̄n ](IRS) =
σX√
n
.

We had also observed last time that when doing Simple Random Sampling (drawing randomly
from a finite population without replacement), then the observation unknowns are no longer
independent and that in fact

Cov(Xk, Xl) = − σ2
X

N − 1
,

for each pair k 6= l, and this means all observations have the same correlation coefficient ρ given
by

ρ =
Cov(Xk, Xl)

σXσX
= − σ2

X

(N − 1)σ2
X

= − 1

N − 1
,

or simply

ρ = − 1

N − 1
.

Notice that this tells us in particular that all the sample observations are negatively correlated,
which when you think about it is intuitively clear-if you see one observation is larger than
average, you know the other observations are less likely to be as large. Thus you can think that
having one observation larger than expected makes it more likely that the others are smaller
than that observation.

As a consequence of this correlation formula we had then found that for using SRS we have

[σTn ](SRS) =

√
N − n
N − 1

√
nσX =

√
N − n
N − 1

[σTn ](IRS)

and

[σX̄n ](SRS) =

√
N − n
N − 1

σX√
n

=

√
N − n
N − 1

[σX̄n ](IRS).

Thus, we can think of the factor c(SRS) given by

c(SRS) =

√
N − n
N − 1
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as a correction factor for standard deviations required whenever we are using SRS instead of
IRS, or in other words, the correction for sampling without replacement instead of sampling
with replacement.

Today we next went on to discuss the particular case that X is simply the indicator of an
event A, so X = IA and is one if A happens and zero if not. We noticed that in this case, the
sample total Tn is simply the success count if we regard each occurrence of A as a success. This
is simply because the only possible value of an indicator is zero or one, one for success and zero
for failure. Thus, all the observations in this case form a sequence of zeroes and ones, so the
total is simply the number of ones, which is of course the number of successes. But this means
that Tn is binomially distributed when using IRS whereas is hypergeometric when using SRS.
We know that by definition here,

µX = E(IA) = P (A) = p

is the success rate, so now our formulas for expected sample total and expected sample mean
give us

E(Tn) = np

and

E(X̄n) = p.

Notice that X̄n = T/n is just the proportion of successes in the sample, and our formula tells
us the same thing our common sense tells us. Namely that the proportion in the sample is
expected to be the success rate and so the success count should be np. However, our common
sense will not tell us very much about the standard deviation, but our theory here gives it to
us. Thus, if T has the binomial distribution for n independent trials with success rate p, then
we have T = Tn where X = IA for A the event of success on a single trial, and P (A) = p. This
means that

µT = E(Tn) = nµX = np

and

[σT ](binom) = [σTn ](IRS) =
√
nσIA ,

and for the sample proportion of successes, T/n, we have

σ(T/n) = [σX̄n ](IRS) =
σIA√
n
.

We see now that the only thing we need to calculate to have the standard deviations for the
binomial and hypergeometric distributions is the standard deviation of an indicator X = IA.
Now the crucial property of an indicator is simply X2 = X, since the only numbers which equal
their squares are zero and one. In general, for any unknown, we know

σ2
X = E(X2)− µ2

X ,

or

E(X2) = µ2
X + σ2

X .

We can think of the hypotenuse of a right triangle with short sides µX and σX has hypotenuse
of length H given by

H =
√
E(X2).

In our case, we have X2 = X, and

E(X) = E(IA) = P (A) = p,

so the equation says

σ2
X = E(X2)− µ2

X = E(X)− p2 = p− p2 = p(1− p).
Thus for any event A the standard deviation of its indicator is

σIA =
√
p(1− p).
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When we use this in our standard deviation formulas for success total and success proportion,
we have

[σT ](binom) = [σTn ](IRS) =
√
nσIA =

√
n
√
p(1− p) =

√
np(1− p) =

√
µT (1− p),

and

[σT/n](binom) = [σX̄n ](IRS) =

√
p(1− p)√

n
=

√
p(1− p)

n
.

In case T is the total success count when sampling without replacement in a finite population,
then we know that T has the hypergeometric distribution, so if N is the population size and R
is the size of the population of successes, then p = P (A) = R/N, and

E(T ) = np =
nR

N
,

and as we are now doing SRS,

[σT ](hypergeo) = [σTn ](SRS) = [σT ](binom)

√
N − n
N − 1

=
√
np(1− p)

√
N − n
N − 1

.

Thus, in a finite population, the only difference between the hypergeometric distribution and
the binomial distribution is the difference between sampling without replacement or SRS and
sampling with replacement or IRS, so to get the standard deviation for the hypergeometric
distribution, we simply multiply that for the binomial distribution (with the same number of
trials and success rate) by the SRS correction factor.

Finally today, we reviewed the Central Limit Theorem which says that as n tends to infinity,
both Tn and X̄n become normal. In practical terms we will always take these to be normal when
n ≥ 30. We illustrated the Central Limit Theorem by picturing the binomial distribution for
n = 13 and p = .45 and noticing that when plotting the tops of the spikes for the distribution
picture, a bell curve fits nicely through all the points.
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76. LECTURE WEDNESDAY 28 OCTOBER 2009

Today we began with a discussion of how the accuracy of measurement relates to the accuracy
of computed expectation values when dealing with continuous unknowns.

Suppose that X is any unknown and we decide to observe X to n decimal place accuracy.
We have really then replaced X by a new unknown, the Round of X to n decimal places, which
we can denote by Rn(X) and which, of course, is the result of rounding off X to n decimal
places. For instance, if we observe the value for X is 32.3789, then this means that R2(X) is
observed to be 32.38, or

R2(32.3789) = 32.38.

Now, we could instead just round X down automatically to get what we call the Lower Round
of X denoted Ln(X), so

L2(32.3789) = 32.37.

On the other hand, we could just always round up automatically to get what we call the Upper
Round if X denoted Un(X). Thus

U2(32.3789) = 32.38 = R2(X),

but

U2(32.3719) = 32.38 6= R2(32.3719) = 32.37 = L2(32.3719).

Obviously we always have no matter what the value of X that Rn(X) will be the same as one
or the other of the two unknowns Ln(X) and Rn(X). That is, in any case, we can say that

Ln(X) ≤ Rn(X) ≤ Un(X).

Also it is obvious that

Ln(X) ≤ X ≤ Un(X).

Now if a and b are any two numbers, and x and y are also numbers, and if we know both
inequalities

a ≤ x ≤ b
and

a ≤ y ≤ b
are true, then clearly the distance from x to y cannot exceed b− a, so we must have

|x− y| ≤ b− a.
Now for sure

Un(X)− Ln(X) =
1

10n
,

so therefore

|Rn(X)−X| ≤ 1

10n
.

But, we can apply the expectation to both the inequalities

Ln(X) ≤ X ≤ Un(X)

and

Ln(X) ≤ Rn(X) ≤ Un(X),

so from the order preserving property of expectation, we also know both inequalities

E(Ln(X)) ≤ E(X) ≤ E(Un(X))

and

E(Ln(X)) ≤ E(Rn(X)) ≤ E(Un(X)).

Therefore we also must have

|E(Rn(X))− E(X)| ≤ E(Un(X))− E(Ln(X)) = E(Un(X)− Ln(X)) = E(10−n) =
1

10n
,
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so in fact,

|E(Rn(X))− E(X)| ≤ 1

10n
.

Notice that this means if we measure or observe to n decimal place accuracy, then our expected
values are correct to n decimal place accuracy. To be precise here on what we are saying about
the accuracy of our expected values, we must say that if we have the exact probability for each
possible value of Rn(X), then using these probabilities to calculate the expected value of Rn(X)
will give us the expected value of X itself to n decimal place accuracy. If there are inaccuracies
in the various probabilities of values for Rn(X), then these inaccuracies would cause further
inaccuracies in our expected value calculations.

In any case, the main thing to notice here is that

Ln(X), Rn(X), and Un(X)

are all discrete unknowns. In fact, the unknowns

10nLn(X), 10nRn(X), and 10nUn(X)

have only integer values, that is values in the set

Z = {...,−2,−1, 0, 1, 2, ...}.
For unknowns which are non-negative, this means that all calculations can be reduced to dealing
with ”counting” unknowns, those with values in the set of whole numbers

W = {0, 1, 2, 3, ...}.
Finally here, we can use these considerations to see what is going on with the calculation of

covariance and expected values of products of unknowns. If X and Y are unknowns,

Cov(X,Y ) = E((X − µX)(Y − µY )) = E(XY )− µXµY ,
so the calculation of covariance one way or another involves calculating the expected value of
a product of unknowns. Our previous considerations tell us that for all practical purposes, it
is enough to understand how to do this for discrete unknowns (and therefore, actually, it is
enough to deal with those having only integer values). If X is discrete, let VX be the set of
possible values of X. For each possible value v in VX , let Av be the event that X has the value
v, which is (X = v), and let Iv be the indicator of Av. Then

X =
∑
v∈VX

vIv =
∑
v∈VX

vI(X=v),

and we know

E(X) =
∑
v∈VX

vE(Iv) =
∑
v∈VX

vP (Av) =
∑
v∈VX

vP (X = v).

If we use w to denote values of Y, we likewise have

Y =
∑
w∈VY

wI(Y=w)

and

E(Y ) =
∑
w∈VY

vP (Y = w).

Notice that

XY =
∑
v∈VX

∑
w∈VY

vwI(X=v)I(Y=w),

but we can use that fact that

IAIB = IA&B

here to tell us always

I(X=v)I(Y=w) = I(X=v)&(Y=w).
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Therefore
XY =

∑
v∈VX

∑
w∈VY

vwI(X=v)&(Y=w),

so
E(XY ) =

∑
v∈VX

∑
w∈VY

vwP ((X = v)&(Y = w)).

Thus, to compute the expected for the product XY, it is not enough to know just the values
and probabilities for each of the unknowns separately, we must also know their Joint Distribu-
tion, that is the probabilities for all the combinations of possible values of the two unknowns
considered together. We can also see this using the multiplication rule for expectation. For we
have

XY =
∑
w∈VY

XwI(Y=w),

so
E(XY ) =

∑
w∈VY

wE(XI(Y=w)) =
∑
w∈VY

wE(X|Y = w)P (Y = w)

=
∑
w∈VY

∑
v∈VX

vwP (X = v|Y = w)P (Y = w) =
∑
v∈VX

∑
w∈VY

vwP ((X = v)&(Y = w)).

Finally today, we began the discussion of confidence intervals. If we have a population of
tuna fish under consideration and we want to know the true population mean weight, µ, then
we can take a large sample to get an idea, and by Tchebeychev’s Inequality, we know that for
large enough samples the sample mean is very likely to be close the the true mean. If we have
a sample mean of 325 pounds and that is our only information, then we should obviously guess
µ = 325, which means more precisely, if X is the weight of a tuna fish, then

E(X|x̄ = 325) = 325.

To know what our error would likely be, we must use the standard deviation.
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77. LECTURE FRIDAY 30 OCTOBER 2009

Today we discussed the computation of confidence intervals. In general, any non-trivial
statement about a population for which we have incomplete knowledge cannot be made with
absolute certainty. If A is any statement about such a population, we call C = P (A) our
Confidence in the statement. We often begin by choosing C and call it the it Level of Confidence
at which we work. Most population parameters such as mean and standard deviation must be
estimated from sample data, and as a result there is likely to be error in our results. Thus,
we express our estimate as a Point Estimate plus or minus a Margin of Error which we denote
by ME. We will only be concerned with the simplest case, namely estimations of the true
population mean µX . To do this, we begin by standardizing X̄n, to form the standard unknown
Z, where

Z =
X̄n − µX
σX̄n

=
X̄n − µX
(σX/

√
n)
.

Then we have µZ = 0 and σZ = 1. Notice that if we use the mean of a sample to guess the true
mean, then our error is the numerator of Z here. Also, if X̄n is normal, then so is Z. To be able
to have normality of Z here, it therefore is enough that either n ≥ 30 or X is itself normal. To
have confidence C that

|X̄n − µX | ≤M,

is the same as saying
P (|X̄n − µX | ≤M) = C.

On the other hand, as Z is now assumed normal, we know that if

zC = invNorm(
1 + C

2
, 0, 1),

then
P (|Z| ≤ zC) = C.

Thus, as
|Z| ≤ zC

if and only if

|X̄n − µX | ≤ zC
σX√
n
,

it follows that our margin of error with confidence C is

ME = zC
σX√
n
.

Of course this all depends on knowing the population standard deviation σX to start with,
and that is usually not reasonable if you do not even know the true mean, even though there
are applications where this is the case. If you do not know σX , then as the sample standard
deviation sx from your sample data is an estimate of σX , we could try replacing σX by sx in
our previous calculations. The problem is that now, the sample standard deviation sx is just
an observed value of the random variable S = Sn(X) which is the sample standard deviation
of our sample as an unknown number. Notice that for instance,

S2 =
n

n− 1
[(X1 − X̄n)2 + (X2 − X̄n)2 + ...+ (Xn − X̄n)2],

where X1, X2, ..., Xn are our sample observation unknowns. In fact, it can be shown that

E(S2) = σ2
X ,

and it is in this sense that we say sx is an estimate of σX . It is really the sample variance
which is expected to be the true variance. When we standardize using S in place of σX in
the preceding formula we do not get the standard Z but rather we get a new unknown which
has a distribution slightly different from the standard normal and it is called the Student t-
distribution, or simply the t-distribution for short. It is actually a whole family of distributions
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parametrized by a number we call Degrees of Freedom. In our case, the number of degrees of
freedom which we denote by df is df = n − 1. For df = d, we denote by td the unknown with
the t−distribution for d degrees of freedom. It can then be shown with our rules of expectation
and a lot of algebra (see for instance the Expectation Primer on my website), that

td =
X̄n − µX
S/
√
n

does indeed have the t−distribution for df = n− 1, provided that X itself is a normal random
variable. Thus, if σX is not known, then our method proceeds with the assumption that X
is a normal random variable. In that case, the zC is replaced by tC for the given level of
confidence C. All the reasoning is exactly the same because the t−distribution is also a bell
shaped distribution which is symmetric with mean zero-it is just a little flatter than the standard
normal distribution. Thus, tC is chosen so that

P (|td| ≤ tC) = C,

which can be calculated as

tC = invt(
1 + C

2
, d), d = n− 1,

if you have the inverse t−distribution in your calculator.
To actually calculate a confidence interval using the TEST menu in the statistical menu of

the TI calculator, if population standard deviation is known use the z−interval, whereas if it
is not known, use the t−interval in the menu. The format for entering the information is self
explanatory in each case, but you should try and practice with it. If you only want the margin
of error as opposed to the confidence interval, simply enter x̄ = 0.

Finally, we discussed the fact that there is only one criterion for choosing between z and t for
confidence intervals and that is simply whether or not you know σX . If you know σX you use
the z−interval and if you do not know σX , you use the t−interval. Often textbooks mistakenly
give the impression that the t−interval is for small samples, but if you know σX , and you want
to use the t−distribution, then X must be assumed normal so X̄n is normal no matter how
small the sample size and therefore the z−interval should be used instead.
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78. LECTURE MONDAY 2 NOVEMBER 2009

Today we reviewed the basics of confidence intervals for the true mean µX for an unknown
population or random variable X. Remember, the confidence interval has the form

µX = a± b.
We would read this in ”everyday language” or ”common parlance” as ”a give or take b”, and
it means that

a− b ≤ µX ≤ a+ b.

Keep in mind that generally in statistical settings, nothing can be said about an unknown
population with absolute certainty, so

The number a is our Point Estimate whereas the number b is our Margin of Error. If you
have the sample mean x̄ of a sample, then the point estimate is that sample mean. We denote
the margin of error by ME. For a given Level of Confidence denoted C, to have confidence C
in statement A simply means P (A) = C. Thus, to say

µX = x̄±ME

with confidence C is the same as saying

P (x̄−ME ≤ µX ≤ x̄+ME) = C,

or equivalently,
P (|x̄− µX |) = C.

Obviously the margin of error depends on the level of confidence, and if you think carefully,
you will realize that for given data, if you raise the confidence level, then you must allow a
larger margin of error. If I say I am 90 percent certain my error is less than 5, then I would
not be 99 percent certain of that the error is less than 5. This means the size of the error must
now possibly be larger than 5 if I require 99 percent certainty. Keep in mind, the distribution
of X̄n is normal, so the higher the area we want in the middle of the distribution, the farther
out we must go.

Our formula for the margin of error for confidence level C is

MEC = zC
σX√
n
, σX given,

or
MEC = tC

sx√
n
, σX unknown.

To calculate a confidence interval given the statistical information such as data or statistics,
we do not need the margin of error formulas above, but to solve the problem of figuring out how
large a sample to use, we must use these formulas. To calculate a confidence interval simply
press the stat button on your calculator and go to the test menu. Next, in case you know σX ,
scroll down to the z−interval and call it up, and enter your information. If you do not know
σX , then use the t−interval instead. After entering the x̄, the n, the level of confidence C,
and the σX or sx as the case may be, then press enter, and the readout gives two numbers in
parenthesis separated by a comma, followed by the value of x̄ and the value of n. This is the
format for the readout of all confidence intervals in the calculator. Here, the first number is
x̄−ME, and the second number is x̄+ME, Clearly, if you just want the margin of error ME
you can just enter x̄ = 0 in the calculator.

If we are given a required level of confidence C and told to make sure we are that confident
that our margin of error is does not exceed the number E, then that is simply requiring

zC
σX√
n

= MEC ≤ E.

Obviously, we want to make our sample no bigger than necessary, and clearly increasing n always
makes the margin of error smaller, so we would take the smallest sample size that satisfies the
above inequality. A simple way to find it is to turn the inequality into an equality and solve it
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for the sample size n. Of course the solution nC will generally not be a whole number, so our
required sample size is n ≥ nC , that is we must round up to the nearest whole number. Solving
the equation is simple. The equation

zC
σX√
nC

= E

is equivalent to
zCσX
E

=
√
nC ,

so squaring both sides gives

nC =
(zCσX

E

)2

.

Obviously, in real applications, we do not know σX , but often we can find a number B for
which we are reasonably certain that σX ≤ B. In that case, we simply replace σX by B in the
formula so

nC =

(
zCB

E

)2

.

Finally, we discussed the problem of determining a probability of True Proportion. For
instance, if A is a statement about the outcome of a repeatable experiment, such as tossing
a dice, then we can try to estimate P (A) by making n trials of the experiment and using the
proportion of successes in our data as an estimate of p = P (A). We are sampling the indicator
of A which we denote by IA. In this case, the sample mean x̄ is the sample proportion, as all
the values of the indicator are zeroes and ones, so the sample total is the number of successes
Tn = x, and the sample mean is then just x̄ = Tn/n = x/n. But in order not to confuse this use
of x with the situation with a general continuous random variable, we use p̂ to denote the sample
proportion x̄ = x/n. Thus, p̂ is the estimate of the true proportion p. Since the distribution
of Tn here is actually binomial, we need the binomial distribution to be approximately normal
which it will be provided that n ≥ 30 and p not close to either zero or one. This type of
confidence interval is called a 1-Prop z−interval in the calculator. You only need the level of
confidence C the number of trials n and the number of successes x. Once these are entered, you
press enter and the calculator gives the answer in the standard format.

Clearly, when estimating a proportions or probability, we need to have small ME as the
number we are estimating is between zero and one. With the estimate expressed as a percentage,
we want our ME to be only a few percentage points, so as a decimal fraction, we can begin
with looking at requiring ME ≤ .01. The unknown here is an indicator, and we know that the
standard deviation of an indicator I is

σI =
√
p(1− p) =

√
p− p2.

We can recognize that if we graph the equation y = p − p2, its graph is a downward parabola
crossing the horizontal p−axis at p = 0 and p = 1. The maximum is clearly right between zero
and one at p = 1/2. Using that value of p gives

σmax =
√

(1/2)(1− (1/2)) =
√

(1/2)(1/2) = 1/2.

This means no matter what, we are sure that

σI ≤
1

2
, I an indicator.

This means that when estimating true proportions, to find the required sample size for given
confidence, we use

nC =

(
zC(1/2)

E

)2

, to make ME ≤ E.

We discussed some elementary applications of these formulas for finding required sample sizes.
Notice that if you double the allowed margin of error the sample size required goes down by a
factor of four, whereas if you triple the allowed margin of error, then the required sample size
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goes down by a factor of nine. Thus, for 99 percent confidence and only one percentage point
error, we find

nC = 16587.2415,

so
n ≥ 16588.

If we allow 2 percentage points in the margin of error, then the sample size required is

n ≥ nC
where

nC = 4146.810374

and therefore the required sample size is only n ≥ 4147. If we allow three percentage points in
the margin of error, we find

nC = 1843.026833,

so we need n ≥ 1844. Thus, to keep things in round numbers, if we take a sample of size
n = 2000, then our proportion estimates will be accurate to within three percentage points
with 99 percent confidence.
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79. LECTURE WEDNESDAY 4 NOVEMBER 2009

Today we discussed confidence intervals and reviewed what had been done in the last few
lectures. In particular, we discussed the problem of finding the required sample size to make
the margin of error MEC with confidence C at most E, that is

MEC ≤ E.

Here we need an upper bound B on the standard deviation σX , meaning that B is a number
for which we are sure

σX ≤ B.
We know the sample size must be at least nC where

nC =

(
zCσX√

n

)2

which obviously increases as σX increases. Thus, if we do not know σX but so know σX ≤ B,
then we would, to be safe, use B instead of σX . This means that the required sample size is
n ≥ nC where

nC =

(
zCB√
n

)2

, σX unknown, σX ≤ B.

In case of proportions, we demonstrated that σ ≤ 1/2, and consequently B = 1/2, and the
required sample sizes are easy to compute, but the result is in the thousands. This means that
anything which can be done to lower the value of B can result in a reduction in sample cost.
We know that 0 ≤ p ≤ 1, and that given the value of p, we have σ =

√
p(1− p). Since the

worst case is p = .5, as that leads to the largest value for σ, we saw from the parabola graph
of the equation v = p(1− p) = p− p2, that as p gets closer to 1/2, the value of σ2 and likewise
the value of σ increases. Thus, if J is the set of numbers between zero and one, and if K is any
subset of J, then the worst possible value of p in K is the value closest to 1/2. If we are sure
that p is in the subset K, then we can use this to lessen the required sample size. If we call pK
the number in K closest to 1/2, then we can take B = BK , where

BK =
√
pK(1− pK).

As then B < 1/2, the required sample size is now less in this case. Notice how the required
sample size depends on all the inputs zC , B, and E. If we double E, the sample size is cut
to one fourth of what would be required for the originally given E. In general, as E goes
up, the required sample size goes down, but much faster because of the squaring effect in the
formula. If the allowed error E is tripled, the required sample size is cut to only one ninth of
the original required sample size. If we increase our required level of confidence C, then zC
increases and therefore so does the required sample size. If we increase the bound B on the
standard deviation, again the required sample size goes up, and likewise anything we can do
to decrease B will make the required sample size go down, and go down fast, because of the
squaring effect in the formula for nC . Thus, if we can decrease B by ten percent, its new value
is (.9)B and squared is (.81)B2 which means the sample size is cut by 19 percent of what was
originally required. We call these effects Scaling Effects. When dealing with sample sizes in the
thousands, a slight decrease in B can lead to a substantial reduction in the required sample
size. For instance, if we know that of all the possible values for the true proportion the one
closest to 1/2 is 6/10, then the value of B is cut from 1/2 down to

B =
√

(.6)(.4) =
√
.24,

which squared is .24 = 24/100. As (1/2)2 = .25, we have decreased the value of B by a factor
of

.24

.25
=

24

25
= .96,
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and this means that we can cut the sample size by 4 percent. When dealing with sample sizes
in the thousands, a four percent reduction in the required sample size could be a substantial
cost saving.

One simple way to approach this is to purely use scaling effects to figure required sample
sizes. We can begin by noticing that for popular values of the level of confidence C all the
corresponding values of zC are near 2. As for 95 percent confidence we know that zC is
approximately 1.960, this means for zC = 2, we have over 95 percent confidence. So imagine
to start that the C has been chosen so as to make zC = 2. Take B = 1 and E = 1 to
start. The required sample size for this case is then simply nC = 22 = 4. If we are dealing
with proportions, then we want E to be only a few percentage points, so as a next step, take
E = .01 = 1/100. This multiplies the required sample size by 1002 = 10, 000, so now the
required sample size is 40,000. But in general, for proportions, we can take B = 1/2 which
squared gives 1/4, so now the required sample size is down to 10,000. If we want 99 percent
confidence, then the value of zC is approximately 2.576, which multiplies the required sample
size by a factor of (2.576/2)2 = 1.658944, so multiplying by 10,000 gives a required sample
size of at least nC = 16, 589.44. Thus, if we allow the error E to double from one percentage
point to two percentage points, then the required sample size is cut from 16,590 down to
nC = 16, 589.44/4 = 4147.36. This seems to take longer than simply using the calculator, but
can often be estimated in your head this way without the aid of a calculator.
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80. LECTURE FRIDAY 6 NOVEMBER 2009

Today we discussed hypothesis testing and its comparison to a criminal trial. We discussed
the significance of data which is also called the P-value of data.

To summarize, in a HYPOTHESIS TEST, we deal with two competing exclusive hypothe-
ses, called the NULL HYPOTHESIS and the ALTERNATE HYPOTHESIS. However,
these hypotheses are not treated equally. Rather, in a hypothesis test we try to DISPROVE
the Null Hypothesis by PROVING the Alternate Hypothesis. The proof of the alternate
hypothesis must be based on EVIDENCE which statisticians refer to as DATA.

It is customary to denote the Null Hypothesis by H0 and the Alternate Hypothesis by H1 or
Ha or Halt. For instance, most useful example to keep in mind is the example of a Criminal
Trial. In this case, the Null Hypothesis is that the accused person is innocent. The Alternate
Hypothesis is that the accused person is guilty. We could summarize this as

H0 : Accused is Innocent

versus

Halt : Accused is GUILTY

and keep in mind that the Burden of Proof is on the Prosecutor. The jury will in fact be
instructed that the accused is to be thought of as innocent throughout the trial and that the
evidence presented by the prosecutor must be evaluated under that assumption.

In any hypothesis test, we assume that H0 is true for purposes of argument, and any state-
ment which is a purely logical consequence of H0 is also then assumed true. We then look at
evidence or data, and evaluate how contradictory our data is of H0. We are dealing with a type
of ”proof by contradiction”.

As an example, suppose that we have a large box full of tiny colored beads, millions of them.
Suppose that H0 is the statement that there are no red beads in the box. To try to disprove
this hypothesis, we take a bead out of the box and examine it. This bead is data or evidence. If
it is red, it is a perfect contradiction of H0. That is, we can notice that this would be impossible
if we assume H0. In probabilistic terms, we can notice this is the same as

P (get a red bead| H0) = 0.

Suppose now instead H0 only says that the true proportion of red beads in the box does not
exceed ten percent, or in symbols

H0 : pR ≤ .1
versus

H1 : pR > .1.

Notice that getting a single red bead from the box no longer gives a perfect contradiction of H0,
and in fact no sample of beads from the box can result in a perfect contradiction of this H0.
However, if we draw 10 beads from the box and 4 are red, then we might tend to be suspicious
that H0 is wrong. This is now because if we calculate

P (get 4 out of 10 red| H0),

we find a small number. Clearly, if we take a bigger sample here, our evidence should be stronger
if this high percentage of red beads happens again. On the other hand, if we draw 100 beads
and get exactly 10 red beads we have no contradiction at all, and yet the calculated probability
of getting 10 out of 100 red beads is small. Thus having evidence which has a small probability
of happening is not of itself proof of the alternate hypothesis. Somehow, the RELEVANCE
of out data or evidence must be considered. Surely getting 10 out of 100 red beads in a sample
of beads from the box is somewhat irrelevant (”so what”) as far as trying to prove the alternate
hypothesis here.
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These considerations lead us to adopt the following numerical measure of how contradictory
our data is of H0, and we call it the P−Value or SIGNIFICANCE of our data or evidence,
defined as

P − V alue of our data = P (data as or more contradictory of H0 than our data| H0).

When this number is small, then we would regard our data as strong evidence in favor of the
alternate hypothesis. How small this must be, is an issue will defer to later.

Let us now consider the problem of proving that the box of beads has more than 10 percent
red beads when we find 10 out of 100 beads drawn to be red. If we calculate the probability
of getting exactly 10 out of 100 beads, the probability that this could happen under H0 is just
the binomial probability if 10 successes out of 100 trials with a true success rate p0 = .1, and
where we have used the subscript zero on our true success rate to remind us that that is due
to the assumption that H0 is true here, since we really do not know the true proportion of red
beads in the box. If x denotes the number of red beads in a sample of size n, this probability is

P (x = 10 red out of n = 100 drawn | H0) = binompdf(100, .1, 10) = .1318653468,

which is not a very big number. On the other hand, if we compute the significance of this data
or its P−value, then we must ask what is more contradictory of the results of our data. That
would certainly be drawing 100 beads and finding x > 10 that is more than 10 red beads in the
sample. Notice the correspondence between the inequality x > 10 and the alternate hypothesis
H1 : pR > .1. With the symbols on the same side (here on the right side) and with the numbers
on the same side (here on the left side), the inequality symbols go exactly the same way. This
means that the P−value or significance of the data is according to the above definition

P (XR ≥ 10|XR binomial n = 100, p0 = .1) = 1− binomialcdf(100, .1, 9) = .5487098154.

This is certainly not near zero, which means the result of finding 10 red beads out of 100 should
be ignored as it obviously should be. But what if we find 23 red beads our of 100. Now the
P−value computation gives the very small number .0001141563199. We therefore reasonably
conclude that the box has more than 10 percent red beads on the basis of such a sample result.

It is important to realize the logic here of computing with the assumed true proportion p0 = .1
when H0 only says that pR ≤ .1. This is because we certainly would not use a value of p0 larger
than .1, but if we use a smaller number than .1, then any argument we give could be attacked
as making an unfair assumption. The hardest thing to disprove here is that pR = .1 among all
the possible values allowed under H0. You should think about this until you understand it. All
the logic involved in hypothesis testing is actually very simple, but just complicated enough to
be confusing when first encountered. It is like learning to ride a bicycle. Once you ”get it”, it
is easy, but to do this you need to spend a little time seriously thinking about what is going
on. If you do not do this, it will always be confusing and you will make mistakes and get things
mixed up.

To do the preceding calculations directly in the calculator, we would press the ”stat” button
and go to the TEST menu and scroll down to the ”1-prop-Z-test”. Here you would enter the
value p0 assumed for the true proportion under H0, and then we would enter the sample infor-
mation asked for, and finally choose the form of the alternate hypothesis and choose ”calculate”.
When we press the ”enter” button, the P−value is given as p in the readout.
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81. LECTURE MONDAY 9 NOVEMBER 2009

We reviewed the basics of Hypothesis Testing presented in the last lecture. The main example
is the criminal trial where H0 is that the accused is innocent. Remember, the accused need
not present any evidence, the burden of proof is on the prosecutor. If the evidence presented is
not sufficiently contradictory of H0, then the accused is set free. Notice, that nothing has been
proven when the accused gets to go free. It is merely the result of insufficient evidence of guilt.
Last time we defined the Significance of the data or evidence as

P − V alue of our data = P (data as or more contradictory of H0 than our data| H0).

We can consider how this definition selects for relevance of evidence as opposed to simply
looking to see if the evidence itself is of low probability. For if we simply think that whenever
our evidence has low probability we have diss-proven H0, then we can prove a person guilty
whenever we find irrelevant rare evidence. For instance, in a murder trial, if the prosecutor
notices that the eye color of the accused is a very rare shade of blue-green, then that evidence
given H0 is very small, because it is independent of H0, and of low probability in its own
right. On the other hand, if we consider the above definition of significance of the evidence, all
evidence is more contradictory than irrelevant evidence, and consequently the P−value of the
eye color evidence is near one which is not near zero.

We went on to relate this to the problem of beads in a box discussed in the previous lecture.
Remember, in any hypothesis testing situation, in order to convince others that your data
is good evidence in favor of the alternate hypothesis and thus very contradictory of the null
hypothesis, you must have a P−value near zero. How close to zero is a matter of judgement in
actual practice, and would depend on the seriousness of the situation. Often, a value denoted
α is chosen in advance which is near zero, and then we regard the P−value as small enough if
it does not exceed α. Such a value α is called a LEVEL OF SIGNIFICANCE. It plays a
similar role to the level of confidence when dealing with confidence intervals, but significance
and confidence should never be confused-they are two different things. For instance, clearly we
should use a value of α which is near zero, whereas we should use a value of confidence which
is near one. Typical or popular levels of significance are α = .05, .01, .001, .1. Smaller values of
significance level are set in serious situations. In general, nobody pays much attention to data
until its significance gets down around α = .05.



140 MATH-111 (DUPRÉ) SPRING 2010 LECTURES

82. LECTURE WEDNESDAY 11 NOVEMBER 2009

Today we continued the discussion of Hypothesis Testing and used the example of testing
rope for mountain climbing as an example. If you need to know that the mean rope breaking
strength of your climbing rope is µ > 1000 in order to be safe, then you should take a sample
of the rope you intend to use and test it. If the data proves µ > 1000 to your satisfaction, then
it is reasonable to use the rope. Obviously if a sample mean for n = 36 pieces of rope is only
x̄ = 998, then you would not think the rope is safe, but if the sample mean is x̄ = 1002, you still
might not think the rope is safe, because as X̄ is normally distributed, there is always a chance
that the sample mean could turn out slightly larger than 1000 even though the true mean is
maybe even smaller than 1000. You should be careful here, because your life is at stake. To
know how good or bad a sample mean is, we need the standard deviation for the rope breaking
strength, σ. Say we know σ = 50. We evaluate the significance or P-value of the data for a
sample mean of 1002 by calculating

P (X̄ ≥ 1002|µ = 1000, X̄ normal , σ = 50, n = 36).

This number is the P-value or significance of the data. It is given the symbol p in your calculator
readout for any hypothesis test in the test menu. If your data were in perfect contradiction of
the null hypothesis giving a perfect proof of the alternate hypothesis, then P − value = p = 0.
This means that in statistical situations, we want to see a very small number for the P-value,
and if we do not see a small enough number, then we will not think of the data as proving the
alternate hypothesis. Typically remember, we want p ≤ .05 before we pay much attention to
the data, but in serious situations, such as in the mountain climbing rope example, we probably
want a much lower P-value before we will trust the rope for mountain climbing. In general,
we often set a small number value in advance called a Level of Significance and denoted α and
require that P − value ≤ α in order to establish the alternate hypothesis. If the P-value of
the data turns out larger than α, then we simply say the data is inconclusive-it does not prove
anything.

Remember that in any hypothesis test, you are trying to prove the Alternate Hypothesis and
trying to disprove the Null Hypothesis. So in the rope climbing example, I want to prove that
µ > 1000, so that is the alternate hypothesis and µ ≤ 1000 is the null hypothesis. Notice that
we always put the possibility of equality in the null hypothesis. When we calculate, we will
in fact use the null hypothesis by taking that equality to give a hypothetical value to the true
mean which we denote by µ0. Thus, in our example we have

µ0 = 1000.

In tests in the test menu of your calculator, symbols with subscript zero refer to values under
the null hypothesis. You pick the appropriate test from the test menu, for our example the
z−test, and enter the statistical information and most important, you must choose the correct
alternate hypothesis. Our alternate hypothesis is µ > 1000 but in the calculator you will have
entered µ0 = 1000, so your alternate hypothesis is

µ > µ0.

If the Consumer Protection Agency suspects that Acme Corporation’s 1000 pound test rope
is not a s strong as advertised, then the Consumer Protection Agency will take a sample of
Acme’s rope and test it to see if the data will prove that the rope is not as strong as advertised.
Thus, for the Consumer Protection Agency, the alternate hypothesis they will try to prove with
the data is µ < 1000, so their choice in the test menu for alternate hypothesis will be

µ < µ0.

From their point of view, if the sample mean is only x̄ = 998, then they might not think this is
strong enough evidence to prosecute Acme. There is too big a chance that this sample mean
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could have happened even though µ = 1000. For instance for a sample of size n = 100, the P-
value is not low enough to impress a judge or jury. However, if their is strong enough suspicion
against Acme rope, the Agency could take a much larger sample. For a sample of 100000 pieces
of rope, if the sample mean is 998, the P-value of the data is zero to the level of accuracy in the
calculator. For such a large sample, the sample mean will be a very very accurate estimate of
the true mean, so even a difference of 2 pounds is too much and Acme would be found guilty.

Try thinking about these issues using your common sense. Hypothesis testing is confusing
until you understand it, but then it is easy. It is like learning to ride a bicycle. You have to
keep trying examples until you ”get it”.


