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TheCentral Limit Theorem says that in the limit as the sample size becomes infinite, with

independent random sampling, the distribution of the sample total and the sample mean both

become normal. To state this precisely requires a fair amount of sophisticated mathematics

which we will not bother with. We do know that for independent random sampling of the

random variable X we generate a sequence of unknowns X1, X2, X3, ..., Xn, ... which we can

think of as potentially infinite, and as these are all observations of X, they all have the same

distribution as X. In particular, they all have the same mean, µ, and standard deviation, σ, as
X, that is to say,

µXk = µX , k = 1, 2, 3, ..., n, ...

and

σXk = σX , k = 1, 2, 3, ..., n, ...

But, in addition, we assume that Xi is independent of Xj if i �= j. When we take a sample of

size n, we usually are interested in the sample mean as an estimate of the the true mean, and

to form the sample mean we begin by forming the sample total Tn given by

Tn =

n�

k=0

Xk,

and then divide by the sample size to get the sample mean X̄n, so

X̄n =
1

n
Tn.

Now from properties of expectation, we know that for any sampling method, we have

E(Tn) = nµX

and therefore

E(X̄n) = µX .

But for independent random sampling, we have V ar(Tn), the variance for Tn, given by

V ar(Tn) = n · σ2
X ,

and therefore SD(Tn), its standard deviation, is given by

SD(Tn) = (
√
n) · σX .

Consequently, for independent random sampling we have

SD(X̄n) =
σX√
n
,
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and therefore

V ar(X̄n) =
σ2
X

n
.

Now, the fact that

SD(X̄n) =
σX√
n

means that, as n → ∞, the standard deviation of X̄n goes to zero indicating that in the limit we

must have just a constant. This certainly does not seem conducive to finding the distribution

of X̄n as n → ∞. The way around this is to standardize. Recall that the standardization of

any random variable or unknown X, denoted ZX , is given by

ZX =
X − µX

σX
,

so in terms of ZX we recover X as

X = µX + σX · ZX .

In particular,

ZTn =
Tn − nµX√

n · σX
,

so when we multiply numerator and denominator by 1/n we find

ZTn =
X̄n − µX

(
σX√
n
)

= ZX̄n
.

The more precise statement of the Central Limit Theorem says that as n → ∞, the stan-

dardization ZTn = ZX̄n
, converges in some sense to a standard normal random variable.

To make this plausible, we pass to the moment generating function. Recall that for any

random variable X, its moment generating function is mX , where

mX(t) = E(exp(tX)) =

� ∞

−∞
exp(xt)dFX(x).

Of course, FX is the cumulative distribution function of X, so

FX(x) = P (X ≤ x), x ∈ R.
Moreover, it is the case that if mX = mY , for unknowns X and Y, then FX = FY , that is if two
unknowns have the same moment generating function then they have the same distribution.

And, if X and Y are independent, then exp(tX) and exp(tY ) are uncorrelated and therefore

E(etX · etY ) = [E(etX)] · [E(etY )],

so

m[X+Y ](t) = E(et(X+Y )
) = [E(etX)] · [E(etY )] = mX(t) ·mY (t),

or

m[X+Y ] = mX ·mY ,

if X and Y are independent. Thus the moment generating function of any sum of independent

unknowns is simply the product of the moment generating functions of all the summands. If

we denote differentiation with respect to t with prime as in
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dg

dt
(t) = g�(t),

then

m�
X(t) = E(XetX),

m��
X(t) = E(X2etX),

and so on. It is convenient to denote the nth derivative of g by g(n) when dealing with higher

derivatives, so we see that

m(n)
X (t) = E(XnetX), n = 0, 1, 2, 3, ...,

and putting t = 0 into these derivatives gives

m(n)
X = E(Xn

), n = 0, 1, 2, 3, ...

showing where the moment generating function gets its name. The numbers E(Xn) are called

the moments of X, and we see that the moment generating function generates them all via

differentiation and evaluation at zero. Notice that X0 = 1, and mX(0) = E(1) = 1. Now it can

be shown that the moment generating function equals its Taylor expansion about t = 0 for t
close enough to zero, so there is � > 0 with

mX(t) =
∞�

n=0

m(n)
X (0) · t

n

n!
, |t| < �.

In the case where X is a continuous random variable, it has pdf (probability density function)

fX =
d

dx
FX ,

so dFX(x) = fX(x)dx and

mX(t) = E(exp(tX)) =

� ∞

−∞
exp(xt)fX(x)dx.

If Z is a standard normal random variable, then its pdf is given by

fZ(z) =
exp(−z2/2)√

2π
, z ∈ R.

A calculation shows that if Z is any standard normal random variable,

mZ(t) = exp

�
t2

2

�
.

This means that we can make the Central Limit Theorem plausible if we can show that the

moment generating function of ZTn converges to mZ as n → ∞.
Now, for moment generating functions, we see that

mX±c(t) = E(e(X±c)t
= E(e±ct · etX) = e±ctmX(t),

so

mX±c = ect ·mX .

Also, as regards rescaling,

mcX(t) = E(et(cX)
) = E(e(ct)X) = mX(ct).
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Now to see the Central Limit Theorem, let us begin with a standard random variable

but otherwise having any distribution what so ever, and call it X. Let Z denote a stan-

dard normal random variable. Let us consider an infinite sequence of independent unknowns

X1, X2, X3, ...., Xn, ... all having the same distribution as X, so all are standard and thus

E(Xk) = 0, k = 1, 2, 3, ...

and

E(X2
k) = 1, k = 1, 2, 3, ...

and set T = Tn and X̄n. Thus we have

mXk = mX , k = 1, 2, 3, ...

and

mT = mX1 ·mX2 ·mX3 · · ·mXn ,

which together gives

mT = (mX)
n.

But now, to get the proper handle on the distribution of T, we already remarked we need to

standardize T. But from our formulas above for mean and standard deviation of Tn and X̄n we

have, as here E(X) = 0 and σX = 1,

σT =
√
n

and therefore

ZT =
T√
n
.

This means that

mZTn
(t) = mTn

�
t√
n

�
=

�
mX

�
t√
n

��n
.

To get the limit distribution we need to take the limit as n → ∞ of the expression on the right

side above. Of course, that is obviously a problem since the
√
n in the denominator would seem

to be wiping out the dependence on t, but in a sense, that is really just what we need. There

are certainly technical difficulties with taking the limit as n → ∞ here, but we are only looking

to make a plausibiity argument here, so let us assume that we can take the limit as n → ∞. In
fact, let us assume the limit function h is differentiable and that differentiation can commute

with the limit process here. Thus, lets assume

h(t) = lim
n→∞

�
mX

�
t√
n

��n

and

d

dt
h(t) = lim

n→∞

d

dt

��
mX

�
t√
n

��n�
.

Next, we can calculate the derivative on the right side using the Chain Rule getting

d

dt

��
mX

�
t√
n

��n�
= n ·

��
mX

�
t√
n

��n−1
�

·m�
X

�
t√
n

�
· 1√

n
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=

��
mX

�
t√
n

��n−1
�

·m�
X

�
t√
n

�
·
√
n.

That is, if we set

hn =

�
mX

�
t√
n

��n
, n = 1, 2, 3, ...,

then

h(t) = lim
n→∞

hn(t),

and

d

dt
h(t) = lim

n→∞

�
hn−1(t) ·m�

X

�
t√
n

�
·
√
n

�
.

Now certainly,

lim
n→∞

hn−1(t) = lim
n→∞

hn(t) = h(t),

so the limit calculation boils down to the calculation of the limit

L = lim
n→∞

m�
X

�
t√
n

�
·
√
n.

If L exists, then

d

dt
h(t) = L · h(t).

Let us put

δ =
1√
n
,

so then we instead need to calculate L where

L = lim
δ→0

m�
X(δ · t)
δ

.

Now, putting δ = 0 in the numerator gives m�
X(0) = E(X) = 0, so if we define the function g

by

g(δ) = m�
X(δ · t),

then g(0) = 0, and its derivative is, from the limit definition of derivative,

g�(0) = lim
δ→0

g(0 + δ)− g(0)

δ
= lim

δ→0

g(δ)

δ
= lim

δ→0

m�
X(δ · t)
δ

= L.

We therefore have

L = g�(0).

But since

g(δ) = m�
X(δ · t),

we may instead use the Chain Rule, which results in

g�(δ) =
d

dδ
[m�

X(δ · t)] = t ·m��
X(δ · t),

and therefore
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L = g�(0) = t ·m��
X(0).

Next, recall that the reason mX is called the moment generating function is that the nth

derivative at zero is the nth moment, E(Xn). Thus,

m��
X(0) = E(X2

) = 1,

since X is assumed to be standard. The end result is that we have simply

L = t.

But recall now that we have h� = L · h, so this means we now have simply

h�
(t) = th(t).

If we assume that h is the moment generating function for some unknown, then it is equal to

its power series in a neighborhood of t = 0, so we can find h from its power series. We must

calculate all derivatives of h at t = 0. Notice that as h�(t) = th(t), if h is differentiable, then it

must have a second derivative and by the Product Rule for differentiation,

h��
(t) = h(t) + th�

(t) = h(t) + t2h(t) = [1 + t2]h(t),

and then as h is differentiable, this last equation shows that h has a third derivative. In fact,

the equation h� = th shows that if h has an nth derivative, then it must have an (n + 1)th

derivative, so we can see that the assumption that h equals its power series expansion about

t = 0 is not completely out of bounds. Notice that we can determine all the derivatives of h by

repeatedly differentiating h� = th, and for each n we find a polynomial pn(t) so that

h(n)t) = pn(t) · h(t).
We have

hn(t) =

�
mX(

�
t√
t

��n
,

so

hn(0) = [mX(0)]
n
= 1

n
= 1,

and therefore

h(0) = lim
n→∞

hn(0) = 1,

so

h(n)
(0) = pn(0)h(0) = pn(0), n = 0, 1, 2, 3, ...

Notice that these polynomials come merely from the fact that h� = th. Any function equal to

a power series which satisfies this equation must then have the exact same power series and so

must equal h. But, if we look at mZ , the moment generating function of the standard normal

random variable Z, then

mZ(t) = et
2/2,

so by the Chain Rule for differentiation we have

m�
Z(t) = et

2/2 · 2t
2

= tet
2/2

= tmZ(t),

the exact same equation, and mZ(0) = 1, as well. As a consequence, it must be that also

m(n)
Z (0) = pn(0) = h(n)

(0), n = 0, 1, 2, 3, ...
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Thus, both mZ and h have the same power series expression and are therefore the exact same

function, so finally, we have the Central Limit Theorem:

mZ = lim
n→∞

mZTn
.
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