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1. INTRODUCTION

These notes are designed to complement an elementary course in probability and/or sta-
tistics. The aim is to develop all the mathematical tools required using only elementary
algebra starting from five basic assumptions about expectation which are easily motivated.
No attempt is made to provide sufficient examples or exercises. Later sections present more
advanced material which requires more detail, but nothing more than elementary algebra
is ever required of the reader. A more sophisticated reader can easily supply the more ad-
vanced interpretations required. For more background on the foundation of the five basic
assumptions including the multiplication rule for conditional expectation and conditional
probability, the interested reader should consult references [1], [2], and [3] in the bibliog-
raphy. In particular, here we have not restricted attention to the usual notion of random
variable, but rather, as in [1] and [2], the foundations are developed for a general notion
of unknown which in particular leads to a more generally applicable notion for expectation
and the more general Laplacian or Bayesian notion of probability. This more general foun-
dational development given in [2] and with a more elementary treatment in [1] includes the
proof of the five basic properties of expectation including the multiplication rule for con-
ditional probability based on not much more than the requirement that logical consistency
should be maintained. In the section below on conditional expectation, the multiplication
rule for conditional expectation is made plausible for unknowns and random variables, purely
under the assumption that conditional expectation should relate to ”unconditional” expec-
tation. That is to say expectation only under the background information, which for random
variables works through a simple restriction and extension process and which leads to the
multiplication rule following from a simple renormalization procedure.

2. UNKNOWN NUMBERS

Probability and statistics deals with unknown numbers and their relationships to one
another. Generally, we can think of an UNKNOWN NUMBER as a description of a numerical
value insufficient possibly to determine its exact value. If a dice is in a box so we cannot see
which face is on top, then the number on top is an an example of an unknown number. One
of the main aims in dealing with unknown numbers here is to know the likelyhood of various
possible values. For instance, for the dice in the box, as described, there is no information
allowing us to be able to guess any value as being more likely than any other, so as specified,
all of the six possible values must be considered equally likely. For unknowns in general, it
turns out that this problem of determining how likely various values are to be observed can
mathematically be reduced to the problem of determining an optimal guess for each of the
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unknown numbers in a related family of unknowns and in many situations, the optimal guess
and a measure of the guess for the squared error of the guess suffice to give a practical way to
determine how likely various values are to be observed. We call this optimal guess the MEAN
or EXPECTED VALUE of the unknown. In general, for any given situation, there are many
unknown numbers. Clearly given two of them, say X and Y, we can add and multiply them
by doing so to their values, forming X + Y and XY . As an example, for the dice in the
box, if X denotes the number that comes up on the top face and Y denotes the number on
the bottom face, then X + Y and XY make sense. If you are familiar with dice, you will
recognize that for the dice example here, in fact always X + Y = 7, that is the numbers on
opposite faces of a standard dice always add up to 7. In particular, we see ordinary numbers
or what we call constants, are unknowns of the simplest kind, since we actually know their
definite value. Of course, the same considerations apply to unknowns generally, that is in
any situation or set up, there are usually many unknown numbers that can be specified, and
such unknown numbers can be added and multiplied. In some situations, we have a physical
set up in which there is a clearly defined set of possibilities, such as for the dice in the box.
In such a case, it is customary to refer the the unknown as a RANDOM VARIABLE. To
handle this mathematically, we describe the set of all possible outcomes with the precision
to capture the essential information about the outcomes. The resulting set is called the
SAMPLE SPACE and is customarily given the symbol S. Then a random variable assigns
a number to each outcome in a definite way. For instance, if S is a set of people, we can
consider the experiment of choosing a person at random from S. If the random variable X is
weight in pounds, then X assigns each person in S his weight in pounds. If Joe belongs to S,
then X(Joe) is used to denote Joe’s weight in pounds. Notice that there is nothing random
about Joe’s weight. The randomness in a random variable comes from the randomness of the
outcome as to whose weight we are to observe. Mathematically, this means that a random
variable is in particular a FUNCTION whose domain is the sample space S and whose values
are in the set of all real numbers. If all we know about a is that a belongs to S, then X(a)
is an unknown number. Thus if S is a set of people and X is weight as before, then X(a)
is the weight of person a so is an unknown number, since we do not have any information
about who a is other than a belongs to S. Thus, in this situation, the a is really playing no
role other than as a place holder for something in S and may as well be dropped from the
notation, and we will say X itself is the unknown here. If S is a finite set, then every real
valued function whose domain is S constitutes a random variable. If S is an infinite set, then
such is not the case-there may be real-valued functions on S which are not random variables.
However, sums and products of random variables are again random variables. If A ⊂ S and
X is a random variable on S, then it is useful to denote by X(A) the set of values that X
assumes for outcomes in A. In particular, X(S) is the set of all values which X may take
on. We denote by R the set of all real numbers, so X(A) ⊂ R. Obviously, if S is finite, then
so is X(S). In general, for an unknown X, there may not be any reasonable formulation
of a sample space, but we can still speak of the possible values which X may have, which
of course can depend on our information. That is, we know that all possible values of X
belong to the set of all real numbers, or, in other words, the set of possible values of X is a
subset of R. Suppose that V denotes the set of all possible values of X given our information
about X. We then certainly have V ⊂ R. We say X is SIMPLE, if V is finite. Clearly when
we add or multiply simple unknowns, the results are simple unknowns. In particular, if we
have a sample space S which is finite, then all random variables on S are simple. Consider
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the experiment where we repeatedly roll a dice over and over until we roll a 5 and X is
the number of rolls it takes to roll a 5. The set V = X(S) of possible values for X in this
case is the set of all positive whole numbers, which is infinite. However, we say that this
set forms a countable infinity. Whenever the members of a set can be listed in a possibly
infinite list, we say the set is COUNTABLE. If V is a countable set, then we say that X is
DISCRETE. In applications, values of unknowns and random variables are usually observed
either by counting or by measuring. In the case where we count, the unknown will then be
discrete. Even though the set of values in this case may be infinite (as in the example of
rolling the dice until we get a 5), the infinity is countable. Here, it can be shown that again,
if we add or multiply discrete unknowns, the results will be discrete unknowns. In the case
where a measurement process is used, such as a scale to measure weight or a ruler to measure
length, the possible values can be considered to cover a ”continuous” range of possibilities,
so we say the unknown is CONTINUOUS. Unfortunately, a continuous infinity of possible
values is not countable. Now in a measurement process we always have to deal with the level
of accuracy of measurement. For instance, if we are weighing people, we need to decide in
advance the number of decimal places used in reporting the weights and in measuring. To
deal with this, if X is an unknown, and n is a positive integer, we can denote by Rn(X) the
result of ROUNDING OFF X to n decimal place accuracy. Naturally, we must assume that
if X is a random variable, then so is Rn(X). Besides using the usual rounding process, we
can instead just round down (changing all digits past the n decimal place to 0) to get the
LOWER ROUND which we denote by Ln(X), or we could round up getting the UPPER
ROUND which we denote by Un(X), and which just raises the digit in the n decimal place
(if that digit is less than 9, or in case the n decimal place is 9, we change it to 0 and consider
the previous or n− 1 decimal position). It is useful to be able to use any one of these round
off procedures to any number of decimal places and get a random variable as a result if we
start with a random variable. That is, if X is a random variable, then so are Ln(X),Rn(X),
and Un(X), for each nonnegative integer n. Actually, it suffices to know that we can take
the integer part of a random variable and the result is a random variable. For, if int(X)
denotes the largest integer less than or equal to X, then Ln(X) = (1/10n)(int(10nX)),
whereas Un(X) = (1/10n)(int(1 + 10nX)). Also, Rn(X) = (1/10n)(int(.5 + 10nX)), so as we
can always multiply random variables by ordinary numbers, if the integer part of a random
variable is again a random variable, then these equations show that the various round offs
will again be random variables. Of course, since the integer part of an unknown is a discrete
unknown, this means that the various round offs of an unknown are discrete. It is useful to
notice that for any unknown X, we have both

(2.1) Ln(X) ≤ X ≤ Un(X)

and

(2.2) Ln(X) ≤ Rn(X) ≤ Un(X).

Consequently, using absolute value

(2.3) |x| =
√
x2,

and remembering that |x − y| =distance from x to y on the number line, as both X and
Rn(X) are between Ln(X) and Un(X), it must be the case that

(2.4) |X −Rn(X)| ≤ Un(X)− Ln(X) ≤ 1

10n
.
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This will mean that in case of a continuous unknown, we can approximate to whatever
degree of accuracy we might require with unknowns which are discrete (notice again that
Ln(X),Rn(X), and Un(X) only assume at most a countable infinity of values). We say that
the unknown X is BOUNDED if there is a non negative number b so that |X| ≤ b. We can
note here that if X is a bounded unknown, then all the various round offs of X are simple
unknowns.

In general, if X is an unknown, then its description is a statement which we understand
with our background information and that we will assume can be put in the form of a
statement B. In general, if A is any statement, our background information B may not tell
us whether A is true or false. In this situation, we can form an unknown IA called the
INDICATOR of A, defined by saying IA has value 1 if A is true whereas IA has value 0 if A
is false. Thus the value of IA exactly tells us whether A is true or false-knowing the value
of IA is therefore equivalent to knowing whether A is true or false. For instance, notice that
XIA is a new unknown and has the value that X itself has if A is true, whereas XIA is
simply 0 if A is false. We shall see this new unknown XIA is the key to how we learn about
X as new information about X is discovered. It also turns out to be the key to how to best
guess a value for X, as we shall see next.

3. GUESSING AND EXPECTATION

As mentioned in the previous section, the first thing of interest to be determined about
an unknown is an optimal guess, based on the information at hand. The sense in which our
guessing is optimal will become clear later as it turns out to be a result of the theory we
are developing. We will think of the information at hand as consisting of a statement B of
what we can think of as background information which we use to make our guess. If X is
an unknown we use E(X|B) to denote our optimal guess which we will call the MEAN or
EXPECTED VALUE of X GIVEN B. We also often find it convenient to use the Greek
letter µ, pronounced ”mu”, to denote the mean, so µX denotes E(X|B), or we simply use µ
or E(X) for E(X|B) if there is no confusion as to what X is or what B is as the case may
be. The expectation E has some simple fairly obvious properties (here X and Y are any
unknowns, c is any constant, A and B are any statements of information):

(3.1) E(X + Y |B) = E(X|B) + E(Y |B),

(3.2) E(cX|B) = cE(X|B),

(3.3) E(X|B) ≥ 0, if X ≥ 0,

(3.4) E(1|B) = 1,

and finally,

(3.5) E(XIA|B) = E(X|A&B)E(IA|B).
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These five properties are the BASIC PROPERTIES OF EXPECTATION which we shall
assume. As immediate consequences of these basic properties we have, with fixed background
information B, for any constants a and b that:

(3.6) E(aX ± bY ) = aE(X)± bE(Y )

(3.7) E(X) ≥ E(Y ) if X ≥ Y

(3.8) E(c) = c.

For instance, [3.6] is the result of combining [3.1] and [3.2], whereas [3.7] follows from[3.3]
and [3.6] and the fact that X ≥ Y is the same as X − Y ≥ 0. On the other hand, [3.8] is an
immediate consequence of [3.2] and[3.4].

More generally, if X,X1, X2, X3, ..., Xn are all unknowns and c1, c2, c3, ..., cn are any num-
bers and if

(3.9) X = c1X1 + c2X2 + c3X3 + ...+ cnXn,

then repeated application of [3.6] gives

(3.10) E(X) = c1E(X1) + c2E(X2) + c3E(X3) + ...+ cnE(Xn).

In mathematics, it is customary to call the expression such as for X on the right hand side of
[3.9] or for E(X) on the right hand side of [3.10], a LINEAR COMBINATION. Thus [3.10]
says to compute the expected value of a linear combination just use the same corresponding
linear combination of expected values or means:

(3.11) E(c1X1 + c2X2 + c3X3 + ...+ cnXn) = c1E(X1)+ c2E(X2)+ c3E(X3)+ ...+ cnE(Xn).

For instance, if we know that E(X) = 5, E(Y ) = 6, and E(W ) = 7, then

E(4X − 3Y +W ) = 4(5)− 3(6) + 7 = 9.

The first basic property of expectation, [3.1], is known as the ADDITIVITY PROPERTY.
The second basic property, [3.2], is known as the HOMOGENEITY PROPERTY. The third
basic property of expectation, [3.3], is known as the POSITIVITY PROPERTY, and the
fourth basic property of expectation, [3.4], is known as the NORMALIZATION PROPERTY.
Finally, the last property of expectation is known as the MULTIPLICATION RULE. The
first two properties together are called LINEARITY. That is to say that if a proposed
expectation model (meaning a guessing method) is known to satisfy the first two basic
properties of being additive and homogeneous, then it is called LINEAR. If in addition the
positivity property is satisfied, then it is POSITIVE LINEAR. If the normalization property
and linearity properties are satisfied, then we have a normalized positive linear model. Thus,
keeping the background information fixed we can say the expectation given a fixed B is a
normalized positive linear model. The purpose of the multiplication rule is then to give the
expectation the ability to learn to make ”better” guesses when new or ”better” information
is available. In some sense then, the five rules together are a model for a process for learning
about the world.
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MOTIVATION OF BASIC PROPERTIES. As for motivation of the basic properties of
expectation, it often becomes clearer when we think in terms of money. Suppose that X
is the value in dollars of a retail business which we must buy and which must be resold,
hopefully at a profit. Our information B may not tell us the exact value of the business,
but we may be able to use it to arrive at an optimal guess which is then E(X|B). Notice
that we must offer enough to be able to strike a deal, but not too much since we want to
make a profit. Thus, there is a penalty for being wrong and we see that the bigger our error,
the bigger the penalty. Suppose that Y is the value of another retail business which we are
thinking of buying for the same purpose. Suppose that we must sell the business we buy
within two weeks and possibly take a loss. We need to be careful. If we think that the first
business is worth 2 million dollars and the second business is worth 3 million dollars, then it
is certainly reasonable that we would think both together are worth 5 million dollars. This is
exactly what additivity, [3.1], says. If we wish to consider the value of the first retail business
in French Francs and the exchange rate is 4 Francs to the dollar, then clearly we must think
that the value in Francs is 8 million Francs. We do not have to completely rethink our guess
in terms of Francs, we just convert our guess in dollars directly to Francs. This is what [3.2]
says. If instead, X is the net profit in dollars from selling the first retail business and if
our advance information tells us X ≥ 0, then certainly, E(X|B) ≥ 0, and this is clearly the
content of positivity, [3.3]. If in fact B tells us that X = 1, then certainly E(X|B) = 1, and
in particular, E(1|B) = 1, which is the normalization property, [3.4].

For a random variable view, using a different example, we can instead think of X as the
daily net profit of a retail store and Y as the daily net profit of a nearby coffee shop, then a
businessman who happens to own both of these knows that X+Y is the total daily net profit
from the two businesses. One thing this business man would be interested in is the long run
average daily net profit. If you ask him to guess the daily net profit for the retail store on
Tuesday after next, and if he has no reason to think of that day as anything special, he will
probably guess the long run average. In this case, we are thinking of the sample space as the
set of all possible days for which both of these businesses operate. Clearly, if the business
man thinks the retail store (in the long run) averages a net profit of 3000 dollars a day and
the coffee shop averages a daily net profit of 7000 dollars a day, then he should think the
two businesses together on average are netting 10, 000 dollars. He does not have to go back
into the records and add up the daily net profits for the two businesses (over a long run)
and average the resulting totals. This is exactly what additivity, [3.1], says. Moreover, if
you ask him to guess the profit from the retail store for some particular day which he has no
reason to think of as being anything other than ordinary, he will likely think it reasonable
that 3000 dollars is a good guess. If a German business man inquiring about buying his
retail store wants to know the average daily net profit in German marks, and if a dollar is
worth 3 German marks (we wish), then the store owner knows immediately that the average
daily net profit in German marks is simply 3 times 3000, or 9000 German marks. Again,
there is no need to go back into the records and convert each days net profit into German
marks and recompute the long run average. Alternately, we are saying here that the long
run average can be calculated with any new units by converting the long run average value
directly to the new units. This is what [3.2] says. If the coffee shop never suffers a net loss,
then obviously its long run average daily net profit cannot be negative,and this is clearly the
content of positivity, [3.3]. In fact, if it nets 1 dollar every day, then the long run average
daily net profit must be 1 dollar, which is the normalization property, [3.4]. This indicates
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that one way to arrive at a guessing procedure for expectation is to try to guess the long run
average, in the case of random variables. In either case, we therefore see that the first four
properties of the expectation are virtually undeniable and so we have simply taken them as
axioms, like in Euclidean geometry.

The multiplication property is more problematic. We will see later that for random vari-
ables we can view the multiplication rule as simply a way to restrict our attention to the
case where the new information is true so as to simultaneously preserve the normalization
property. However, the situation for the more general unknowns is really based on the idea
of preserving logical consistency of our guessing procedure and for this discussion we refer
the interested reader to [2] and [1].

Let us consider what rounding off does to the process of observing unknowns and expecta-
tions in more detail. In fact, we can use the round off procedure to approximate expectations
to any degree of accuracy we like. Indeed, by [2.1], [2.2], and [3.7], we see that for any n we
know that both E(X) and E(Rn(X)) are between E(Ln(X)) and E(Un(X)), and that

E(Un(X))− E(Ln(X)) = E(Un(X)− Ln(X)) ≤ E(10−n) = 10−n

so

(3.12) |E(X)− E(Rn(X))| ≤ 1

10n
.

What this means is that no matter how large n is chosen, if we measure to n decimal place
accuracy then expectations come out to n decimal place accuracy. For instance, if we are
using information about weights in pounds measured to three decimal place accuracy in
order to arrive at an optimal guess for a person’s weight in pounds, then the result will in
fact be the optimal guess to three decimal place accuracy.

Finally, we must add a note of caution. The background information is actually very
important. Given an experiment, our information about the specific type of experiment
(such as tossing a dice) determines the sample space and the set of all unknowns or random
variables on the sample space, but our information as to the specific physical characteristics
of the experiment (such as how the dice is loaded) determine the expectations of the random
variables. For instance in the dice example, changing the loading of the dice will generally
change the expectation of some or all of the random variables (except constants of course).
Thus when we deal with a specific loading of the dice, we are dealing with a specific ex-
pectation model. In reality, what we are dealing with is different more specific background
information about the dice. For if we are considering the example of the dice in a box, clearly
it does not matter how the dice is loaded, it is just sitting there in the box. Alternately,
if we have some information as a result of a very brief view inside the box, that changes
the state of our information. Whatever the model, however, the expectation must obey the
preceding rules and all their consequences. In applications of expectation to real physical
problems, it is the job of the statistician, based on his information, to find an expectation
model that reasonably approximates the true expectation model which may be difficult to
know, in practice. For instance, by rolling a dice many times, the statistician begins to know
approximately the loading of the dice, but (s)he can never know it with absolute certainty by
just looking at the results of rolling the dice a finite number of times. For instance, suppose
that I have a dice which I have loaded in such a way as to make the even numbers more
likely than the odd numbers in a specific way which I know and you do not. If I give you
the dice, if I do not tell you the dice are loaded and ask your guess as to what number will
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come up when the dice are tossed, then you should base your answer on the assumption that
all outcomes are equally likely since you have no information which contradicts this. But
after you toss the dice a finite number of times, you will begin to learn something about the
way the dice are loaded, so your expectation model will be a better approximation of the
true model which I know but you do not. No matter how many times you toss the dice, you
can never really be certain as to how I have loaded the dice, so you will never be able to
find the ”true” expectation model, but rather you will learn an expectation model based on
the information you receive from watching the dice. In general, the statistician must find a
method of computing expected values which is approximately ”correct” and in general, there
are many possibilities, even when we restrict to expectation models satisfying the first four
basic properties of expectation. When attempting to create a method of calculating expec-
tations, given fixed background information, B, it is best to look for a way of assigning each
unknown X a number FB(X) so that the first basic property of expectation-the additivity
is satisfied: FB(X + Y ) = FB(X) + FB(Y ), because it is usually the most difficult to get
and causes the most severe restrictions on what is possible to use for an expectation model.
We would then check to see if the homogeneity property, that is the second basic property
holds, which is usually very easy to determine, and then check the third basic property,
the positivity property which is also usually easy to determine. Finally, we would look to
see if the fourth basic property known as the normalization property holds, which means
calculating FB(1) to see if we get 1. If the first three basic properties are satisfied but the
normalization property is not, we do not really have a problem. If FB(1) 6= 0, then as 1 ≥ 0
the positivity property guarantees that FB(1) is a positive number. We then define a new
expectation model which we can denote EFB

by requiring for any unknown X, that

(3.13) EFB
(X|B) =

FB(X)

FB(1)
.

It is now easy to calculate directly that if FB satisfies the first three basic properties, then EFB

satisfies the first four basic properties so is an expectation model for the given background
information, B. That is if circumstances were pointing toward the model FB, then we would
choose EFB

as our expectation model given B, so we would use E(X|B) = EFB
(X) for each

unknown X. This process of forming EFB
from FB is called NORMALIZATION. Thus, the

fourth basic property amounts to the assumption that normalization has been carried out.
If it is the case that FB(1) = 0, then it can be shown (see the appendix) that FB(X) = 0
for every random variable X so such an attempted model would be useless from the start.
It may seem from this discussion that the problem of determining the proper expectation
model to use in a given situation is theoretically unsolvable. What is really going on however,
as we shall see in more detail later, is that the expectation model is basically determined
by our state of information about the physical setup of the experiment. As a statistician
studies the actual physical experimental apparatus, he is continually refining his information
about the apparatus which then causes a change in the expectation model used, through
the multiplication rule, that is the last property. This will become clearer in a later section
where we discuss conditional expectation and probability. In particular, in Jaynes, [3],
general methods are discussed for determining the best expectation model determined by
the available information.
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4. PROBABILITY

So far, we have not mentioned probability at all. In fact, probability is really sort of
a special case of expectation. That is, the expectation E applies to any unknown, but
probability is the result of applying expectation to an indicator of a statement. Thus, if A
is a statement and B is the statement of our background information, then we define the
PROBABILITY of A GIVEN B, denoted P (A|B), by the equation

(4.1) P (A|B) = E(IA|B), for any statements, A,B.

Before we go any further we should point out that this means that the multiplication rule
for expectation [3.5] says that

(4.2) E(XIA|B) = E(X|A&B)P (A|B), for any unknownX and any statementsA andB.

Incidentally, when we have a sample space, statements about the outcome of an experiment
are called EVENTS if their indicators are random variables. Notice an unknown X is an
indicator (of some statement) if and only if it equals its own square, or in symbols,

(4.3) X2 = X.

This rather innocent equation means immediately that the only possible values X can have
are 0 and 1, so for sure we have

(4.4) 0 ≤ X ≤ 1,

and therefore, we can conclude from [3.7] and [3.8] that

(4.5) 0 ≤ E(X|B) ≤ 1.

Therefore we have for probability

(4.6) 0 ≤ P (A|B) ≤ 1, ALWAYS.

Notice also, that if X is an indicator and if A is a statement, then to say X = IA is the
same as saying the statement A is logically equivalent to the statement X = 1. In particular,
the constants 0 and 1 are indicators. We will use the symbol ∅ to denote a statement which
is false for sure, so that I∅ = 0. We use the symbol S to denote a statement which is true
for sure so that IS = 1. It is customary to call S the SURE STATEMENT since it is true
for sure, and we will call ∅ the SURELY FALSE STATEMENT since it is false for certain.
Thus

(4.7) P (S|B) = 1 and P (∅|B) = 0, for any B.

When we have a sample space, any statement about the outcome of the experiment can be
used to define a function on the sample space whose only values are 0 and 1. We simply
declare that the truth value of the statement gives the value of the function via

(4.8) TRUE = 1 and FALSE = 0.

This is clearly the indicator of the statement viewed as a function on the sample space.
For instance, if we are dealing with a dice in a box which we cannot see, and if A is the
statement that the number on top is even, then that statement has unknown truth value.
But if the number up is 2, then IA has the value 1, whereas if the number up is 3, then IA
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has the value 0. The truth value of A depends or is a function of the number on top, so
likewise, IA is a random variable on the set of outcomes. In general when we have a sample
space, if the indicator of a statement is actually a random variable, then the statement is
an EVENT. Thus, if the sample space is finite, then any statement about the outcome of
the experiment is an event. In case we have a sample space, a statement determines a set
of outcomes, namely, the set of all outcomes for which the statement is true, or equivalently
the set of all outcomes for which the indicator value is 1. For instance, if we are dealing with
a dice in a box, the sample space is considered to be the set S = {1, 2, 3, 4, 5, 6} and we see
that if we consider the set of outcomes for which A is true (here again we take the example
where A says the number on top is even), we find it is {2, 4, 6}, as this is exactly the subset
of outcomes for which A is true, or equivalently, the set of outcomes for which IA takes the
value 1. We will use capital letters near the beginning of the alphabet for events just as for
statements in general. Thus, if A is an event, then we can think of A as simply consisting
of the set of all the outcomes for which statement A is true or for which the value of IA is
1, and thus also think of A in terms of its indicator IA. All three ways are useful, and being
able to transfer your thinking from one to the other can be very useful. For instance, as
the sure statement S is true for sure so IS = 1, it follows that whenever we have a sample
space, then as a set it must be the case that S is the set of all possible outcomes, which is
consistent with our previous discussion using S to denote the sample space.

Technically speaking, if S is uncountably infinite, as it is the case that possibly not every
function with domain S defines a random variable, in fact, possibly not every indicator
defines a random variable. This means that if the sample space is uncountably infinite, then
possibly not every subset of S is an event, and consequently, possibly not every statement
about the outcome is an event. We will not need to deal with these technicalities until later,
however.

Now, let’s see how indicators can combine to form new indicators and how the combina-
tions relate to logic and set theory. If X and Y are indicators, then clearly so is XY , their
product. As statements, suppose X = IA, Y = IB, and XY = IC . As XY is the indicator
of the statement C, then C must be logically equivalent to A&B, since the only way that
XY can equal 1 (that is for C be true) is for both X and Y to be equal to 1 (that is for
both A and B to be true), no matter what other background information we have. Thus we
can regard XY as the indicator of the statement A&B. If we have a sample space, as a set
of outcomes, (A&B) is the set of outcomes common to both A and B, that is to say their
common overlap which in set theory is known as their INTERSECTION, denoted A∩B, so
finally we have

(4.9) IAIB = I(A&B) = IA∩B, and (A&B) = A ∩B
giving the three ways to interpret the overlap of two events, the first as a random variable,
the second as a statement, and the third as a set of outcomes. We can now use [4.9] and the
multiplication rule [4.2] with X = IC to get a special form of multiplication rule known as
the LAW OF CONDITIONAL PROBABILITY:

(4.10) P (C&A|B) = P (C|A&B)P (A|B), for any statementsA,B,C.

Unfortunately, if we add two indicators we do not necessarily get an indicator. For notice
that when we form the indicator X + Y , if both A and B are true, then the value of X + Y
will be 2, not allowed for an indicator. We therefore need to subtract the value 1 exactly
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when both are true. This means that X+Y −XY is an indicator. It is now an easy exercise
to interpret this indicator as the indicator of the statement (A or B) and in case there is
a sample space, as A ∪ B as a set of outcomes, that is the UNION of A and B as a set of
outcomes. To summarize,

(4.11) (A or B) = A ∪B and IA or B = IA + IB − IAIB.

Since the probability of a statement is just its expectation as an indicator, from [4.11] and
the first consequences [3.6] and [3.8] of the basic laws of expectation we have

(4.12) P (A or B) = P (A ∪B) = P (A) + P (B)− P (A & B)

We say that statements A and B are MUTUALLY EXCLUSIVE when A&B = ∅, that is
when A&B is certainly false. In case where we have a sample space, this means as sets, A
and B are disjoint, or do not overlap. For this special case we have, since P (∅) = E(0) = 0,
that [4.12] reduces simply to

(4.13) P (A or B) = P (A) + P (B), when A and B are mutually exclusive.

The basic laws of probability are [4.6],[4.13], and the first half of [4.7], since using algebra
these can be used to construct the expectation. That is, it is mathematically the case
that once the probability of all events are determined, then the expectation of all random
variables can be mathematically determined. This however requires a lot more mathematical
effort than getting the laws of probability from the rules of expectation which are themselves
([3.1],[3.2],[3.3],[3.4]) very simple and easy to understand.

Besides using ”and” and ”or” to combine statements, we can also use ”but not”. So, if
A and B are statements or events, then so is (A but notB). If we have a sample space, as
a set this is easily seen to be what in set theory is called the RELATIVE COMPLEMENT
of B in A which is usually denoted by A \B, that is the set of outcomes in A which do not
belong to B. In the indicator picture, it’s indicator is clearly just IA − IAIB. We therefore
have

(4.14) (A but notB) = A \B = A \ (A ∩B), and IA but not B = IA − IAIB,

so, by [3.6],

(4.15) P (Abut notB) = P (A \B) = E(IA − IAIB) = P (A)− P (A ∩B).

As a special case we have a logical operation on statements that we have not mentioned so
far which is the simple act of negation. If A is a statement, then we can form its negation
(notA), which is true exactly if A is false. If we have a sample space, as a subset of S,
then (notA), consists of all outcomes for which A is false, namely the complement of A in
S denoted S \ A. On the other hand, in terms of indicators, it is easily seen that simply

InotA = 1− IA.

Thus we have

(4.16) InotA = 1− IA, (notA) = S \ A,
and consequently by [3.6] and [3.8],

(4.17) P (notA) = 1− P (A).

Notice that if A is any statement, and if C = (notA), then (A orC) = S, whereas, A and
C are mutually exclusive. More generally we say that statements A1, A2, A3, ..., An partition
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S if they are all mutually exclusive, meaning any two are, and if (A1 orA2 orA3...orAn) = S,
which is to say at least one of these must be true. Thus exactly one is true and all the others
are false. Then clearly we must have for their indicators

(4.18) IA1 + IA2 + IA3 + ...+ IAn = IS = 1,

so for probability we then have

(4.19) P (A1) + P (A2) + P (A3) + ...+ P (An) = 1.

Better still, we see that as for any unknownX we haveX = 1X, it follows that on multiplying
both sides of [4.18] by X we have

(4.20) X = XIA1 +XIA2 +XIA3 + ...+XIAn ,

and therefore, with any background information B,

(4.21) E(X|B) = E(XIA1|B) + E(XIA2|B) + E(XIA3|B) + ...+ E(XIAn|B).

Next, let us apply the multiplication rule [4.2] to each term on the right hand side of [4.21].
Then for each k with 1 ≤ k ≤ n the multiplication rule gives

E(XIAk
) = E(X|Ak&B)P (Ak|B),

and substituting this result for the terms on the right hand side of [4.21] for k taking values
1 ≤ k ≤ n, gives

(4.22)
E(X|B) = E(X|A1&B)P (A1|B) + E(X|A2&B)P (A2|B) + ...+ E(X|An&B)P (An|B).

In particular, by taking X = IC to be the indicator of a statement C, in view of [4.1] we get

(4.23) P (C|B) = P (C&A1|B) + P (C&A2|B) + P (C&A3|B) + ...+ P (C&An|B),

and consequently, in view of [4.9],

(4.24) P (C|B) = P (C|A1&B)P (A1|B)+P (C|A2|B)P (A2|B)+ ...+P (C|An&B)P (An|B),

a very useful way in many situations of breaking up a probability computation into several
mutually exclusive cases. As another useful application, if X is a simple unknown whose
values are the numbers x1, x2, x3, ..., xn, we can let Ak be the statement that X = xk for
each k. Then XIAk

= xkIAk
for each k, hence the k−th term on the right hand side of [4.20]

becomes xkIAk
, so [4.20] becomes

(4.25) X = x1IA1 + x2IA2 + x3IA3 + ...+ xnIAn ,

so by [3.6]

(4.26) E(X|B) = x1P (A1|B) + x2P (A2|B) + x3P (A3|B) + ...+ xnP (An|B).

Here we see that [4.26] tells us how to compute the expectation for simple random variables
once we know the probability of each of its values. That is to say, [4.26] reduces the com-
putation of expectation to the computation of probability. Notice that if you look in any
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elementary book on probability or statistics, you will find [4.26] is the usual way of defining
expectation in terms of probability for simple unknowns. Also, [4.26] together with [3.12]
tells us that the expectations of all unknowns in a given situation are actually determined
by the probabilities of all relevant statements, which, in the case of an experiment with
only finitely many outcomes, is in turn determined by the probabilities of the individual
outcomes. We can also see that [4.26] is a special case of [4.22], because obviously for each
k with 1 ≤ k ≤ n we have E(X|Ak&B) = xk, since if Ak is true, then we know X = xk and
therefore xk must be our guess for the value of X, which is E(X|Ak&B).

For calculations using the TI-83, we simply put the possible values in a list in the statistical
editor and in the list right beside we put the corresponding list of probabilities in the same
order so each value is beside its probability. We then use the 1-var stat operation at the top
of the statistical calculation menu followed by the value list and probability list separated
by a comma-always put the probability list last. When we hit the enter button, the TI-83
then gives the mean µX as x̄, and the standard deviation σX as σx.

As we remarked above, in case the sample space is finite, as soon as we determine the
probability of each individual outcome of the experiment we can determine the expected
value of all the random variables. For instance if the experiment is to toss a dice, then we
can take S = {1, 2, 3, 4, 5, 6} and as soon as the probabilities

P ({1}), P ({2}), P ({3}), P ({4}), P ({5}), P ({6})
are determined, then all expected values of all the random variables are determined. But,
what these six probabilities are depends on the specific loading of the dice. We say the dice
is FAIR if all these six probabilities are equal, which is to say all outcomes are equally likely.
More generally, if S is any finite sample space, we call the model of equally likely outcomes
the assumption that all outcomes are equally likely. For any model, the rules of probability
now dictate that the probability of each outcome is a non negative real number less than or
equal to 1 and that the sum of these probabilities exactly add up to 1. Consequently, if S has
exactly n outcomes, then in the model of equally likely outcomes each individual outcome
must have probability 1/n. In gambling situations, devices which operate according to the
model of equally likely outcomes are usually described as fair. That is in gambling situations,
gamblers are presented with some sort of physical experiment in which it appears that all
outcomes should be equally likely, and consequently use that assumption to judge their bets.
Consequently, when it appears all outcomes are equally likely, then we would say the device
is fair if in fact all the outcomes are equally likely. Thus we speak of a fair dice or a fair
roulette wheel or a fair drawing and so forth. There is however, a quite different meaning of
the word fair in gambling which is used to determine payoffs in gambling, and in this other
sense, casino gambling games are never fair. If person K is betting against person M in a
gambling situation, if W is the random variable which gives the net amount K wins, then we
say the game is fair provided that E(W ) = 0. This means that neither party has an outright
advantage and who wins is up to chance. Suppose that K is willing to bet b dollars that A
will happen against a bet of c dollars by M that A will not happen. Now, W = cIA−bI(notA),
so if P (A) = p and P (notA) = q, then p + q = 1 and E(W ) = cp− bq = cp− b(1− p). For
the game to be fair, then it must be the case that 0 = E(W ) = cp − bq, or cp = bq which
means (b/c) = (p/q). Such ratios are what are usually referred to as betting odds. Thus if
both K and M are willing to bet like this, if the bet is fair, then we would say that from
their point of view the odds of A happening are b to c. For instance at the race track when
the odds are ten to one on Gluefoot to win the race, that means that if you bet one dollar on
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Gluefoot to win, then you win ten dollars in case Gluefoot wins the race (here K is the race
track and M is the racetrack gambler). It is easy to see that specifying the betting odds on
an event is equivalent to specifying the probability of the event that the gamblers must be
tacitly agreeing on provided they both believe the bet to be fair. Actually if typical gamblers
agree to bet, they each believe the probability of the event differs from this value, but each
believes the difference is in his favor-they believe the bet is not fair. But at the racetrack, the
odds are simply set by the overall bets placed by the gamblers themselves-a system known
as paramutual betting. If r = b/c = p/q is given, then as q = 1 − p we have (1 − p)r = p,
so r − pr = p, and thus r = p + pr = p(1 + r). Therefore, p = r/(1 + r) = b/(b + c) and
q = 1 − p = c/(b + c). That is if K and M both agree that the bet is fair, then they are
agreeing that

(4.27) P (A) =
b

b+ c
, P (notA) =

c

b+ c
.

For instance for Gluefoot, if the odds are 10 to 1 that he wins the race then the probability
that Gluefoot wins the race is 1/11 as seen by gamblers who think this a fair bet. In
paramutual betting it means that for every dollar bet on Gluefoot to win the race there
were 10 dollars bet on the other horses to win the race. Consequently, at the racetrack, the
odds are changing as the bets are placed. This means that it is advantageous to wait until
the last minute to place a bet so as to best know the betting odds, which of course all the
gamblers know. The result is that everyone tries to place bets at the last minute and the
odds can change very wildly in the last seconds before the horse race begins. It is interesting
to note here that it is known that in horse racing the favorite horse wins roughly one third
of the time-there is some accuracy in the overall evaluation of the probabilities given by the
paramutual betting of a lot of gamblers.

Finally, we are now in a position to compute the optimal guess for the number up on the
dice in the box. Since we cannot see inside the box, our information gives no preference as
to any specific value, any of the numbers in S = {1, 2, 3, 4, 5, 6} could be on top and all are
equally likely according to our background information B. Thus, it must be the case, that if
X is the number up, then P (X = k) = 1/6, for each k ∈ S. Then by [4.26], we find here

(4.28)
E(X|B) = (1)(1/6)+(2)(1/6)+(3)(1/6)+(4)(1/6)+(5)(1/6)+(6)(1/6) = 21/6 = 7/2 = 3.5,

so our optimal guess for the number on top is 3.5, according to our theory. One interesting
thing we notice here is that the number up on the dice cannot be 3.5, but our theory is
telling us that in some sense it is the optimal guess. One of our next jobs is to see why this
is the case.

5. DEVIATION AND COVARIANCE

Even though we have seen that the computation of expectation can be reduced to the
computation of probability in many cases, the expectation itself still has more to say. For
most of this section, the background information is fixed, so we will drop from the notation
unless specifically needed. So, in particular, if X is an unknown or random variable, besides
simply finding its mean, the optimal guess, we would also like to know how X differs from
its mean. In the case of a random variable, we can think of the mean as the long run average
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value over many repeated observations, and here we would like to know how these various
observed values tend to differ from the mean. If we are thinking of the mean as an optimal
guess, then we would like to know how far off our guess is, and of course, here we can only
guess how far off we are, as well. For instance, if we toss a fair dice, the mean or expected
number up is 3.5, as seen in [4.28], but when we actually toss it many times, we get many
different results. The difference DX = X − µX is called the DEVIATION of X from its
mean. Notice it is a new unknown or random variable. Since the number E(X) = µX is
itself a constant, it follows from [3.6] and [3.8] that E(DX) = E(X − µX) = µX − µX = 0,
which in words says that the mean deviation is always zero. Suppose that both X and Y
are random variables. Then DX+Y = X + Y − E(X + Y ) = X + Y − (E(X) + E(Y )) =
(X − µX) + (Y − µY ) = DX +DY . Consequently,

(5.1) DX+Y = DX +DY ,

which in words says that the deviation of a sum is just the sum of the deviations as unknowns
or random variables. On the other hand, if c is a constant, then DcX = cX − E(cX) =
cX − cE(X) = cX − cµX = c(X − µX) = cDX . Therefore,

(5.2) DcX = cDX ,

which says that multiplying the unknown by a constant multiplies the deviation unknown
by that same constant. Notice the similarity with the first two rules for expectation. If
you are having trouble keeping these equations straight in your mind, suppose that we
take the example of an unknown X with mean equal to say 7. Then DX = X − 7, so
E(DX) = E(X − 7) = E(X) − 7 = 7 − 7 = 0. This is just telling us that if we use
our optimal guess, then our guess for the deviation from that optimal guess is zero. This
certainly seems to make sense-at least it seems logically consistent, but it does not help us
see how our optimal guess can be different from the actual value. What is happening in the
long run average case is that some values are below the mean and some are above the mean,
so some of the deviations are positive and some are negative and in the long run average of
the deviations, they just cancel each other all out-the positives cancel the negatives.

Since the only tool we have to assess the overall deviation of X from its mean is E, the
expectation, and since E(DX) = 0, we go further and consider D2

X . Since D2
X ≥ 0, we know

E(D2
X) ≥ 0, so we can try looking at the squared deviation. Let us begin with a very simple

example. Suppose that we have a coin on the table which can either be heads side up or tails
side up, denoted H and T, respectively. Suppose that we have no way of knowing which of
the two sides is actually up. Also, suppose that the unknown X has value 5 if tails is up and
has the value 7 if heads is up. Then, we can see that we have no way to know one side being
more likely to be up over the other. Thus, P (H) = 1/2 = P (T ), and therefore by [4.26],
E(X) = 6. Now, DX = 1 if X = 5, whereas DX = −1 if X = 7, and therefore, D2

X = 1.
This means E(D2

X) = E(1) = 1 > 0. Notice that now we are getting some indication of
the variable nature as to the value of X. We cannot get this by considering only DX , rather
we must look at D2

X . However, we want to be able to analyze a sum in terms of the parts
making it up, so for the simplest sum of two terms, say when dealing with X + Y , since
D2

X+Y = (DX +DY )2 and since

(DX +DY )2 = D2
X +D2

Y + 2DXDY ,
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we cannot avoid dealing with the product of deviations DXDY . To see how to better deal
with assessing overall deviation from the mean, it will save time to see how we deal with two
random variables at the same time, right to start.

We are now going to consider how to deal with two unknowns or random variables. If we
have two unknowns or random variables they may be related in some rough way. Think of
height and weight for people or length and weight for fish, for instance. Notice the product of
deviations will tend to be positive if the two variables tend to increase together. For instance,
longer fish tend to weigh more, whereas shorter fish tend to weigh less. Put another way, a
fish which is longer than average (positive deviation) will tend to be heavier than average
(again positive deviation), whereas a fish which is shorter than average (negative deviation)
will tend to weigh less than average (again negative deviation). We see that in either of
these two cases, the product of the deviations is nonnegative. Keep in mind that these are
just tendencies here-the product of deviations would reasonably seem to usually be positive,
and therefore the expected value for the product of these deviations should be positive. On
the other hand, the product of deviations will tend to be negative if the one variable tends
to go down when the other goes up in value. For instance with traffic in the street, when the
number of cars per block gets larger the speed of the cars tends to go down. In attempting
to get an overall measure of this we take the expected product of the deviations. Thus if
X and Y are any unknowns or random variables, we form their COVARIANCE, denoted
Cov(X, Y ), as

(5.3) Cov(X, Y ) = E(DXDY ) = E((X − µX)(Y − µY )).

In particular, X certainly relates to itself perfectly, so we define the VARIANCE of X,
denoted V ar(X), as its covariance with itself. Thus using [3.3],

(5.4) V ar(X) = Cov(X,X) = E(DXDX) = E(D2
X) = E((X − µX)2) ≥ 0.

We can use simple algebra to see that

(5.5) (X − µX)(Y − µY ) = XY − µXY − µYX + µXµY ,

so using properties [3.6] and [3.8] on [5.5] we get after some cancellations

(5.6) Cov(X, Y ) = E(XY )− µXµY ,

an expression which is often more efficient and useful in calculations. In particular, when we
take X = Y in [5.6] we find a useful formula for variance of a random variable:

(5.7) V ar(X) = E(X2)− µ2
X ,

so variance is the ”mean of the square minus square of the mean”, a phrase which almost
sounds like it’s from Gilbert and Sullivan. Using [3.6], [5.1], [5.2] and [3.8] and simple algebra,
we find that covariance has the following useful simple properties:

(5.8) Cov(W ±X, Y ) = Cov(W,Y )± Cov(X,Y )

(5.9) Cov(X, Y ) = Cov(Y,X)

and more generally than [5.8] we have for any constants a and b:

(5.10) Cov(aW ± bX, Y ) = aCov(W,Y )± bCov(X, Y ).

We can realize that [5.8] and [5.9] are sort of like the distributive and commutative laws
(respectively) for multiplication. This means that if we think of covariance as a type of
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multiplication, then variance is squaring with this multiplication. The same use of the
commutative and distributive laws which in high school algebra give

(5.11) (a± b)2 = a2 + b2 ± 2ab,

when applied to covariance and variance tell us that

(5.12) V ar(X ± Y ) = V ar(X) + V ar(Y )± 2Cov(X, Y ).

This means that unlike the mean, when dealing with variance, to find the variance of a
sum in terms of the variances of the summands, we cannot escape having to deal with their
covariance in some way. Sometimes in practice, the covariance is not easy to find, so various
assumptions about it can be made. The simplest assumption here is that the covariance is
exactly zero. Of course this is not always true, but in many useful situations it is true. We say
X and Y are UNCORRELATED when Cov(X, Y ) = 0. Stronger than being uncorrelated is
being INDEPENDENT, a very useful condition to be discussed later. That is, independent
unknowns or random variables must be uncorrelated. This means a useful special case of
[17] is

(5.13) V ar(X + Y ) = V ar(X) + V ar(Y ), ifCov(X, Y ) = 0,

that is when X and Y are uncorrelated and hence also if they are independent. In any
case, notice if we are given standard deviations for both X and Y , then we must convert
to variance by squaring before combining using [5.12] or [5.13]. Another useful fact about
covariance is that adding a constant to either of the random variables makes no change in
their covariance. This is because E(c) = c by [3.8], so if c is a constant then Dc = 0, that is
the deviation of c from its mean is 0. Therefore by [5.3]

(5.14) Cov(c,X) = 0 = Cov(X, c),

so using [5.8] we get

(5.15) Cov(X + c, Y ) = Cov(X, Y ) = Cov(X,Y + c),

and for variance

(5.16) V ar(X + c) = V ar(X), V ar(c) = 0.

The variance of X is a measure of how likely we expect X to differ from E(X), but it
involves squaring. To compensate for this in the end, we define the STANDARD DEVIA-
TION of X to be the square root of its variance. We denote the standard deviation of X by
SD(X) or more commonly by σX . As with the symbol for the mean, if their is no confusion
as to the particular random variable X we are discussing, its standard deviation will simply
be denoted by σ. By [5.16] we can conclude that for standard deviation we have for any
constant c,

(5.17) SD(X + c) = SD(X) or σX+c = σX

This means that X and X + c both have the same standard deviation, or that standard
deviation is unchanged by adding a constant value to all scores in a population. On the
other hand if we multiply by a constant the situation is very different. From [5.10] and [5.9]
applied to variance we see that

(5.18) V ar(cX) = c2V ar(X),
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so taking square roots of both sides of [5.18] gives

(5.19) SD(cX) = |c|SD(X) or σcX = |c|σX .

Thus if Y = mX+c, then σY = |m|σX . On the other hand for the expectation we would have
E(Y ) = mE(X) + c. So we notice that the added constant does not change the standard
deviation but the multiplying constant does, whereas both constants change the expected
value or mean. In fact the same is true of the population median. If X is any random
variable, then roughly speaking, the median of X is the number for which an observed value
is just as likely to be below it as above it. More precisely, we say x is the MEDIAN of X
provided that the chance that an observed value of X is less than or equal to x is at least
one half and the chance that an observed value of X is greater than or equal to X is also at
least one half. If x is the median of X and y that for Y , then at least half the X population
is at or below x and at least half is at or above x so if Y P mX + c, then at least half the Y
population is at or below mx+ c and at least half of the Y population is at or above mx+ c,
which means y P mx+ c. That is we have for any constants b and c,

(5.20) median(bX + c) = b(median(X)) + c.

We say X and Y are independent loosely speaking when no prior information as to what
the value of X will be is of any use in predicting what the value of Y will be. As an example,
if we roll a pair of dice, say one is blue and the other is red, knowing that the red dice
will come up 4 still gives no clue as to what the blue dice will come up. This is because
we know intuitively that the two dice are ”rolling independently” of each other. If the two
dice are attached to each other by a rigid connecting wire, then clearly they will no longer
roll independently of one another and we could soon figure out how to predict what is up
on the blue dice from knowing what came up on the red dice. Suppose instead, the two
dice are connected by a wobbly spring. They will still not be rolling independently of one
another, but depending on the properties of the spring, the values on the red dice will still
be somewhat useful in trying to predict what comes up on the blue dice, and in this case the
covariance would not be zero. At this point, you should be thinking that even though you
do not know how to precisely define independence in the mathematical sense, that at least
in many applications you will be able to ”know it when you see it”.

Returning to covariance in general terms, we began in an attempt to measure the extent
to which X and Y relate in some sense. However, from the defining formula [5.3] we can see
that the covariance of X and Y can be artificially large if either X or Y has lots of large
deviations from its own mean. We compensate for this by dividing by standard deviation.
Recalling that the standard deviation is defined as the square root of the variance, we have
formulas

(5.21) SD(X) = σX

(5.22) V ar(X) = σ2
X or σX =

√
V ar(X)

(5.23) ρ =
Cov(X, Y )

σXσY

and here in [5.23] we have the definition of the CORRELATION COEFFICIENT which
is denoted with the lower case Greek letter rho, that is ρ. We can notice that if we are
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given the standard deviations and the correlation, we can recover the covariance. Because
on multiplying the denominators out of the right side of [5.23] we find

(5.24) Cov(X, Y ) = ρσXσY .

This means any time you are given the variance of X, the variance of Y and the correlation
coefficient, ρ, of X and Y , we can use [5.24] to compute the covariance of X with Y and
then apply [5.12] to find the variance of X ± Y . Using a more involved argument (see the
section on regression,below) with the preceding properties, it can be shown that always

(5.25) −1 ≤ ρ ≤ 1.

Since the square of any number is never negative, this is equivalent to

(5.26) 0 ≤ ρ2 ≤ 1

and it turns out that ρ2 can in fact be thought of as the fraction of variation in say Y that
can be accounted for when we use optimal linear regression methods to best predict Y from
X.

6. DIGRESSION ON REGRESSION

Let us now return to the problem of how two unknowns or random variables may relate
to each other. In more detail, what we would like is a simple equation, called a (LINEAR)
REGRESSION EQUATION, of the form

(6.1) y = mx+ c

so that given the observed value x of X, the equation [6.1] can be used to get the best guess
for the value y which Y will have. You may recall that the graph of an equation like [6.1]
must be a straight line. For instance, if X is length and Y is weight in a population of fish,
then given the length, x, of a fish, with the correct values of m and c we use [6.1] to make a
best guess for the weight, y, of the fish. Of course, the immediate problem would be how to
best choose the numbers m and c once and for all so as to be able to predict a fish’s weight
from its length. In other words, what is the best straight line. If we think of plotting all
the pairs (x, y) for each and every thing in the population (every fish for example), then we
would have a massive number of points in the plane and we are trying to find the straight
line which as well as possible simultaneously passes nearest to all the points. Clearly, in
general there is no straight line passing through all the points (the points would appear as
a cloud of points in the plane). The criterion for passing close to a point is to consider
Y − (mX + c), the difference between what the equation [6.1] predicts and what the actual
value is. For ease of notation, let us set

W = mX + c.

Thus the difference we are considering is just Y −W . But we need to consider this difference
for everything in the population and we need to evaluate overall how well this equation [6.1]
works. This difference is called the RESIDUAL and we can denote this by R. Thus we have

(6.2) R = Y − (mX + c) = Y −W

and our objective is to overall minimize the residuals. However, we cannot allow positive
residuals to cancel negative residuals for then we might overall have 0 for the total of the
residuals when in fact all of them are enormous in absolute value. To keep that from
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happening we consider the squared residuals, and as you might guess, the overall is computed
with the expectation, E. We therefore seek to choose m and c so as to minimize E(R2), that
is we want to minimize the MEAN SQUARED RESIDUAL. From [5.7] we see that

(6.3) E(R2) = (E(R))2 + V ar(R).

Notice one thing we can try is choosing m and c so that E(R) = 0 so that the first term in
[6.3] is 0 which is the smallest that it or any square can be. This means that by [3.6] and
[6.2] we should choose m and c so that

(6.4) E(Y ) = E(W ) = mE(X) + c or, c = E(Y )−mE(X).

Therefore, if the means of X and Y are known and if the best m can be found, then the best
value for c will follow from [6.4]. In any case, since V ar(R) ≥ 0 from [5.4], we can apply our
formulas [5.10],[5.9], [5.12], and [5.18] to find

(6.5) V ar(R) = V ar(Y ) + V ar(W )− 2Cov(W,Y ) = V ar(Y ) +m2V ar(X)− 2mρσXσY

or alternately using the Greek symbols, with minor algebraic revision,

(6.6) σ2
R = σ2

Y + (mσX)2 − 2(mσX)(ρσY ),

and we notice that this only involves the correlation coefficient, ρ, the variances (see [5.22])
and m. On the other hand, using 1 = 1− ρ2 + ρ2 and multiplying by σ2

Y , we can substitute
the result in the first term on the right of [6.6] to get

(6.7) σ2
R = (1− ρ2)σ2

Y + (ρσY )2 + (mσX)2 − 2(mσX)(ρσY ).

Now we can notice that the last three terms of [6.7] can be combined using [5.11] to give
simply (ρσY −mσX)2 which when substituted for the last three terms in [6.7] give us

(6.8) σ2
R = (1− ρ2)σ2

Y + (ρσY −mσX)2.

When we combine this with [6.3], we get finally

(6.9) E(R2) = (E(R))2 + (1− ρ2)σ2
Y + (ρσY −mσX)2.

Since squares can never be negative, the smallest that E(R2) can be is when m and c are
chosen so that the first and last terms on the right are exactly 0. Therefore, if we set
ρσY −mσX = 0, we get the optimal regression slope

(6.10) m = ρσY /σX ,

whereas setting E(R) = 0 gives the intercept c for the regression line as given in [6.4].
This means that m is indeed determined only from the correlation and variances whereas
c is determined only from the means of X and Y and the value of m. When we use these
optimal values for m and c in [6.9], the first and last terms on the right side drop out and
the equation for the mean square residual in regression becomes (in view of [6.3]), simply

(6.11) V ar(R) = E(R2) = (1− ρ2)σ2
Y .

Notice that since the left hand side of [6.11] can never be negative and as σ2
Y cannot be

negative, it follows that (1− ρ2) can never be negative, and this is just [5.26]. We also note
here that [5.26] implies [5.25]. The inequality [5.25] is what is usually called the CAUCHY-
SCHWARZ INEQUALITY in mathematics, which is also here obviously equivalent to

(6.12) |Cov(X, Y )| ≤ σXσY .
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We can also notice that [6.11] leads us naturally to interpret 1−ρ2 as the fraction of variance
in Y unaccounted for by the regression (since that is V ar(R)) and therefore, ρ2 must be the
fraction of variance in Y that is accounted for using X through the regression equation. In
more detail, notice that using our equations for the optimal values of m and c, we have, by
[6.11],

(6.13) σ2
Y = (1− ρ2)σ2

Y + ρ2σ2
Y = E(R2) +m2σ2

X = σ2
R + σ2

W .

Notice that in [6.13], with each expression the first terms are the same and the last terms are
the same. Since σ2

R represents variation in Y which is not accounted for by the regression
equation and obviously σ2

W represents variation in Y which is completely accounted for by
the regression equation, we see that ρ2σ2

Y = σ2
W represents the part of the variation in Y

accounted for by the variation in X through regression and therefore,

(6.14) ρ2 =
σ2

W

σ2
Y

represents the fraction of variation in Y accounted for from variation in X through the
regression equation. Notice that [6.14] also follows immediately from [6.10], as by [6.10], we
have

(6.15) |ρ| = |m|σX

σY

=
σmX+c

σY

=
σW

σY

.

Another useful observation is that since Y = R +W , if we combine [5.12] with [6.13], then
we have

(6.16) V ar(R) + V ar(W ) + 2Cov(R,W ) = V ar(Y ) = V ar(R) + V ar(W ).

Notice that an immediate consequence of [6.16] is that

(6.17) 0 = Cov(R,W ) = mCov(R,X),

and therefore by [6.17], if m is not equal to 0, then

(6.18) Cov(R,X) = 0.

That is with the optimal regression line, by [6.18], the explanatory variable X must be
uncorrelated with R, the residual variable. It is also interesting to notice that if we choose
m so that [6.18] holds (say with a lucky guess), then that also gives us the correct value of m
in [6.10]. To see this, notice that [6.18] implies [6.17], so as Y = R+W with W = mX + c,
we get

(6.19) ρσXσY = Cov(X, Y ) = Cov(X,R) + Cov(X,W ) = mσ2
X .

Thus, solving [6.19] for m gives [6.10].

7. CALCULATIONS WITH THE TI-83

Using the TI-82/3 we can calculate the correlation coefficient in the case of a finite popula-
tion by putting the population data for the two variables in lists and using the lin reg(ax+b)
command in the statistical calculation menu. With the diagnostics on, the readout reports
the value of m as a, the value of c as b, and the value of ρ as r. If we only have sample
data, the same calculations give approximate values for m and for c, and then r is called the
SAMPLE CORRELATION COEFFICIENT. With the data plotted in a scatterplot, we can
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roughly draw the regression line by eye, and usually the result is accurate enough for simple
applications.

8. USEFUL PHYSICAL INTERPRETATION

The optimal line can be imagined as the result of attaching springs to the line from each
one of the points in the scatterplot and allowing the springs only to pull vertically so as
to move the line to an equilibrium position. Now from elementary physics we know from
Hook’s Law that the energy in a stretched spring is proportional to the square of how far it
is stretched from its equilibrium position. That is, the energy in the system is proportional
to the total of the squared residuals which in turn is proportional to the mean squared
residual when the sample size, n, is fixed, so the system would come to rest in the position
of minimum energy, which is the one minimizing the mean of the squared residuals. For this
reason, the regression line given by [6.4] and [6.10] is often referred to as the least squares
regression line or the least squares best fit. Even though the derivation of the regresson
equation here takes a substantial amount of elementary algebra, it is a lot simpler than the
derivation given in many standard statistics texts using multivariable calculus. Moreover,
our result is perfectly general applying to both finite and infinite populations with any
distributions. The physical interpretation is useful for thinking about how changes in the
data will affect the resulting regression line. For instance, from [6.4] and [6.10] we see that
(µX , µY ) is always a point on the true regression line ( if we put x = µX in [6.1], then we
get y = µY using [6.4] and [6.10]), so any point in the scatterplot which is far from (µX , µY )
has a lot of leverage to turn the regression line and therefore any outliers far from this point
in the scatterplot which are erroneous data will cause the regression line calculated from
sample data to diverge substantially from the true regresson line, whereas erroneous data
near (µX , µY ) will not have much of an effect as there is not much leverage.

9. DISTRIBUTIONS AND TCHEBEYCHEV’S INEQUALITY

Suppose now that X is a random variable. Let R denote the set of all real numbers, which
we can picture as an infinite line. By the DISTRIBUTION of X we mean the information as
to how likely various values of X are to be observed. We can capture most of this information
in a single real-valued function on R itself, called the CUMULATIVE DISTRIBUTION
FUNCTION(or CDF, for short) of X and denoted by FX , and whose value at any x ∈ R is
given by

(9.1) FX(x) = P (X ≤ x).

Notice that if a, b ∈ R, then

(9.2) P (a < X ≤ b) = FX(b)− FX(a).

In case S is finite, then X can only assume a finite number of values, so if b is a possible
value of X, and a < b is chosen so it is not a possible value of X and so that no possible
value of X is between a and b, then P (X = b) = P (a < X ≤ b) = FX(b) − FX(a), so the
cdf of X tells us the probabilities of the various values of X. Conversely, in this case where
X has only finitely many values, if we know the probability of each possible value, then we
know P (a < X ≤ b) for any numbers a, b ∈ R and therefore we know the cdf for X. If
S is infinite, then since X ≤ x must be an event for [9.1] to make sense, we must assume
that X ≤ x is an event, for any real number x. In fact, the technical definition of a random
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variable insures that this is always the case, so we have nothing to worry about. That is, if
X is a random variable on the sample space S, then by definition, X ≤ x is an event in S
no matter how x is chosen.

Now, Tchebeychev’s inequality is a simple inequality that for any random variableX limits
how likely an observed value can be far from the mean relative to the standard deviation. Let
E(X) = µ and V ar(X) = σ2. Remember that for any two numbers a, b ∈ R, the absolute
value of their difference, |a− b| gives their separation distance on the number line, and

(9.3) |a| =
√
a2, a2 = |a|2.

Notice taking absolute value of a number just drops its algebraic sign. Suppose now that k
is any non negative real number and we consider whether

(9.4) kσ ≤ |X − µ|.
If this turns out to be true, then the observed value is at least k standard deviations from
the true mean. We want to be able to say something about how likely this is. Now [9.4]
defines a statement about the outcome so is an event which we simply denote by A. The
question here is how big can P (A) actually be. Clearly, if k is large, then we would like to be
able to know that P (A) is small. Therefore, even if we do not know P (A) exactly, we would,
at least, like to find a number which we are sure is bigger, and which is actually useful. This
is what Tchbeychev’s inequality does. Notice that squaring both sides of the inequality [9.4]
gives the equivalent inequality

(9.5) k2σ2 ≤ (X − µ)2

defining event A. Now, let us consider the indicator IA of A, which is an unknown. Thus the
only possible values of IA are 0, 1, and IA takes the value 1 exactly when the inequality [9.5]
is actually true. Now k2σ2 is actually a constant, so (k2σ2)IA is also an unknown and we
can compare it to the right side of [9.5]. That is, consider the inequality between unknowns

(9.6) (k2σ2)IA ≤ (X − µ)2.

Notice that if A does not happen, then the left side is 0, and as the right side is squared it
must be ≥ 0, so in this case the inequality is true. On the other hand, if A does happen,
then IA = 1 and the statement immediately becomes [9.5], which by definition is true when
A happens. This means that [9.6] is always true no matter the outcome, so it expresses an
inequality between random variables and we can apply [3.7], the order preserving property
of expectation to conclude that

(9.7) E((k2σ2)A) ≤ E((X − µ)2).

But, E((X−µ)2) = σ2. Moreover, as A is a statement, we know E(IA) = P (A), and as k2σ2

is just a constant, we can use [3.2] to get

(9.8) (k2σ2)P (A) = E((k2σ2)IA) ≤ E((X − µ)2) = σ2.

Thus

(9.9) (k2σ2)P (A) ≤ σ2.

Assuming that the standard deviation of X is not 0, we can cancel the σ2 from both sides
of [9.9] and get

(9.10) (k2P (A) ≤ 1,
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which means that if k > 0, then

(9.11) P (A) ≤ 1

k2
.

That is, in view of the definition of A,

(9.12) P (kσ ≤ |X − µ|) ≤ 1

k2
.

It is [9.12] that is known as Tchebeychev’s inequality. Notice that we are really giving the
chance that X is a certain number of standard deviations from its mean with Tchebeychev’s
inequality. That is, the inequality is better expressed when we change units to standard
deviation units. In general, if X is any unknown, then we define its STANDARDIZATION
as ZX given by

(9.13) ZX =
DX

σX

=
X − µX

σX

.

Then [9.12] becomes simply

(9.14) P (|ZX | ≥ k) ≤ 1

k2
.

10. CONDITIONAL EXPECTATION AND PROBABILITY

We have assumed that the multiplication property [3.5] holds for the expectation, which
of course leads immediately to the rule [4.2]. This rule shows us that when new information
A becomes available in addition to the basic background information B that we start with,
then we can relate the positive linear normalized expectation model with fixed background
information A&B to the positive linear normalized model with fixed background B. For
notice that the multiplication rules [3.5] and [4.2]

(10.1) E(XIA|B) = E(X|A&B)P (A|B) = E(X|A&B)E(IA|B)

can also be written

(10.2) E(X|A&B) =
E(XIA|B)

P (A|B)
=
E(XIA|B)

E(IA|B)
.

The useful thing to notice here is that the right hand fractions are computed entirely with
only B as background information, whereas on the left side we are computing with the new
information in addition to the background information, A&B. The equation [10.2] should be
thought of as how the expectation models the learning process. It shows how all expected
values or optimal guesses become modified when we are presented with new information
which may itself be uncertain.

In order to examine the role played by the information used to guess values or arrive
at expected values, we need to be more precise about how we handle the unknowns and
statements we deal with. Suppose that we think of the unknowns we are interested in as
forming a set A, and the statements we are interested in form a set S. Of course, we will
axiomatically assume that

(10.3) X + Y ∈ A andXY ∈ A for allX,Y ∈ A,
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and that

(10.4) R ⊂ A and IA ∈ A for each statementA ∈ S.

Now, when the background is fixed as C ∈ S, then we can set EC(X) = E(X|C), for all
X ∈ A. Thus, we can think of EC as the expectation model determined by the information
C ∈ S. Notice then that EC satisfies the first four properties of expectation-it is a positive
linear normalized function on A. If we have worked out how to compute EC(X) for each
X ∈ A, and if we have another statement K ∈ S, then putting A = K&C, we want to
know how to compute EA(X) for each X ∈ A. Of course this is just what the multiplication
rule [10.2] tells us how to do, but our aim here is to see why this makes sense. Remember,
an unknown is a description of a number, such as the number up on a dice in a box. The
background information could be that we cannot see inside the box and otherwise have
no information making any of the six possible values more likely than any other. Let X
be the number up and B be the background information. Let K be the statement that
a reliable friend has looked in the box and says the number up is even. We can think of
X|B as the unknown together with the background information as its description, which of
course is a new unknown. Likewise, X|A is a new unknown, where A = K&B. In effect, if
A|B = {X|B : X ∈ A}, then EB in a sense is really giving guessed values for unknowns in
A|B. Likewise, EA is really giving guessed values for unknowns in A|A. So the real question
here is once we ”know” how to compute with EB for unknowns in A|B, why and how
should this tell us how to compute EA for unknowns in A|A. One thing we can notice is
that XIK |B belongs to A|B and with the background information B it has the same value
as X|B provided that K is true, whereas it is simply 0 if K is false. Thus, it seems that
EB(XIK) must be based on both the guess for X|B as well as the guess for ”how true” K is.
Also, it seems to partially arrive at a guess for X based on both K and B, as the only value
allowed for the case where K is false is 0. So, one possible choice for a method of guessing
values for unknowns in A|A would be to use the value EB(XIK). Thus, we are led to consider
the function FA defined for unknowns in A by the rule FA(X) = EB(XIK) = E(XIK |B).
Now clearly, FA is a positive linear function on A, but it may not be normalized. In fact,
FA(1) = E(1IK |B) = E(IK |B) = P (K|B). Now by [3.13] we know that FA/P (K|B) is a
normalized positive linear function on A, so it is reasonable to use it to compute guesses for
unknowns in A when we assume that K is true. Therefore, since it is built out of EB, we
should guess that EA = FA/P (K|B). When we compute the value EA(X), we now find

(10.5) E(X|K&B) = E(X|A) = EA(X) =
FA(X)

P (K|B)
=
E(XIK |B)

P (K|B)
,

so finally,

(10.6) E(X|K&B) =
E(XIK |B)

P (K|B)
.

which is the multiplication rule in the form [10.2]. For the example of the dice in the box,
with X the number up, with B the background giving no preference to any of the six possible
values for X and K the additional information that the value is even, we see that there are
only three possible values: 2,4,6, and all are equally likely as we still have no preference for
any one value over another beyond the information that the value is even. Consequently,
by [4.26], we must have E(X|K&B) = 4. On the other hand, XIK has the possible values:
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0,2,4,6 and these given B are not equally likely, as all six possible values of X are equally
likely given B, and the value 0 happens for XIK if the value of X is any odd value. Therefore,
P (XIK = 0|B) = 1/2 whereas the probability that XIK has any given positive value is only
1/6. It follows that E(XIK |B) = (2+4+6)/6 = 2. On the other hand, since the information
B tells us all six values are equally likely and as half of them are even, it must be the case
that P (K|B) = 1/2. We therefore have in this example

E(X|K&B) = 4 =
2

1/2
=
E(XIK |B)

P (K|B)
,

giving an explicit example of the multiplication rule.
Let us now examine this construction of the multiplication rule through normalization

more carefully for the case of random variables when we have a sample space. For any
sample space S, any event A ⊆ S, and any random variable X on S, we can restrict our
attention to outcomes in A for observations of X. In effect, A becomes the sample space,
and X restricted to this subset is denoted by X|A. If X and Y are both random variables
on S, then clearly we have

(X + Y )|A = (X|A) + (Y |A)(10.7)

(XY )|A = (X|A)(Y |A).(10.8)

Notice also, that for the indicator IA as a random variable on S we have

IA|A = 1(10.9)

InotA|A = 0.(10.10)

In particular, this means that for any random variable X on S, we have

(XIA)|A = X|A(10.11)

(XI(S\A))|A = 0.(10.12)

To get the expected values of random variables on the sample space A, we need some
expectation model satisfying the first four properties of expectation-it must be a positive
linear normalized function on the random variables on A. If we have such an expectation
model, say EA, then we could try to define the conditional expectation of X given A by
setting it equal to EA(X|A). The problem here is that there are possibly many such models,
and the model we seek should somehow depend on the original expectation for random
variables on S, which we start with due to our background information B. We shall denote
this by ES. Thus we want to manufacture a particular EA using ES.

Remember, conditional expectation given A must be some kind of ordinary expectation
model-that is a positive linear normalized function for random variables on S restricted to the
sample space A. In particular, conditional expectation must satisfy the first four properties of
ordinary expectation that we have developed so far-it is a positive linear normalized model.
Of course this conditional expectation is really a whole new expectation model. Here we
recall that in general, there are many expectations with various backgrounds held fixed for
a given experiment, since we only require that the expectation assign each random variable
a number called its mean in such a way as to satisfy the first four basic properties:[3.1],
[3.2], [3.3], and [3.4]. For instance, for the dice example, the mean number up when rolled
will clearly depend on how the dice is loaded. Changing the loading of the dice may change
some or all of the expected values of the random variables on this experiment. So, what we
really need is a way to relate conditional expectation to ordinary expectation. To begin, we
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notice we can view our notation E(X|A) as an expectation model for the random variables
on the sample space A. Since we are assuming an expectation model ES in operation for the
random variables on S when we write expressions like E(X), what we are really interested
in is a natural way to produce the expectation model for random variables on A from the
expectation model we already have for random variables on S. For instance, if G is just any
expectation model for random variables on A so that G(W ) is the expected value of the
random variable W on A satisfying the basic properties of expectation, then there need be
no connection at all to the expectation model E operating on random variables on S. To
produce an expectation model for random variables on A by using the expectation model for
random variables on S we need to look for a natural way to extend each random variable on
A to be a random variable on all of S. For instance, suppose that S is a population consisting
of people and rocks. Suppose that A is the set of people and the random variable W on A is
blood pressure. If we try to extend this random variable to all of S, then we are in a sense
trying to make sense of the blood pressure of the rocks as well as of the people. You can
easily see that in general, there may be no really natural extension to all of S for a random
variable defined on A. However, mathematically we can always extend the random variable
to all of S by simply declaring the variable to have value 0 on the complement of A in S.
In our example, this amounts to agreeing that all rocks have blood pressure zero, which in
some sense is perfectly reasonable. For another example, suppose that S is the population
of adults in the United States, that A is the subset consisting of U.S. citizens and resident
aliens with legal working papers. Let W assign each member of A the last four digits of his
Social Security Number considered as a four digit whole number. If a person is randomly
chosen from S he may not even have a Social Security Number, if he is not in A. Moreover,
here the mathematical extension seems completely arbitrary, that is if we agree to define
the value of W to be zero for anyone in S \ A, then there is no apparent reason why this
should make sense in any ordinary way. We have here a purely mathematical fabrication.
If W is any random variable on A, let us denote by hS

A(W ) = h(W ) the extension of W to
all of S gotten by simply declaring that the value should be zero for outcomes in S \ A but
unchanged for outcomes in A. We can then easily see that for any random variables U and
W on A,

(10.13) h(U +W ) = h(U) + h(W ),

(10.14) h(UW ) = h(U)h(W ),

and

(10.15) h(U) ≥ 0, if U ≥ 0.

Now, because of [10.13], [10.14], and [10.15], it is easily seen that if we try to define an
expectation model F operating for random variables on A by setting F (W ) = E(h(W )),
then F satisfies all the first four of the basic properties of an expectation model except that
we may not have F (1) = 1. Because when we write F (1) we are refering to the constant
random variable defined on A with value always 1, but when we form h(1) we get the random
variable on S that has value 1 on all of A and value 0 on S \A. But this random variable is
none other than IA, the indicator of A, considered as a random variable on S. That is, we
have h(1) = IA. In fact it is easy to see that for any random variable X on S we have



28 M. J. DUPRÉ

(10.16) h(X|A) = XIA.

This means that F (X|A) = E(h(X|A)) = E(XIA) and in particular, F (1) = E(IA) = P (A).
If P (A) is not zero, then as usual we can easily fix this problem by normalizing (see [3.13]),
that is by dividing all the values of F by P (A). This means that the natural expectation model
EA for random variables on A produced from the expectation model E for random variables
on S is just gotten by requiring that EA(W ) = E(h(W ))/P (A) for any random variable W
defined on A. This means that E(X|A) should be defined as EA(X|A) = E(h(X|A))/P (A) =
E(XIA)/P (A). Since the A appears twice on the left side of this last equation, the subscript
becomes unnecessary, and we can always just write E(X|A) for this expectation. It is finally
then the natural construction for the CONDITIONAL EXPECTATION OF X GIVEN A,
to repeat, the multiplication rule

(10.17) E(X|A) =
E(XIA)

P (A)
.

Now the drawback of this construction is that it has been obtained purely by abstract
mathematical criterion, so we need to see if it really gives us what we are intuitively thinking
of. Before doing this, we can first observe that, as long as P (A) 6= 0, our definition [10.17]
is equivalent to requiring that

(10.18) E(XIA) = E(X|A)P (A).

Combining [4.20] with [10.18], we recall that if A1, A2, A3, ..., An is a partition of S, then we
get the GENERAL PARTITION PROPERTY of expectation

(10.19) E(X) = E(X|A1)P (A1) +E(X|A2)P (A2) +E(X|A3)P (A3) + ...+E(X|An)P (An)

holds, allowing us to compute the overall expectation of X from its various conditional
expectations in each of the partitioning circumstances. As a special case of the general
partition property we have the PARTITION PROPERTY

(10.20) E(X) = E(X|A)P (A) + E(X|(S \ A))P (S \ A),

which holds for any event A in S. Keeping this partition property in mind, let us think of
the business example where X is the daily net profit of a coffee shop. Suppose A is the
event of a rainy day, then E(X|A) is the long run average net profit for rainy days. With
B = S \ A, then E(X|B) is the long run average net profit for days that are not rainy.
Suppose for the moment that E(X|A) = 500 dollars and E(X|B) = 1000 dollars. Thus the
coffee shop averages 500 dollars a day for rainy days and averages 1000 dollars a day for
the days that are not rainy. Now it should be intuitively clear that if overall half the days
are rainy, that is P (A) = 1/2, then the overall daily net profit is just the average of 500
and 1000, that is E(X) = 750 dollars. If only thirty percent of the days are rainy, overall,
that is if P (A) = 0.3, then P (B) = 0.7, then clearly we need to form the weighted average,
E(X) = (500)(0.3) + (1000)(0.7). This leads us naturally to the partition property [10.20],
as a general relationship, which should always hold relating conditional expectation and the
original overall expectation. In particular, as from [10.11] we have (XIA)|A = X|A and
(XIA)|(S \A) = 0, we must have [10.18] as a special case of the partition property, since the
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second term of [10.20] drops out when X is replaced by XIA. And as [10.18] is already seen
equivalent to our definition of conditional expectation [10.17], we can safely conclude we have
made the right choice with our mathematical definition for conditional expectation. That
is, the partition property is the intuitive property that tells us the definition of conditional
expectation, but already it is a consequence of the definition of conditional expectation, which
is to say that assuming the partition property is equivalent to assuming the mathematical
definition of conditional expectation.

As in the case of ordinary probability, to define conditional probability, we just restrict the
conditional expectation to apply to events. Thus if B is any event in S, then, remembering
that AB = A∩B for events, we define the CONDITIONAL PROBABILITY OF B GIVEN
A by the formula

(10.21) P (B|A) = E(IB|A) =
P (B ∩ A)

P (A)
.

Consequently, by reversing the roles of A and B in [10.21] we see that

(10.22) P (A|B)P (B) = P (A ∩B) = P (B ∩ A) = P (B|A)P (A).

In effect [10.22] allows us to find P (A|B) from P (B|A) when P (A) and P (B) are also known.
In addition, if X in [10.19] is replaced by an event B, then each conditional expectation in
[10.19] becomes a conditional probability, and [10.19] takes the form

(10.23) P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) + ...+ P (B|An)P (An),

an equation known as Baye’s Theorem.
As another application of [10.19], if X is a simple discrete random variable, that is if

X has only a finite set of possible values, say x1, x2, x3, ..., xn, and if for each k we take
Ak = (X = xk), meaning Ak is the event that X takes the value xk, for 1 ≤ k ≤ n, then as
now E(X|Ak) = xk for each k, by[10.19] we find

(10.24) E(X) = x1P (X = x1) + x2P (X = x2) + x3P (X = x3) + ...+ xnP (X = xn),

which is the same as [4.26], which is to say, [4.26] is a special case of [10.19].
Conditional probability can usefully be applied in situations where an experimental pro-

cedure can be broken down into a sequence of steps where the probabilities of later steps
depend on what happens in those leading up to it. For instance if a box has 10 blocks inside,
4 are red and 6 are green, and if the experiment is to draw two blocks from the box at
random, then we can imagine this being accomplished by first randomly drawing a single
block and then without replacing that block we go on to draw a second block at random
from the box. To calculate the probability that both blocks drawn are red, we can easily
calculate the probability that the first block drawn is red (clearly = 4/10), and then assum-
ing a red block removed in the first draw, the probability that the second block drawn is red
given that the first block drawn is red must be simply 3/9. The product of these two then
gives the probability that both are red, namely 12/90. What is often not obvious on first
encountering conditional probability is that the time ordering of the sequence of outcomes
is really not material. That is, if we ask for the conditional probability that the first block
drawn is red given that the second block drawn will be red, we get the same result, again
3/9. This is because probability is really just about the state of our information and not
about time ordering. For instance, if 4 blocks are drawn from the box and we ask for the
conditional probability that the third block drawn is red given that the first block is green
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and the last block drawn is red, then that must be simply 3/8. This is because the infor-
mation given is that two of the blocks are ruled out of being the third block drawn and we
know the colors of those blocks, so when we draw the third block we have 8 possibilities of
which only 3 are red. These kind of calculations can be done using Baye’s theorem with a
lot more computation, but the result is the same either way. One way to see easily why the
time ordering in drawing blocks from a box is immaterial is to think of the process being
performed by someone else other than ourselves who in fact sequentially takes all the blocks
from the box and then gives us information concerning some of the results. If he tells us
the colors of the second and fifth blocks, and we are asked for the probability the third is
red given the information about the colors of the second and fifth blocks it should be clear
what the result is. Alternately, think of drawing cards sequentially from a shuffled deck of
cards. Assuming the cards are in random order to begin, the drawing can be performed
by removing the card on top, then the next card (the new top card) and so on. If we are
given that the card underneath the top card is a heart and the fifth card from the top is a
spade, then for a standard deck of cards, the probability that the third card from the top is
a heart given the information stated would clearly be 12/50. Likewise, the probability that
the seventh card is a spade given that the second, third and tenth cards down in the pile are
spades and the fifth card down is a heart would be simply 10/48. But, clearly this must be
the same as the probability that the seventh card drawn is a spade given that the second,
third and tenth cards drawn are spades and the fifth card drawn is a heart, because with the
cards in the order shuffled with the given information, the card position in the deck exactly
corresponds to the order of results for drawing cards one after another. Likewise, for blocks
in a box, we can think of the random sequential drawing of the blocks from the box as being
done by randomly stacking the blocks and then taking blocks sequentially from the top of
the stack.

Another useful thing to realize is that all probability is really conditional. If the experiment
is rolling a pair of identical red dice to see what comes up on the top faces, and on a given
roll the result is that the dice fall into a bucket of identical dice so we can no longer tell
which dice we actually rolled, then the experiment must be repeated. That is, it is a ”do
over”. Let T be the total up on the pair of dice when rolled. If we ask what is the chance
that in repeated rolls of the pair of fair dice we roll a 7 before we roll an 8, then we can
regard the sample space as having been restricted to just those 11 outcomes which give a 7
or an 8. Since not getting either of these two results is a ”do over”, we are really just dealing
with the conditional probability that we roll a 7 given that we roll 7 or 8. More generally,
if A and B are mutually exclusive events and we perform our experiment over and over (a
sequence of independent trials) to see which event happens first, then the chance that A
happens before B is just P (A|A ∪B).

Finally, in many situations, part of our information is in the form of conditional prob-
abilities, and we can use [10.23] together with [10.22] effectively to ”reverse” the order of
conditioning. As an example, if a student takes a multiple choice test and each question has
five choices for an answer, we can assume that the student guesses those which he does not
know and therefore has a twenty percent chance of correctly marking a question given that
he does not know the answer. If K is the event he knows the correct answer and C is the
event he marks the correct answer on the answer sheet, then given P (K) and P (C|K), we
can calculate P (notK) = 1 − P (K) and as P (C|notK) = .2, we can use Baye’s theorem,
[10.23], to calculate P (C), and then use [10.22] to calculate P (K|C). That is, if we know his
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error rate for marking questions for which he knows the answers, if we know the percentage
of questions for which he knows the answers, then for a question we see correctly marked we
can calculate the chance he actually knew the answer to that question.

11. COUNTING

We have already observed that the expectation model for an experiment is completely
determined by the probability model, and in case of a finite sample space, the probability
model is determined as soon as the probability of each individual outcome is determined. Of
course, the only general theoretical restriction on the probabilities of the outcomes is that
they must be nonnegative numbers summing up to one. The simplest case then is when all
outcomes are equally likely. In that case, recall, we say we have the model of equally likely
outcomes. Let us use the notation card(S) to denote the cardinality of the set S, which
merely means the number of things in the set S for the case where S is finite. Then, in
case S is finite, the rules of probability and the model of equally likely outcomes force the
equation

(11.1) P (A) =
card(A)

card(S)
,

for any event A ⊆ S. Thus, for a finite sample space, the model of equally likely outcomes
reduces the problem of computing probabilities to the problem of counting. As easy as that
sounds, in fact there are unsolved problems in counting. In order to deal with problems in
counting, it is useful to keep in mind some very basic rules which are fairly obvious. The
first rule is that if A and B are disjoint, then

(11.2) card(A ∪B) = card(A) + card(B).

Notice that [11.2] is actually a consequence of one of the basic rules of probability, namely
that the probability of the union of disjoint events is the sum of their individual probabilities-
just divide both sides of the equation by card(S) assuming that A and B are both subsets
of some finite sample space S, and apply [11.1]. In what follows we will refer to [11.2] as
the ADDITION RULE. One of the things we often need to count is the number of ways to
choose r things from a set of n things. It is not immediately obvious how to count this. In
mathematics, when we do not know what a number’s actual value is, we give it a symbol
and work with that symbol as if we actually knew what its value is, and hope that we can
develop relationships with things we know in order to find the value. In that spirit, we use
the symbol C(n, r) for the number of ways to choose r things from a set of n things. Notice
there is only one way to choose nothing from a set containing n things, so C(n, 0) = 1, even
if n = 0. On the other hand, there are clearly n ways to choose one thing from a set of n
things, so C(n, 1) = n. Another observation we can make is that if 0 ≤ r ≤ n, then the
number of ways to choose r things from a set of n things is the same as the number of ways
to choose n − r things from the set of n things, since each such choice of the r things is
completely determined by the things not chosen-that is we could equally well decide which
things are to be ”left behind”. This means

(11.3) C(n, n− r) = C(n, r), 0 ≤ r ≤ n.

In particular, we see that by [11.3] we have C(n, n) = C(n, 0) = 1 and C(n, n − 1) =
C(n, 1) = n for every n. Suppose that we know all values of C(n, r) for 0 ≤ r ≤ n. We
can then use that information to determine all values of C(n + 1, r) for 0 ≤ r ≤ n + 1, by
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applying the addition rule for disjoint sets. To do this, let us imagine that we begin with a
set B having exactly n+1 things in it, think of a box containing n+1 blocks. Suppose that
n of the blocks are blue and one is red. Suppose that 0 ≤ r ≤ n. Then r+1 ≤ n+1. Now let
S be the sample space consisting of all subsets of B which contain exactly r+1 things. Thus
card(S) = C(n+ 1, r+ 1). Now consider the event A which as a statement is ”the red block
is in the subset of blocks chosen”. Notice that for any way we choose r + 1 of the blocks,
we either get the red block or we do not get the red block. This means A ∪ notA = S and
therefore, C(n + 1, r + 1) = card(A) + card(notA). But notice, that the number of ways to
choose r + 1 blocks so as to get the red block is the same as the number of ways to choose
r of the blue blocks and there are exactly n blue blocks. Thus, card(A) = C(n, r). On the
other hand, the number of ways to choose r + 1 blocks so as not to get the red block is
the number of ways to choose r + 1 blue blocks from the n blue blocks. This means that
card(notA) = C(n, r + 1). Combining these three equations we see

(11.4) C(n+ 1, r + 1) = C(n, r) + C(n, r + 1), 0 ≤ r ≤ n.

We will refer to [11.4] as the FORMULA FOR PASCAL’S TRIANGLE, since the triangular
arrangement of all the numbers C(n, r) generated by [11.4] is called Pascal’s triangle and is
very convenient for computing these numbers when n and r are small, say not more than
ten. To generate Pascal’s triangle, we start at the top of the page and in the center we write
C(0, 0) which is of course just 1. For simplicity, let us refer to this top line as line zero.
Then underneath on the next line, called line one, we start diagonally to the left of center
and put C(1, 0) followed by C(1, 1) so that this last is diagonally to the right of center.
Of course, both of these numbers are equal to 1. On the next line, that is line two, we
begin diagonally to the left of the position directly under C(1, 0) and put C(2, 0) which is
of course equal to 1, and then in the center position we put C(2, 1) and follow that with
C(2, 2), which of course is just equal to 1. Now notice that by the formula for Pascal’s
triangle C(2, 1) = C(1, 0)+C(1, 1) by taking r = 0 and n = 1 in the formula. That is, to get
the value of the number at the center position on line two we just look at the two numbers
above, diagonally to the left and to the right, and add those two numbers together. Thus
C(2, 1) = 2 which is of course obvious. Continuing this pattern on down we get a triangular
array of numbers known as Pascal’s triangle. To compute C(n, r) using this array, always
begin counting with zero. So counting down lines to line n, we count from the left starting
with counting the 1 in the starting position as position zero on line n and then count over to
position r to get the value of C(n, r) by simply adding the two numbers above and diagonally
to the left and right of that position. Of course it would be useful to have a formula for
C(n, r) to calculate directly. To get this formula, we need to consider more rules for counting
the number of ways to perform complicated processes.

In general, when dealing with a complicated process or procedure, it is useful to break it
down into a sequence of simple steps. Suppose that S1 is the set of all possible outcomes for
the first step of a process which takes m steps. Now for each outcome x1 in S1 let S2(x1)
be the set of possible outcomes for the second step as a result of having x1 as outcome for
the first step. Next, for each outcome x2 in S2(x1), let S3(x1, x2) denote the set of possible
outcomes for the third step when the result of the first two steps is x1 followed by x2. In
general then, we could write Sr(x1, x2, ..., xr−1) for the set of outcomes for step r when the
result of the first r− 1 steps is the sequence of outcomes (x1, x2, ..., xr−1) for 1 ≤ r ≤ m and
where for r = 1 we interpret Sr(x1, ..., xr−1) = S1 which is the set of outcomes for the first
step of the process. Now how can we count say the number of ways to perform the first two
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steps of the process? Notice that for each outcome x1 in S1 we have card(S2(x1) ways to
perform the second step, so in all, if S1 = {a1, a2, ..., ar} we have

(11.5) card(S2(a1)) + card(S2(a2)) + ...+ card(S2(ar))

as the number of ways to perform the first two steps. If we wanted to count the number
of ways to perform the first three steps, we would have to consider the possible results for
the first two steps and for each such possibility, we would add all the numbers of the form
card(S3(x1, x2)) for (x1, x2) a possible sequence of outcomes for the first two steps. In general,
to get the number of ways to perform the first r steps we would have to add all numbers of
the form card(Sr(x1, x2, ..., xr−1)) for all possible sequences of outcomes (x1, x2, ..., xr−1) for
the previous steps. This looks terribly complicated and in general it is. If there are not too
many possibilities at each number of steps, the counting can be done with the help of what is
called a TREE DIAGRAM. We put a dot at the center of the top line to be the start. On the
next line underneath, we list the outcomes for the first step leaving plenty of space between
each outcome. Then on the next line, under each outcome above we list the outcomes of the
second step when the the first step outcome is the outcome above. To keep things straight,
it helps to draw a line from the outcome on the previous line to each of the outcomes at
the next step of the process which could result from that previous sequence of outcomes.
Doing this for each of the steps results in a diagram looking like an upsidedown tree. At each
outcome at the step r you have branches leading to all the possible outcomes for the next
step. Then, the number of outcomes all the way across the line for step r gives the number
of ways to perform the first r steps of the process. In many cases of interest, the number
card(Sr(x1, x2, ..., xr−1)) does not depend on the history (x1, x2, ..., xr−1) of what outcomes
came before even though the actual set Sr(x1, x2, ..., xr−1) may depend on the history of what
came before on previous steps. For instance if we are drawing blocks from a box without
replacement, one after another, then if there are 8 blocks to start and we have taken out 3
already, then when we go to draw the fourth block we know there are 5 possible outcomes
no matter which three blocks were drawn on the first three steps of the process. Of course
which of the 8 blocks are possible on the fourth draw does depend on which three came out
on the first three steps. That is, the number of possibilities does not depend on the history
at each stage of the process even though the actual set of possibilities at each stage does
depend on what happened before. In this case, where the number of possibilities at each
step is independent of the results of previous steps, then letting n denote the number of ways
to perform the whole m−step process and for 1 ≤ k ≤ m, letting nk denote the number of
possibilities for performing step k, given outcomes for the previous steps, we then find that
the number of ways to perform the whole m−step process is simply

(11.6) n = n1n2n3...nm

so we just multiply all the numbers of ways to do each stage together to get the number
of ways to perform the overall process. We therefore call this the MULTIPLICATION
PRINCIPLE for counting.

As an application of the multiplication principle we consider the problem of counting
the number of arrangements of r things chosen from a set of n things. We do not have
immediately what this number is, so we denote it by P (n, r). For instance, P (5, 3) could be
the number of three letter lists made by listing letters chosen from the set containing the
letters A,B,C,D, F, where each letter is only used once. Or, we could have a box of blocks
which are all numbered differently, and we consider the number of ways to arrange three



34 M. J. DUPRÉ

of them in a row starting with five in the box. Notice there are two procedures for doing
this. One way is to first choose three blocks from the box and then as a second step arrange
the three chosen blocks. The second way is to first choose one of the blocks for the first
position in the row, then choose a second block for the next position in the row, and finally
a third block for the last position. Using the last procedure, we see immediately from the
multiplication principle that P (5, 3) = (5)(4)(3) = 60 whereas using the first procedure we
see that P (5, 3) = C(5, 3)P (3, 3). More generally, this same line of reasoning, thinking of a
box containing n numbered blocks, tells us that

(11.7) P (n, r) = C(n, r)P (r, r)

because we can accomplish the job of arranging r things chosen from the set of n things by
first choosing the r things and as a second step arranging all r of the things chosen on the
first step. Notice that our stepwise procedure of forming the arrangement by sequentially
choosing blocks one at a time and arranging them in a row gives

P (r, r) = (r)(r − 1)(r − 2)(r − 3)...(3)(2)(1) = (1)(2)(3)...(r).

It is useful to have a short hand notation for this. We write r! for the product of the first r
consecutive positive integers, so

(11.8) r! = P (r, r) = (r)(r − 1)(r − 2)(r − 3)...(3)(2)(1) = (1)(2)(3)...(r).

(By convention and consistent with the preceding, we define 0!=1.) On the other hand,
another procedure we can use to arrange all n of the blocks in the box is to stop momentarily
after arranging r of the blocks for a short rest, and then resume by arranging the remaining
n− r blocks in the box. Now the multiplication principle ([11.6]) tells us that

(11.9) P (n, n) = P (n, r)P (n− r, n− r).

Consequently, by combining [11.8] and [11.9] we find

(11.10) P (n, r) =
P (n, n)

P (n− r, n− r)
=

n!

(n− r)!
.

But, now by [11.7] and [11.10] we have

(11.11) C(n, r) =
P (n, r)

P (r, r)
=

n!

r!(n− r)!
.

Thus [11.11] gives a handy formula for computing the number of ways to choose r things
from a set of n things.

Suppose we are interested in computing the probabilities for various hands in the game of
poker. A standard deck of cards consists of 52 cards of which there are four suits of thirteen
cards each: hearts, diamonds, clubs, and spades. Likewise there are nine numbered cards in
each suit with the numbers 2 through 10, and in addition each suit has an ace and the three
face cards: jack, queen, and king. The ace can be counted as one or as higher than a king.
We will call these the thirteen denominations, so there are four cards of each denomination,
one of each suit. A hand in poker consists of exactly five cards. In games where you are dealt
more than five cards you are allowed to choose the best five to make your hand. For instance
a STRAIGHT in poker is a hand containing a sequence of 5 consecutive denominations
starting at any denomination at or below ten-the ace can be used as the highest card for a
straight beginning with ten or can be used as the starting denomination for a straight ending
in denomination 5. In poker language if the highest card in a straight is the denomination
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jack, then it would be called a jack-high straight. Thus the straight starting with ace as one
is a five high straight, whereas a straight starting with the ten is an ace-high straight. If
all the cards in the five card hand are of the same suit, then the hand is called a FLUSH.
If all the cards in a straight are of the same suit, the hand is called a STRAIGHT FLUSH.
An ace-high straight flush is called a ROYAL FLUSH. Four cards of the same denomination
are called four of a kind, three cards of the same denomination are called three of a kind,
whereas two cards of the same denomination is called a pair. If a five card hand contains
four of a kind the hand is said to be FOUR OF A KIND. If a five card hand contains three
of a kind and a pair with two different denominations it is called a FULL HOUSE. If a five
card hand contains three of a kind but does not qualify to be a full house it is called THREE
OF A KIND. If a five card hand contains two pair but does not qualify to be either four of
a kind or a full house, then it is called TWO PAIR. If a five card hand has a single pair but
does not qualify to be either two pair or three of a kind, then it is called a PAIR. In poker, to
compare hands, a straight flush beats four of a kind which beats a full house which beats a
flush which beats a straight which beats three of a kind which beats two pair which beats a
single pair. In case of a tie in the sense of two hands of the same type one first compares the
highest card in the hands of the cards that are important to forming the type of hand, so for
instance three tens beats three eights even if the hand with three eights also contains an ace
and a king. However, in case of a full house, one compares the denomination of the three of
a kind first and if there is still a tie, then one compares the denominations of the pairs. Thus
a full house consisting of three nines and a pair of fours would beat a full house consisting
of three sixes and a pair of aces. If two hands tie with all the cards determining the hand
type then we compare the remaining highest cards until the tie is broken. Thus, a hand
containing a pair of tens, a jack, a queen, and a king beats a hand containing a pair of tens,
a nine, a queen, and a king. Now, we can use the counting rules and formulas to compute the
probabilities of the various hands in poker. For instance, there is only one royal flush in each
suit, so there are four royal flushes. On the other hand, there are C(52, 5) ways to choose
five cards from the standard 52-card deck, and C(52, 5) = 2, 598, 960 or about 2.6 million
five card poker hands. Thus the chance of drawing five cards from the deck and getting a
royal flush is 1/649740 or about 0.0000015390772. Clearly there are ten times as many (or
40) straight flushes as royal flushes so the chance of a straight flush (including a royal flush)
is 10/649740=1/64974 or about 0.000015390772. Two get four of a kind, there are thirteen
denominations and such a hand will contain two. We can first choose the denomination to be
the four of a kind and then as a second step choose the remaining card from the remaining
48 cards in the deck. This means there are (13)(48)=624. Alternately, we can choose the two
denominations which will appear which can be done in C(13, 2) = 78 ways and then choose
one of those two to be the four of a kind which can be done in C(2, 1) = 2 ways, and then
choose one of the four cards of the remaining denomination which can be done in C(4, 1) = 4
ways, so here we find the number of four of a kind poker hands is (78)(2)(4)=624, again.
Two count the number of full houses, this last method is easier. A full house contains two
different denominations with one being the three of a kind. We can form such a hand by
first choosing the two denominations which can be done again in 78 ways, then choose the
denomination to be the three of a kind which can be done in 2 ways, then choose three cards
of the chosen denomination which can be done in C(4, 3) = C(4, 1) = 4 ways, then for the
remaining denomination choose a pair which can be done in C(4, 2) = 6 ways. Thus there
are (78)(2)(4)(6)=3744 ways to form a full house.
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Sometimes we are interested in computing the number of arrangements of a list of symbols
of which there are repeats. For instance, suppose that we wish to compute the number of
ways to arrange the letters in the word ”MISSISSIPPI”. There are 11 letters in the word,
but some of the rearrangements of these letters are indistinguishable because of the repeated
letters. In order to work out the number of distinguishable arrangements of a sequence of
letters or objects of any kind in case there are repeats in the sense that some are considered
to be indistinguishable, give each object a symbol so that the indistinguishable objects get
the same symbol. For instance, suppose that this results in AAABBBBCCDDDDD. To
see how many arrangements there are for these symbols, we begin by denoting this number
by x. Then as a next step, we tag the indistinguishable symbols with subscripts making them
distinguishable, which in the example results in A1A2A3B1B2B3B4C1C2D1D2D3D4D5. Now
these symbols are all distinguishable and therefore the number of arrangements of these
distinguishable symbols is n!, where n is the number of symbols we began with, and which
in our example is just n = 14. Our next step is to realize that the job of rearranging the
tagged distinguishable symbols could be accomplished in two steps. In the first step we
arrange the original symbols, and then in the second step we attach the subscript tags to
the symbols which are alike to make all of them different again. Suppose that there are m
different distinguishable symbols of which there are say n1 of the first kind, n2 of a second
kind, and so on so finally there are nm of the last kind. For instance, in our example there are
4 distinguishable symbols so m = 4 and n1 = 3, n2 = 4, n3 = 2, n4 = 5. In the example, if we
are presented with an arrangement of the untagged symbols, then we have 3! ways to attach
the subscripts to the A′s, we have 4! ways to attach the subscripts to the B′s, we have 2!
ways to attach the subscripts to the C ′s, and finally 5! ways to attach the subscripts to the
D′s. That is in general, there would on seeing an arrangement of the unsubscripted symbols
be n1!n2!...nm! ways to attach subscripts to the symbols so as to result in an arrangement
of the subscripted symbols. Therefore by the multiplication principle, [11.6], there must be
xn1!n2!...nm! ways to arrange the tagged symbols, so this must equal n!, that is we know
now n! = xn1!n2!...nm! must be true. Solving this last equation for x we have

x =
n!

n1!n2!...nm!

for the number of ways to arrange the original symbols given to us. For instance, in our
example we have 14!/3!4!2!5! ways to arrange the symbols AAABBBBCCDDDDD. In
general it is convenient to denote this number by

x = C(n;n1, n2, ..., nm)

where n = n1 + n2 + ...+ nm. We therefore have that

(11.12) C(n;n1, n2, ..., nm) =
n!

n1!n2!...nm!

gives the number of distinguishable arrangements of n things of which there are m types
where things of the same type are considered indistinguishable, and with n1 of a first type,
n2 of a second type, and so on with finally nm of the last type. Because of the convention
that 0!=1, the preceding remains true even if some of the n′ks are zero. For instance this
means that for the distinguishable arrangements of the letters in ”MISSISSIPPI” there are
11!/(1!4!4!2!), since there is one ”M”, 4 ”I’s”, 4”S’s”, and 2”P’s”. As an application of
this formula, let us consider an algebra problem. We suppose that we have m unknowns
x1, x2, x3, ..., xm and suppose that we want to expand (x1 + x2 + x3 + ... + xm)n. For a
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moment let us not allow the commutative law of multiplication, just the associative law for
multiplication and the distributive law. Notice that in case m = 3 we get

(x1 + x2 + x3)
n = (x1 + x2 + x3)(x1 + x2 + x3)

n−1

= x1(x1 + x2 + x3)
n−1 + x2(x1 + x2 + x3)

n−1 + x3(x1 + x2 + x3)
n−1.

In general, we see that if such application of the distributive law is continued until the
expansion is complete, we will have a sum of terms of which each is a ”word” of length n
formed with the variables x1, x2, x3, ..., xm as symbols. In such a word, let n1 be the number
of occurrences of x1, let n2 be the number of occurrences of x2, let n3 be the number of
occurrences of x3, and so on, finally, let nm be the number of occurrences of xm, so then
we must have n = n1 + n2 + ... + nm. There are then C(n;n1, n2, ..., nm) of these words,
which will all be equal to each other if we suppose the commutative law to apply, that is all
such words equal xn1

1 x
n2
2 x

n3
3 ...x

nm
m . This even applies in case some of the n′ks are zero because

x0
k = 1 and 0!=1. This means that

(11.13) (x1 + x2 + x3 + ...+ xm)n =
∑

( n1,n2,...,nm≥0
n=n1+n2+...+nm

)

C(n;n1, n2, ..., nm)xn1
1 x

n2
2 x

n3
3 ...x

nm
m

gives the equation for expanding the power of the sum as a sum of products, and it is
called the MULTINOMIAL EXPANSION. In case that m = 2 we can see immediately that
C(n; r, n − r) = C(n, r) and the multinomial expansion reduces to the usual BINOMIAL
EXPANSION

(11.14) (x+ y)n =
n∑

k=0

C(n, k)xkyn−k.

Because of [11.13], it is customary to refer to C(n;n1, n2, ..., nm) as a MULTINOMIAL
COEFFICIENT, and likewise from [11.14], it is the case that C(n, r) is called a BINOMIAL
COEFFICIENT. For instance in a sequence of n independent trials to see how many times
event A happens, the outcome could be recorded as a word in the letters ”s,f”, where we
put an ”s” for a trial on which A happens and ”f” otherwise. Thus the sequence or word
”ssfsf” denotes the outcome of five trials where on the first two trials A happened, the third
trial resulted in A failing to happen, on the fourth trial A did happen, and on the fifth
trial A failed to happen. Notice that if P (A) = p and P (S \ A) = q, then the probability
of the sequence ”ssfsf” is ppqpq = p3q2. In fact the probablity of each sequence where A
happened exactly 3 times out of the five independent trials would be the same, and there are
C(5, 3) of these sequences. Thus, the probability that A happens 3 times in 5 independent
trials is C(5, 3)p3q2. More generally, if we make a sequence of n independent trials, then
the probability that A happens exactly k times is the number of words of length n having
”s” appear k times and ”f” appear n − k times multiplied by the probability of any one of
these sequences, and each such sequence has probability pkqn−k. Thus, we can say that if Tn

denotes the total number of times that A happens in n independent trials, then

(11.15) P (Tn = k) = C(n, k)pkqn−k.

We call [11.15] the formula for the BINOMIAL DISTRIBUTION, and we say that in this
case, Tn has the binomial distribution.

Notice that the only possibilities for values of Tn are the whole numbers 0, 1, 2, 3, ..., n,
and [11.15] gives the probability of each. If we are not making independent trials but are
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choosing from a finite sample space of size N without replacement where all outcomes are
equally likely, and if A contains exactly R outcomes, then p = R/N and q = (N − R)/N.
Now if Tn denotes the number of times A happens, that is the number of choices from S
which resulted in an outcome from A, then since we are choosing without replacement,

(11.16) P (Tn = k) =
C(R, k)C(N −R, n− k)

C(N, n)
,

which is the formula for the HYPERGEOMETRIC DISTRIBUTION, and we say that Tn

has the hypergeometric distribution. If we choose with replacement, then the choices become
independent of each other, and the distribution must be binomial, whereas when we choose
without replacement from a finite population, the distribution is hypergeometric. This dis-
tinction between independence and dependence will be made mathematically precise below
in what follows.

12. NOTATION

Henceforth it will be convenient to identify statements and events with their indicator
unknowns and random variables, so if a statement or event is in a place that requires a
random variable, it should be interpreted as the indicator. Thus, in particular, if A and
B are statements, then E(A|B) = E(IA|B) = P (A|B), Cov(A,B) = Cov(IA, IB), and
V ar(A) = V ar(IA).

13. INDEPENDENCE AND UNCORRELATION

Suppose that X and Y are both unknowns and recall from [5.6] that Cov(X, Y ) =
E(XY )−E(X)E(Y ). Also recall thatX and Y are uncorrelated if and only if Cov(X, Y ) = 0.
We can therefore see that X and Y are uncorrelated if and only if E(XY ) = E(X)E(Y ).
Notice that for statements A and B this is the same as P (A ∩ B) = P (A)P (B). Since
Cov(X, 1) = 0 and P (notA) = 1 − P (A), it is easy to see from [5.8] that if A and B are
uncorrelated, then notA and B are uncorrelated, likewise A and notB are uncorrelated, and
so notA and notB are uncorrelated. Thus, these are all equivalent forms of saying A and B
are uncorrelated. Moreover, from [10.21] we see that P (A ∩ B) = P (A)P (B) says the same
thing as P (A|B) = P (A) and therefore also says the same thing as P (B|A) = P (B). To
summarize, we can say that for statements A and B to be uncorrelated is equivalent to any
one of the following equations

Cov(A,B) = 0,(13.1)

Cov(notA,B) = 0,(13.2)

Cov(A, notB) = 0,(13.3)

Cov(notA, notB) = 0,(13.4)

P (A ∩B) = P (A)P (B),(13.5)

P (A|B) = P (A),(13.6)

P (B|A) = P (B),(13.7)

which means if ANY ONE of these are TRUE, THEN they are ALL TRUE.
Let us now consider in more detail what independence means so we can formulate it

in a precise mathematical way. To say unknowns X and Y are independent, as indicated
previously, means that no information about the value of X will be is of any use in guessing
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something about the value of Y. More precisely, if A is a statement about the value of X
and B is a statement about the value of Y , then for X and Y to be independent it must be
the case that knowing whether A is true is of no use in determining whether B is true, no
matter how A and B are chosen as statements about X and Y , respectively. But this just
says that for any statement A about X and any statement B about Y it is the case that
P (B|A) = P (B) which is equivalent to saying that A and B are uncorrelated. If X and Y
are just statements themselves, then as the only thing to say about the value of an indicators
is whether or not it has the value 1, from [13.1] we see that for statements, independence
and uncorrelation are exactly the same thing. In the case of discrete unknowns, we must
require that for any real numbers c, d we have the events (X = c) and (Y = d) are themselves
uncorrelated. For more general random variables, we have to consider what the possibilities
are for what can be said about the value of an unknown. This becomes somewhat complicated
when dealing with possibly continuous unknowns, but as we can use decimal approximation,
to an arbitrary degree of accuracy, we can finally realize that in general for X and Y to
be independent, we need the events (a ≤ X ≤ b) and (c ≤ Y ≤ d) to be uncorrelated for
any choice of real numbers a, b, c, d. We can now show that independent simple unknowns
are uncorrelated. For by [4.25] applied to both X and Y , we see that Cov(X,Y ) will be a
sum of terms each containing a factor of the form Cov((X = c), (Y = d)) for c, d possible
values of X and Y respectively; but by the assumption of independence of X and Y , all such
covariances are zero. The same is true if X and Y are discrete, with an argument that is
a little more careful because of the possible infinite number of terms. In the general case,
we know that we can approximate with discrete unknowns by rounding off to any desired
degree of accuracy, so the general case follows from the discrete case. In essence, the fact
that independent unknowns are uncorrelated follows from the fact that independent simple
unknowns are uncorrelated. Let us look at this argument in a little more detail for simple
unknowns. Suppose that X and Y are simple unknowns. Then we can find a partition of the
sure statement into mutually exclusive statements A1, A2, A3, ..., Am and distinct constants
a1, a2, a3, ..., am so that

(13.8) X = a1A1 + a2A2 + a3A3 + ...+ amAm.

Likewise, we can do the same for Y , that is we can find a partition B1, B2, B3, ..., Bn and
distinct constants b1, b2, b3, ..., bn so that

(13.9) Y = b1B1 + b2B2 + b3B3 + ...+ bnBn.

Now, X(S) = {a1, a2, a3, ..., am} is the set of possible values of X and for each k, we have
as events (X = ak) = Ak, so P (X = ak) = P (Ak). Likewise, for Y we have as events
(Y = bl) = Bl, so P (Y = bl) = P (Bl), for each l. Thus the condition that for any real
numbers c, d the events (X = c) and (Y = d) are uncorrelated (which is the condition for
independence of X and Y ) become simply the condition that for any k, l we have Ak and
Bl are uncorrelated with each other, that is Cov(Ak, Bl) = 0. But then Cov(X, Y ) is a
sum of terms of the form Cov(akAk, blBl) = akblCov(Ak, Bl), so the condition that X and
Y be independent now makes all these terms equal to zero. That is to say, if X and Y are
independent, then they are uncorrelated. Notice the converse is not true, because for X and
Y to be uncorrelated it is only necessary for the sum of these terms to be zero, which is not
as stringent as requiring each term in the sum to be zero.

Now, let R denote the set of all real numbers. It can be thought of as a sample space for
the experiment of choosing a real number. For this special sample space, it is customary to
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use lower case letters near the middle of the alphabet to denote random variables. Suppose
that X is a random variable on S and f is a random variable on R. We can then form a
new random variable denoted f(X) by declaring that its value is f(x) when the value of X
is x. That is, if s in S is the outcome of the experiment, then X(s) is the value of X and
therefore f(X(s)) is the value of f(X) when the outcome is s. Notice that for the simple
random variable X given by [13.10] we have

(13.10) f(X) = f(a1)A1 + f(a2)A2 + f(a3)A3 + ...+ f(am)Am.

This means that for a simple random variable X, once we have the representation of X as
in [13.10], then when we form f(X), we can use the same partition of the sample space. Of
course, the same applies to Y in case Y is another simple random variable, and consequently,
since independence of the simple variables here just boils down to Cov(Ak, Bl) = 0 for all
k, l, it follows that for simple random variables X and Y , if they are independent, then
so are f(X) and g(Y ) for any random variables f and g on R. Conversely, if X and Y
are simple and if for any random variables f, g on R it is the case that f(X) and g(Y )
are uncorrelated, then we will demonstrate that X and Y must be independent. Begin by
choosing for each k a random variable fk which has the property that fk(al) = 0 if l is not
equal to k but fk(ak) = 1. The simplest way to do this is to take fk to be the random
variable which as an event pictured in set form is just {ak}. Likewise, for each l choose a
random variable gl with gl(bk) = 0 if k is not equal to l but gl(bl) = 1. Then fk(X) = Ak

and gl(Y ) = Bl and therefore Ak and Bl are uncorrelated for each k, l. But this means that
X and Y are independent. By using the decimal approximation carefully, we can say that
for any random variables X and Y , the condition of being independent is the same as the
condition that for any random variables f, g on the sample space R it is the case that f(X)
and g(Y ) are uncorrelated and this in turn is equivalent to the condition that f(X) and
g(Y ) be independent for any random variables f, g on R. Consider now that when we form
f(X) we are encoding the values of X in some way, which can possibly destroy some of the
information in X and emphasize other aspects of the information in X. In this view, the
condition of independence of X and Y is that no matter how this is done, the results remain
uncorrelated.

14. SAMPLING

Expected values and probabilities are approximated in practical situations by sampling.
When we sample the random variableX we are making repeated observations ofX and before
the observations are made, we can think of the various observations as forming themselves
new random variables. Thus we let X1 be the random variable whose value on a given sample
is the first observed value, X2 be the random variable whose value on a given sample is the
second observed value, X3 be the random variable whose value on a given sample is the third
observed value, and so on, so Xk is the random variable whose value on a given sample is the
kth observed value, 1 ≤ k ≤ n. We notice right away that each Xk has the same distribution
as X and therefore, for each k

(14.1) E(Xk) = µX

and

(14.2) SD(Xk) = σX .
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The reason for sampling is to estimate the population parameters we are interested in such
as the population mean and the population variance. To do this we look for combinations
of the sample data which have expected value equal to the population parameter we are
interested in. First consider the population mean. A reasonable guess is that the mean of a
sample should give an estimate. If we take the mean of a sample of size n, then in terms of
the random variables

X1, X2, X3, ..., Xn,

we see that we are totaling the variables and dividing by n. We can therefore define Tn as
the total of these variables, so

(14.3) Tn = X1 +X2 +X3 + ...+Xn,

and as a random variable, the sample mean is X̄n, where

(14.4) X̄n =
1

n
Tn.

But now, if µ = E(X), then repeated application of the basic properties of expectation tells
us that

(14.5) E(Tn) = nµ,

and therefore

(14.6) E(X̄n) = µ.

That is, the expected value of the sample mean is the true population mean, just what we
were looking for. Moreover, [14.5] just says that the expected value of a total of observations
of X is simply the true mean of X multiplied by the number of observations made. The situ-
ation for variance of X in relation to sampling is more complicated. First, we see that unless
we have an assumption about how the different observations of X are correlated, we cannot
even calculate the variance of Tn. The simplest assumption to make is that all observations
are independent of each other. In this case we say that we are doing INDEPENDENT RAN-
DOM SAMPLING(IRS). If V ar(X) = σ2, then for each k we have V ar(Xk) = σ2, so by
[5.13] we have

(14.7) V ar(Tn) = nσ2,

and therefore

(14.8) σTn =
√
nσ.

Consequently, since X̄n = (1/n)Tn, we have by [5.19],

(14.9) σX̄n
=

1√
n
σX .

Squaring both sides of this last equation then tells us that

(14.10) V ar(X̄n) =
V ar(X)

n
=
σ2

X

n
.

By [14.6], the expected value of the sample mean is the true population mean. We want to
find what combination of the observations will have the population variance as its expected
value. Before giving the detailed calculation, let us use [5.7]. Applied to the variable X,
recall it says that
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V ar(X) = E(X2)− [E(X)]2,

whereas as a special case applied to a population of size n consisting of the independent
observations X1, X2, ..., Xn it says that

(14.11) ((X − X̄)2) = X̄2 − (X̄)2.

If we apply [14.6] to [14.11] we find that

E(((X − X̄)2)) = E(X2)− E((X̄)2),

and applying [5.7] to each term on the right together with [14.10] gives

E(((X − X̄)2)) = (µ2 + σ2)− (µ2 +
1

n
σ2).

Now, cancelling and simplifying gives the simple result

(14.12) E(((X − X̄)2)) =
(n− 1)

n
σ2.

We say a variable whose expected value is the number v is an unbiased estimator of v. Thus
X̄ is an unbiased estimator of E(X), the true mean of X. From [14.12] we see on multiplying
both sides by the reciprocal of the coefficient of σ2 that

(14.13) E(
n

n− 1
((X − X̄)2)) = σ2

giving us an unbiased estimator of the population variance.
We now want to look at a more detailed way of calculating this fact which will lead to a

formula which is valid without necessarily using independent random sampling (IRS). First
let us ask for the covariance of the sample observations with the sample mean, in IRS. That
is, if 0 ≤ k ≤ n, then what is Cov(Xk, X̄n)? To do this, we begin by calculating Cov(Xk, Tn).
By [5.10] and [14.3], we see that Cov(Xk, Tn) = Cov(Xk, Xk) = V ar(X) = σ2

X , and therefore

(14.14) Cov(Xk, Tn) = σ2
X , 1 ≤ k ≤ n

and

(14.15) Cov(Xk, X̄n) =
V ar(X)

n
=
σ2

X

n
, 1 ≤ k ≤ n.

Since E(Xk) = µ = E(X̄n), it follows that E(Xk − X̄n) = 0, and therefore that

E((Xk − X̄n)2) = V ar(Xk − X̄n),

so by [5.12] and [14.10], we find

(14.16) E((Xk − X̄n)2) = σ2
X +

σ2
X

n
− 2

σ2
X

n
,

and cancelling the positive terms with negative terms leaves

(14.17) E((Xk − X̄n)2) = σ2
X − σ2

X

n
=

(n− 1)σ2
X

n
,
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so finally,

(14.18) E((Xk − X̄n)2) =
(n− 1)σ2

X

n
.

Now, we almost have the objective we want. We define that sample variance random variable,
S2

n, by the equation

(14.19) S2
n =

(X1 − X̄n)2 + (X2 − X̄n)2 + (X3 − X̄n)2 + ...+ (Xn − X̄n)2

n− 1
,

so that

(14.20) (n− 1)S2
n = (X1 − X̄n)2 + (X2 − X̄n)2 + (X3 − X̄n)2 + ...+ (Xn − X̄n)2.

Thus we see that in our previous notation,

(14.21) ((X − X̄)2) =
(n− 1)

n
S2

n.

Now, the right hand side of [14.20] has exactly n terms and by [14.18], each has the same
expected value, so multiplying the right hand side of [14.18] by n gives us the expected value
of (n− 1)S2

n, and we see that E((n− 1)S2
n) = (n− 1)σ2

X . Since the n− 1 is a factor common
to both sides here, it too cancels, with the result that

(14.22) E(S2
n) = σ2

X ,

which is the same as [14.13] in view of [14.21].
With a more general sampling method, the various different observations may be correlated

with each other to some extent, but this correlation effect should be independent of the
particular observation, that is Cov(Xk, Tn) should not depend on the particular choice of k.
Let

(14.23) c =
Cov(Xk, Tn)

σ2
X

.

which we will refer to as the SAMPLING CORRELATION CONSTANT. Then

(14.24) Cov(Xk, Tn) = cσ2
X , 1 ≤ k ≤ n,

and as X̄n = (1/n)Tn,

(14.25) Cov(Xk, X̄n) =
cσ2

X

n
, 1 ≤ k ≤ n.

Since Tn = X1 +X2 +X3 + ...+Xn, it follows that

(14.26) V ar(Tn) = Cov(Tn, Tn) = ncσ2
X ,

and therefore

(14.27) V ar(X̄n) =
c

n
σ2

X .

Comparing [14.14] and [14.24], we see that for the case of IRS, that is in independent random
sampling, we have cIRS = 1. Notice this means the sampling correlation constant is just a
simple correction factor for the ordinary IRS equations, [14.7] and [14.10], for variance of the
random variables Tn and X̄n. Now the main ingredient of the sample variance is the sum of
the squared deviations from the sample mean which we can denote by Un, so

(14.28) Un = (n− 1)S2
n = (X1 − X̄n)2 + (X2 − X̄n)2 + (X3 − X̄n)2 + ...+ (Xn − X̄n)2.
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To compute E(Un) we need to compute the expected value of each term on the right side of
[14.28], and as before we realize this means computing the variance of Xk − X̄n. But again,
since we know the variance of Xk is just σ2

X and [14.27] tells us the variance of X̄n, we can
now apply [5.12] to find

(14.29) E((Xk − X̄n)2) = σ2
X +

cσ2
X

n
− 2

cσ2
X

n
=

(n− c)σ2
X

n
.

Consequently, multiplying the right side of [14.29] by n gives the expected value of Un. Thus,

(14.30) E(Un) = (n− c)σ2
X ,

which tells us that

(14.31) σ2
X = E(

Un

n− c
).

That is, (n − c)−1Un has σ2
X as its expected value, so that is what we would compute to

estimate the true population variance from the sample data. As pointed out earlier, in case
of IRS, we have cIRS = 1, so (n− c)−1Un reduces to S2

n.
The most common sampling method is SIMPLE RANDOM SAMPLING (SRS). The re-

quirement for simple random sampling is that all samples of size n from the population are
equally likely to be the chosen sample. In practice, we are usually observing measurements
on objects randomly chosen from a population of objects, so for SRS for each observation
after observing the randomly chosen object, we remove it from the population, so that we
do not ever observe anything twice. That is we sample WITHOUT REPLACEMENT. If
we replace each randomly chosen object back in the population after observing it, then on
a later random selection, we may end up observing the same object. When we sample in
this manner, we are sampling WITH REPLACEMENT. When sampling with replacement
it is clear that different observations are independent of each other so we have IRS, whereas
when we sample without replacement we get SRS, and it is easy to see that there must be
correlation between the different observations if the population is finite. For instance, if
our population is a box full of envelops each containing a campaign donation in the form
of a check, if the experiment is to randomly choose an envelop from the box and see how
much the check is worth (assuming it is not a bad check), then when we sample without
replacement, no envelop is observed twice. Getting a big check on observation k makes it
less likely to get a big check on other draws. That is, when sampling without replacement
in a finite population, as the large values get ”used up”, they become less likely. This means
that we expect the different observations to be negatively correlated. On the other hand, if
i 6= j and 1 ≤ i, j ≤ n, then Cov(Xi, Xj) should not depend on the particular choice of i, j,
so let

(14.32) b = Cov(Xi, Xj), i 6= j, 1 ≤ i, j ≤ n.

In order to find b, the trick is to consider a sample of size n = N , for then TN being the
population total is constant and therefore Cov(Xk, TN) = 0. But Cov(Xk, TN) is a sum of N
terms of which N−1 are covariances of different observations and one term is the covariance
of Xk with itself ( its variance). Therefore we get

(14.33) 0 = Cov(Xk, TN) = σ2
X + (N − 1)b,



THE EXPECTATION PRIMER EXPECTATION COVARIANCE AND PROBABILITY V3.2 45

so b = −σ2
X/(N − 1), and therefore we find that for SRS

(14.34) Cov(Xi, Xj) = − σ2
X

N − 1
, i 6= j, 1 ≤ i, j ≤ n.

We can see right away from [14.34] that the different observations are indeed negatively
correlated in SRS, and as N is in the denominator, as N tends to infinity this correlation
becomes negligible. Thus for an infinite population, the different observations are uncorre-
lated so the calculations above for IRS apply. On the other hand, for a finite N we see that
we do have correlation between different observations which must be taken into account. For
the sample of size n, the calculation of Cov(Xk, Tn) now has n terms of which one is equal
to the variance and the remaining n− 1 terms all equal b, so

(14.35) Cov(Xk, Tn) = σ2
X + (n− 1)b = σ2

X − (n− 1)
σ2

X

N − 1
=
N − n

N − 1
σ2

X .

By [14.23], we see that the sampling correlation constant for SRS is

(14.36) cSRS =
N − n

N − 1
.

Thus by [14.26] and [14.27] we have for SRS the variances of Tn and X̄n are

(14.37) V ar(X̄n) =
(N − n)

(N − 1)

σ2
X

n

and

(14.38) V ar(Tn) =
(N − n)

N − 1
nσ2

X .

For the estimation of population variance, by [14.31] we now should use (n− cSRS)−1Un, and
by [14.36],

(14.39)
1

n− cSRS

=
N − 1

nN − n−N + n
=

N − 1

N(n− 1)
,

and therefore for SRS we have the estimation of population variance is given by

(14.40) σ2
X = E(

N − 1

N(n− 1)
Un) =

N − 1

N
E(S2

n).

In practice, we would usually be using simple random sampling (SRS) to estimate population
variance when the population is large, so the factor (N−1)/N can be assumed to be nearly 1
and we can use S2

n to estimate population variance in SRS as well as in independent random
sampling (IRS) when dealing with large populations.

Let us apply Tchebeychev’s Inequality, [9.12], to these results for the case of independent
random sampling (IRS). We are going to replace X in [9.12] by X̄n. Then by [14.9], we must
replace σX in [9.12] by σX/

√
n. So that [9.12] becomes

(14.41) P (
kσX√
n
≤ |X̄n − µX |) ≤

1

k2
.

This is the same as saying that

(14.42) P (|X̄n − µX | <
kσX√
n

) ≥ 1− 1

k2
.
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This means that by choosing k large enough, we can obtain any desired level of certainty
(probabilistically speaking) that

(14.43) |X̄n − µX | <
kσX√
n

is actually true. That is, we say that for large enough k we are ALMOST SURE that [14.43]
is actually true. If we have an upper bound on how big σX can be, then since

√
n is in the

denominator on the right hand side of [14.43], we can by choosing n large enough insure
that the right hand side is as small as we please. That is, by first choosing k large enough
and then n large enough, we can get the sample mean to come as close as we like to the
true mean with almost certainty. This means that in particular, thinking of E(X) as the
overall long run average over infinitely many observations of X is forced on us by [9.12] and
our basic assumptions about the properties expectation must satisfy. In case that X = A
is an event, it is easy to see that X̄n = Ān is the relative frequency of occurrence of A in
n independent trials of the experiment. This means we are virtually forced to accept the
interpretation of the probability of an event as the relative frequency of occurrence of A over
infinitely many independent trials of the experiment, merely as a consequence of the four
basic properties we assumed for the expectation.

Finally, let us apply our sampling results to compute the mean and variance of the binomial
and hypergeometric distributions. Thus we take our random variable X that we are sampling
to be an event A. Then with P (A) = p and P (S \A) = q we have that Tn can be viewed as
the total number of times that A happens in the sample of size n. In case we use IRS, then
Tn has the binomial distribution whereas if the population is finite and we use SRS, then Tn

has the hypergeometric distribution. Since E(A) = P (A) = p, we see that by [14.5],

(14.44) E(Tn) = np

Since σ2
A = p− p2 = pq, we see by [14.7] that for the case of IRS,

(14.45) V ar(Tn)IRS = npq.

Here we see that the computation of mean and variance of the binomial distribution given by
the distribution formula, [11.15], is more difficult than by applying a little theory. If we count
the number of times A happens using simple random sampling(SRS) in a finite population
of size N instead of independent random sampling, then the distribution is hypergeometric
instead of binomial, and our theory tells us that we still have the same mean, np, but now
the variance is multiplied by the SRS correction factor (N − n)/(N − 1) by [14.36]. On the
other hand, if A has R outcomes and the whole sample space S has N outcomes, all equally
likely, then p = R/N and using SRS we see that it has mean

(14.46) E(Tn) = np = nR/N

and from [14.36], it has variance

(14.47) V ar(Tn = k)SRS =
(N − n)npq

(N − 1)
=

(N − n)R(N −R)

N2(N − 1)
.

Again, the theory tells us the mean and variance (here for the hypergeometric distribution)
more easily than computing with the distribution given by the formula [11.16].
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15. SAMPLING DISTRIBUTIONS

By the SAMPLING DISTRIBUTION, we mean the distribution of X̄n for samples of X
of size n. In order to obtain the actual distributions of the sample mean random variable in
the case of a normal random variable, we have to rewrite the sample variance as a sum of
squares of uncorrelated standard variables, up to the factor σ2. It is instructive to see how
this is done for any sequence of random variables, the algebra is the same, and it shows how
the general normal random variable has a determined sampling distribution. Let us begin
with a positive real number σ and any sequence of random variables

X1, X2, X3, ..., Xn, ...

For any natural number n, let us define

(15.1) Tn = X1 +X2 +X3 + ...+Xn,

(15.2) X̄n =
1

n
Tn,

(15.3) Yn = Xn+1 − X̄n,

(15.4) Zn =
Yn

σ

√
n

n+ 1
.

We then have

(15.5) σ2Z2
n =

n

n+ 1
Y 2

n ,

(15.6) Tn = nX̄n,

and

(15.7) Tn+1 − Tn = Xn+1.

Then using these equations,

(15.8) X̄n+1 − X̄n =
1

n+ 1
Tn+1 − X̄n =

Tn+1 − (n+ 1)X̄n

n+ 1
=
Tn+1 − Tn − X̄n

n+ 1
,

(15.9)
Tn+1 − Tn − X̄n

n+ 1
=
Xn+1 − X̄n

n+ 1
=

Yn

n+ 1
,

and hence

(15.10) X̄n+1 − X̄n =
Yn

n+ 1
.

On the other hand,

(15.11) Xn+1 − X̄n+1 = Xn+1 −
Tn+1

n+ 1
=
nXn+1 +Xn+1 − Tn+1

n+ 1
=
nXn+1 − Tn

n+ 1
,

(15.12)
nXn+1 − Tn

n+ 1
=
nXn+1 − nX̄n

n+ 1
= n

Xn+1 − X̄n

n+ 1
=

n

n+ 1
Yn

and therefore,

(15.13) Xn+1 − X̄n+1 =
n

n+ 1
Yn.
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Now, since we are after sample variance, define

(15.14) Un =

n∑∑∑
k=1

(Xk − X̄n)2.

Our aim is to show that

(15.15) Un = σ2

n−1∑∑∑
k=1

Z2
k .

To accomplish this, we will observe that for any n,

(15.16) Un+1 − Un = σ2Z2
n,

as the result [15.15] then follows from [15.16] by induction. Now, applying the factorization
a2 − b2 = (a+ b)(a− b), we see

(15.17) Un+1 − Un =

n∑∑∑
k=1

[(Xk − X̄n+1)
2 − (Xk − X̄n)2] + (Xn+1 − X̄n+1)

2

=

n∑∑∑
k=1

(Xk − X̄n+1 +Xk − X̄n)(X̄n − X̄n+1) + (
n

n+ 1
Yn)2

=

n∑∑∑
k=1

(X̄n+1 + X̄n − 2Xk)(X̄n+1 − X̄n) + (
n

n+ 1
Yn)2

=
Yn

n+ 1

n∑∑∑
k=1

(X̄n+1 + X̄n − 2Xk) + (
n

n+ 1
Yn)2

=
Yn

n+ 1
[n(X̄n+1 + X̄n)−

n∑∑∑
k=1

2Xk] + (
n

n+ 1
Yn)2

=
Yn

n+ 1
[n(X̄n+1 + X̄n)− 2Tn] + (

n

n+ 1
Yn)2

=
Yn

n+ 1
[n(X̄n+1 + X̄n)− 2nX̄n] + (

n

n+ 1
Yn)2

=
Yn

n+ 1
[n(X̄n+1 − X̄n)] + (

n

n+ 1
Yn)2

= (
Yn

n+ 1
)n(

Yn

n+ 1
) + (

n

n+ 1
Yn)2 =

n2 + n

(n+ 1)2
Y 2

n

=
n(n+ 1)

(n+ 1)2
Y 2

n =
n

n+ 1
Y 2

n = σ2Z2
n.

Thus finally we have [15.16] and therefore also [15.15].
Suppose that X is a random variable and that the preceding sequence of random variables

are successive independent observations of X, and assume that µ = E(X) and σ = σX .
Then

Cov(Xk, Tn) = σ2, k ≤ n

Cov(Xk, Tn) = 0, k > n.
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Thus

(15.18) Cov(Xk, X̄n) =
σ2

n
, k ≤ n,

but is zero for k > n. Thus if m ≤ n, then Cov(Tm, X̄n) = (m/n)σ2, and therefore
Cov(X̄m, X̄n) = (σ2)/n when m ≤ n. Denoting the maximum of m and n by m ∨ n,
we therefore have

(15.19) Cov(X̄m, X̄n) =
σ2

m ∨ n
.

Now, if m < n, then

Cov(Ym, Yn) = Cov(Xm+1 − X̄m, Xn+1 − X̄n)

= 0 +
σ2

n
− σ2

n
− 0 = 0.

Thus the sequence

Y1, Y2, Y3, ..., Yn, ...

is a sequence of pairwise uncorrelated random variables. Notice also that as Xn+1 and X̄n

are uncorrelated, it follows that

(15.20) V ar(Yn) = V ar(Xn+1) + V ar(X̄n) = σ2 +
σ2

n
=
n+ 1

n
σ2.

Moreover, as E(Xn+1) = µ = E(X̄n), it follows now that E(Yn) = 0 for every n, and therefore

Zn =
Yn

σ

√
n

n+ 1

is standard, so

Z1, Z2, Z3, ..., Zn, ...

is a sequence of pairwise uncorrelated standard random variables satisfying

(15.21) (n− 1)S2
n = σ2

n−1∑∑∑
k=1

Z2
k .

We will not discuss multivariable joint distributions, but here we have the Z−sequence
depends linearly on the X−sequence so that if X is normal, then so is Zn for every n, and
it is known that in this case pairwise uncorrelated implies pairwise independent. Now, the
definition of the CHI-SQUARE DISTRIBUTION, denoted χ2−distribution, for d degrees of
freedom is

(15.22) χ2
d =

d∑∑∑
k=1

Z2
k ,

where Z1, Z2, ..., Zd are pairwise independent standard normal random variables. That is, if
Z is a standard normal random variable, then χ2

d has the distribution of the sample total for
IRS samples of Z2 of size d. Thus if X is normal, then our preceding equations, [15.21] and
[15.22], show

(15.23)
(n− 1)S2

n

σ2
= χ2

n−1,
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that is to say (n − 1)S2
n/σ

2 has the χ2−distribution for n − 1 degrees of freedom, which is
χ2

n−1. Consequently,

(15.24)
S2

n

σ2
=

χ2
n−1

n− 1

The STUDENT t−DISTRIBUTION for d degrees of freedom, denoted td, is by definition
the distribution of

(15.25) td =
Z0√

χ2
d

d

where Z0, Z1, Z2, ..., Zd are independent standard normal random variables with Z1, Z2, Z3, ..., Zd

defining χ2
d. Notice that the the term in the radical in the denominator here, (χ2

d)/d, is itself
just the sample mean for a sample of Z2 of size d. Now, if we define Wn by

(15.26) Wn =
X̄n − µX√

S2
n

n

,

then to see that Wn has the t−distribution for n − 1 degrees of freedom, we define the
sequences (Ym) and (Zm) as above in terms of the sequence (Xm), and then we put Y0 =
X̄n − µ. Then by [15.18] and [15.19], we see that

Cov(Y0, Xk) = (σ2/n) = Cov(Y0, X̄k−1)

and therefore
Cov(Y0, Yk) = 0, k = 1, 2, 3, ..., n− 1.

It follows that as V ar(Y0) = (σ2/n), we have that the standardization of Y0 is Z0 where

Z0 =
Y0√
σ2/n

.

Thus, by [15.24], we see

(15.27) Wn =
Z0√

S2
n

σ2

=
Z0√
χ2

n−1

n−1

= tn−1.

This means that replacing population variance with sample variance in the formula for stan-
dardizing the sample mean random variable, in caseX is normal, results in the t−distribution
for n− 1 degrees of freedom instead of the standard normal distribution.

16. TWO POPULATION SAMPLING DISTRIBUTIONS

When sampling two disjoint populations we are really dealing with two disjoint sample
spaces S1 and S2, and two random variables X and Y say where X is a random variable on
S1 and Y is a random variable on S2. The object here is to compare the means. To do this,
we form a new sample space S = S1 ×S2 consisting of all pairs of outcomes (a, b) where a is
an outcome in S1 and b is an outcome is S2. We then regard both X and Y as being random
variables on S, by setting X(a, b) = X(a) and Y (a, b) = Y (b). It is easy to see that now X
and Y become independent random variables on the same sample space. As a special case,
we could be dealing with a pair of dice, where X is the number up on the first dice and
Y is the number up on the second dice, and we would like to know if they are loaded the
same way. When we compare by examining X−Y it is clear then we have to be considering
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pairs of outcomes for this to make sense. Thus to estimate µX − µY , we take a sample of
observed values of X of size m and a sample for Y of size n, and estimate µX − µY with
the difference in sample means X̄m − Ȳn. To know how good this is, then we need to deal
with the distribution of X̄m − Ȳn. We will assume IRS(independent random sampling) here.
Then as V ar(X̄m) = (1/m)σ2

X and V ar(Ȳn) = (1/n)σ2
Y , and as X̄m and Ȳn are independent,

we have

(16.1) V ar(X̄m − Ȳn) =
σ2

X

m
+
σ2

Y

n
,

and therefore,

(16.2) SD(X̄m − Ȳn) =

√
σ2

X

m
+
σ2

Y

n
.

If X and Y are normally distributed then so is X̄m − Ȳn and therefore its standardization,

(16.3) Z =
(X̄m − Ȳn)− (µX − µY )√

σ2
X

m
+

σ2
Y

n

,

is a standard normal random variable. We therefore can use the normal distribution to judge
mean differences from sample data when the standard deviations σX and σY are known, as
for instance in hypothesis testing or forming confidence intervals. But this is realistic only
in certain circumstances, such as when dealing with batches of machine products where the
standard deviations are determined by the properties and built in tolerances of the cutting
machines whereas the actual values are determined by the adjustments and settings of the
cutting machines, which can be set independently. That is, in this case, long experience may
lead us to know the standard deviations, or at least we know that changing the settings does
not change the standard deviation for comparing outputs of a single cutting machine. In
general, we have to estimate standard deviations using sample standard deviations, which as
in the case of a single random variable leads to a t−distribution for some number of degrees
of freedom. We are then dealing with the random variable W given by

(16.4) W =
(X̄m − Ȳn)− (µX − µY )√

S2
X

m
+

S2
Y

n

,

where S2
X and S2

Y denote the sample variances for the X−sample and the Y−sample, re-
spectively. We can then write

(16.5) W =
Z√√√√�

S2
X

m
+

S2
Y
n

�
�

σ2
X
m

+
σ2

Y
n

�
.

Now for dealing with degrees of freedom, let dfX = m − 1 and dfY = n − 1 which are
the degrees of freedom for the X−sample and the Y−sample, respectively. We then know
that ((dfX)/σ2

X)S2
X has the χ2

dfX
−distribution and ((dfY )/σ2

Y )S2
Y has the χ2

dfY
−distribution.

Since these sums of independent squares of standard normals are independent of each other,
it follows that their sum is χ2−distributed with degrees of freedom equal to the sum of the
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individual degrees of freedom, dftotal = (dfX) + (dfY ). That is,

(16.6)
(dfX)S2

X

σ2
X

+
(dfY )S2

Y

σ2
Y

= χ2
dftotal

.

Now the problem of getting a t−distribution to fit the distribution of W is in approximating
the distribution of the expression inside the radical of [16.5] with a distribution of the form
(χ2

d)/d for some d.
There are then three cases to deal with. The first case, where the standard deviations are

known is of course immediately handled by standardization, [16.3]. The second case is the
case where the standard deviations σX and σY are unknown but assumed to be equal. The
third case is where we have no assumptions on the standard deviations.

For the second case, let us assume that σX = σ = σY . Then the expression for Z simplifies
to

(16.7) Z =
(X̄m − Ȳn)− (µX − µY )√

σ2
(

1
m

+ 1
n

)
and obviously, S2

X and S2
Y are both estimates of σ. Moreover, now [16.6] can be rewritten as

(16.8)
(dfX)S2

X + (dfY )S2
Y

dftotal

= σ2
χ2

dftotal

dftotal

,

and clearly the left hand side of [16.8] should give a more reliable estimate of σ2 than either
of the individual sample variances, since it averages the variances from both samples and
weights according to degrees of freedom. We therefore use it to define the pooled variance
S2

p given as

(16.9) S2
p =

(dfX)S2
X + (dfY )S2

Y

dftotal

,

so now we have by [16.8],

(16.10) S2
p = σ2

χ2
dftotal

dftotal

.

Thus, replacing σ2 in [16.7] by the estimate S2
p will give

(16.11)
(X̄m − Ȳn)− (µX − µY )√

S2
p

(
1
m

+ 1
n

) =
Z√

χ2
dftotal

dftotal

= tdftotal
.

Thus, when assuming the two population standard deviations are equal, we should pool
variances and add degrees of freedom for the appropriate t−distribution.

Consider now the third case, where we make no assumption about the standard deviations
and must use the sample variances to estimate them. As noted above, from [16.5], in order to
get a t− distribution to best approximate the distribution of W , we must get the appropriate
number of degrees of freedom, d, so that the expression in the radical in [16.5],

(16.12)

(
S2

X

m
+

S2
Y

n

)
(

σ2
X

m
+

σ2
Y

n

) ,
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has a distribution which is approximately the distribution of (χ2
d)/d. Therefore, as we can

set S2
X = (σ2

X)(χ2
dfX
/dfX) and S2

Y = (σ2
Y )(χ2

dfY
/dfY ), making these substitutions in [16.12]

gives

(16.13)

(
S2

X

m
+

S2
Y

n

)
(

σ2
X

m
+

σ2
Y

n

) =

σ2
X

 
χ2

dfX
dfX

!

m
+ σ2

Y

 
χ2

dfY
dfY

!

n


(

σ2
X

m
+

σ2
Y

n

)
Now notice that the expected value of either side of [16.13] is 1 as is the expected value of
χ2

d/d for any number d of degrees of freedom. Hence we must go beyond matching expected
values here to get the correct number of degrees of freedom. Thus, we will require that the
number of degrees of freedom, d, be chosen so that the variance of the right side of [16.13]
matches the variance of χ2

d/d. Now, if Z is any standard normal random variable, then the

distribution of (Z2)d, the sample mean for an IRS of observations of Z2 of size d is χ2
d/d,

hence we can conclude immediately that

(16.14) V ar

(
χ2

d

d

)
=
V ar(Z2)

d
.

Suppose that we denote Rd = χ2
d/d and V ar(Z2) = c. Actually, c = 2, but this requires

calculus and we do not need this fact here. Define a and b by

(16.15) a =

σ2
X

m
σ2

X

m
+

σ2
Y

n

and b =

σ2
Y

n
σ2

X

m
+

σ2
Y

n

,

so a+ b = 1 and we have simply

(16.16) V ar(Rd) =
c

d
, and aRdfX + bRdfY

=

σ2
X

 
χ2

dfX
dfX

!

m
+ σ2

Y

 
χ2

dfY
dfY

!

n


(

σ2
X

m
+

σ2
Y

n

) .

In terms of these new symbols, we are simply trying to choose d so that

(16.17) V ar(Rd) = V ar(aRdfX + bRdfY
).

Here we can take RdfX and RdfY
to be independent of each other, since S2

X and S2
Y are

independent of each other. Therefore, assuming [16.17] forces

(16.18)
c

d
= V ar(aRdfX

+ bRdfY
) = a2V ar(RdfX) + b2V ar(RdfY

) = a2 c

dfX

+ b2
c

dfY

,

so

(16.19)
c

d
= a2 c

dfX

+ b2
c

dfY

.

Since c > 0, it cancels out in [16.19], giving finally

(16.20) d =
1

a2 1
dfX

+ b2 1
dfY

=

(
σ2

X

m
+

σ2
Y

n

)2

1
dfX

(
σ2

X

m

)2

+ 1
dfY

(
σ2

Y

n

)2 .
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as the required number of degrees of freedom. Of course now the obvious problem is that
in order to know the degrees of freedom, d, we have to know the population variances. A
second problem is that the value of d need not be a whole number. Acceptable practice for
getting around these problems is to use the sample variances in place of population variances
in the preceeding formula, [16.20] for degrees of freedom and to use interpolation between
whole number degrees of freedom when the formula [16.20] does not give a whole number.
This means that in statistical practice, it is accepted that W of [16.4] has the t−distribution
for d degrees of freedom where d is given as

(16.21) d =

(
S2

X

m
+

S2
Y

n

)2

1
dfX

(
S2

X

m

)2

+ 1
dfY

(
S2

Y

n

)2 .

17. MORE ABOUT INDEPENDENCE AND UNCORRELATION

Let’s recall what we have so far for the meaning of independence for the random variables
X and Y . If X and Y are just events themselves, then as the only thing to say about the
observation of an event is whether or not it happens, from [13.1] we see that for events
independence and uncorrelation are exactly the same thing. In the case of discrete random
variables, as already mentioned, we must require that for any real numbers c, d we have
the events (X = c) and (Y = d) are themselves uncorrelated. For more general random
variables, we have to consider what the possibilities are for what can be said about the
outcome of observing a random variable. First of all, if A and B are statements about X,
then so are the statements (A&B), (Aor B), and (notA). Algebraically, this means that
AB, A + B − AB, and 1− A should be considered as statements about X if A and B are.
From [5.8] we can see that if we can narrow down the statements to combinations of some
basic simple statements where we combine using ”and”, ”or”, and ”not”, then to see that all
such statements about X are uncorrelated with all such statements about Y , it will suffice
to check it just for combinations using ”and” and ”not”. This is because the union of sets
can be written as a disjoint union via

(17.1) A ∪B = (A \B) ∪B = (A ∩ (S \B)) ∪B,
and disjoint union algebraically is just addition of events as random variables. Since the
outcome of observing a random variable is always just a number, we just have to consider
what can be said about a number. If x is a number, the simplest type of statement about
x is to say something like x ≤ 4 or x ≤ −5, or more generally, x ≤ c, where c is any given
number. Such inequalities specify sets of numbers on the real line, R. If we consider R as a
sample space, then such inequalities are specifying events in that sample space. Combining
these simple inequalities using ”and” and ”not”, we see that for instance

(17.2) (x ≤ 7)&(not(x ≤ 3)) = (3 < x ≤ 7)

so intervals of this form are simple events for the sample space R. However, there is no way
to say that x = 4, for instance, by combining such inequality statements using only ”and”,
”or”, and ”not”. It requires infinitely many such statements all of the form c < x ≤ 4 to
all be simultaneously true, for c any number less than 4. We can reduce this to a sequence
of statements by requiring that 4 − (1/n) < x ≤ 4 for all positive integers n. That is to
say: 4 − 1 < x ≤ 4 and 4 − (1/2) < x ≤ 4 and 4 − (1/3) < x ≤ 4, and so on. Thus here
we have an infinite combination of ”and” applications. Alternately, we have to notice that
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3 < x < 4 is the same as saying that for some real number c satisfying 3 < c < 4 we have
3 < x ≤ c, which can be reduced to a sequence of statements connected by ”or” which can
algebraically be expressed as an infinite sum of terms. Since the real line is an infinite sample
space, we cannot avoid dealing with infinity, so we assume that these basic statements are
events and that any union of a finite or infinite sequence of events is again an event. This
means logically that we can also form the combination using ”and” or ”or” for any finite or
infinite sequence of events, so x = 4 does indeed specify an event in R. It turns out that
as a consequence, some subsets of the real line cannot be considered to be events, but in
essence we see that the subsets we easily specify in everyday circumstances are events. Now,
the technical definition of a random variable, say X, on the sample space S for a general
possibly infinite sample space, merely requires that for any event A on the real line, that is
for any event A ⊆ R, it must be true that the statement ”X belongs to A” is an event of
S. It suffices to check this for the basic interval events in R, that is for X to be a random
variable on S it is enough to know that for any real number c we have (X ≤ c) is an event
of S. Because of these considerations, it is in fact always assumed in general probability
theory that the probability of the union of an infinite sequence of disjoint events is equal to
the sum of their probabilities. Moreover, when checking independence for random variables
X and Y , it is enough to check that the events (X in A) and (Y in B) are uncorrelated,
for any pair of finite intervals A and B contained in R, and we can restrict consideration
to intervals of the form c < x ≤ d where c and d are real numbers. This leads back to our
earlier definition that for X and Y to be independent we require that

(17.3) Cov((c1 < X ≤ c2), (d1 < Y ≤ d2)) = 0,

for any four real numbers c1, c2, d1, d2. In case of finite sample spaces, these considerations
of infinity can be ignored, and as before, it is then easy to see that for X and Y to be
independent it is enough that

(17.4) Cov((X = c), (Y = d)) = 0

for any pair of real numbers c and d.
If W is a random variable on the sample space R, then for any random variable X we can

form W (X) and get a new random variable. That is, the observed value of W (X) is obtained
by getting the observed value of X and then putting this value into W to obtain a new value.
For instance, if W is the random variable such that W (x) = x3, then the observed value of
W (X) is gotten by raising the observed value of X to the third power. It is important to
realize that in general E(W (X)) and W (E(X)) will be quite different. For instance, if X
has nonzero standard deviation, then by [5.7] we have E(X2) 6= (E(X))2, which is to say
that if F is the random variable on R such that F (x) = x2, then E(F (X)) 6= F (E(X)).
Notice that if W1 and W2 are both random variables on R, then

(W1 +W2)(X) = W1(X) +W2(X)(17.5)

(W1W2)(X) = W1(X)W2(X).(17.6)

We can form simple random variables on R that are useful by rounding off. To be more
specific, let us suppose we are working to say n decimal place accuracy. Let Ln be the
random variable on R so that Ln(x) is the result of rounding down to n decimal places, so,
for instance, with n = 5, then L5(3.4268794) = 3.42687. Let Un be the corresponding random
variable that rounds up to five decimal places, so, for instance, U5(3.4268721) = 3.42688. Let
Rn be the ordinary rounding to n decimal place accuracy. Clearly we have Ln ≤ Rn ≤ Un,



56 M. J. DUPRÉ

and therefore for any random variable X we have Ln(X) ≤ Rn(X) ≤ Un(X). In fact,
Ln(X), Rn(X), and Un(X) are exactly the same as in [2.1] and [2.2]. Recall then from [3.12]

(17.7) |E(X)− E(Rn(X))| ≤ (10)−n.

We can apply this to the random variables on R itself. This means that if W is any random
variable on R, then to any required degree of accuracy, we can use sufficiently many decimal
place rounding off accuracy so that W and Rn(W ) agree to the required level of accuracy.
That is, we can replace W by Rn(W ) in the calculations. Now Rn(W ) is easily seen to be a
discrete random variable, consequently, Rn(W ) is a linear combination of events in R. This
means Rn(W (X)) is a linear combination of events which are each simple statements of the
form X in J , where J is an interval in R. This means that for X and Y to be independent,
by [5.10] and [6.12] it is necessary and sufficient that

(17.8) Cov(F (X), G(Y )) = 0,

for any discrete random variables F,G on R. Hence by [17.7], we see that X and Y are
independent if and only if [17.8] holds for all random variables F,G on R. Notice this is the
same as saying E(F (X)G(Y )) = E(F (X))E(G(Y )) for any random variables F,G on R. In
particular, this means that for any positive real number t, we have

E(tX+Y ) = E(tXtY ) = E(tX)E(tY ),

whenever X and Y are independent random variables. This equation can be usefully used
in calculating distributions. That is, we define the MOMENT GENERATING FUNCTION
of X to be

ψX(t) = E(tX).

Then we have from the previous equations for any independent random variables X, Y that
ψX+Y = ψXψY . Notice that as the moment generating function is computed through ex-
pectation, the moment generating function for X can only depend on the distribution of X.
This means that if X and Y have the same distribution, then ψX = ψY . Thus, if X is any
random variable, and Tn is the total of n independent observations of X, then ψTn = ψn

X .
Because if Xk is the k−th observation of X, then Xk and X have the same distribution, but
X1, X2, X3, ..., Xn are all mutually independent and therefore as Tn = X1+X2+X3+...+Xn,
it follows that

ψTn = ψX1ψX2ψX3 ...ψXn = ψn
X .

Consider the case of a simple random variable, say X = 2A + 3B + 5C, where A,B,C,D
are mutually exclusive events whose union is S. Then as t0 = 1, we get

ψX(t) = t2P (A) + t3P (B) + t5P (C) + P (D).

Notice in this case we get a polynomial in t as the moment generating function of X, and
that the terms are encoding the distribution by having the coefficient of tv being P (X = v)
for any value v that is possible for X. That is to find the probability of v, we just look for the
term ψX(t) having exponent v, and then its coefficient is the probability that X = v. Thus,
if X and Y are independent simple random variables, then we can compute the distribution
of X + Y by computing ψX+Y = ψXψY and then reading off the distribution from the
coefficients after the product of the polynomials is computed. A useful special case of these
methods is the case of an event. Let P (A) = p and P (notA) = q. Then ψA(t) = pt+ q, and
Tn is now the random variable which counts the number of occurrences of A in n independent
trials, so by the preceding we have ψTn = (pt + q)n, giving the usual binomial distribution
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when the binomial theorem is applied to expand the right side in terms of powers of t and
the distribution is decoded. That is, applying[11.14] gives

(17.9) ψTn = (pt+ q)n =
n∑

k=0

C(n, k)(pt)kqn−k

=
n∑

k=0

C(n, k)pkqn−ktk,

and this decodes as

(17.10) P (Tn = k) = C(n, k)pkqn−k,

which is the formula for the binomial distribution, [11.15].

18. APPENDIX: THE GEOMETRY OF RANDOM VARIABLES

It is often useful to have a picture in mind when dealing with mathematical problems. In
the case of random variables, given the sample space S we have in general an ALGEBRA OF
RANDOM VARIABLES ON S by which we mean the set of all random variables defined on
S with the structure provided by addition and multiplication of random variables. Moreover,
given an expectation model E for random variables on S, we can use it to define what is
called an inner product for random variables on S. In more detail, if X and Y are two such
random variables, then we define their inner product as E(XY ) which is just a number. We
often write this inner product as 〈X|Y 〉E = E(XY ) or simply 〈X|Y 〉 = E(XY ), when there
is no confusion as to E. We then have in case c is a number or constant

(18.1) 〈cX|Y 〉 = c〈X|Y 〉,

(18.2) 〈X +W |Y 〉 = 〈X|Y 〉+ 〈W |Y 〉,
and

(18.3) 〈X|Y 〉 = 〈Y |X〉,
which are sort of like the ordinary associative, distributive, and commutative laws of multi-
plication. We should also point out that for any random variable X we have

(18.4) 〈X|X〉 ≥ 0

which is crucial for defining length. Using the inner product and its positivity property
[18.4], we define the length or 2-norm of a random variable as

(18.5) ‖X‖2 =
√
〈X|X〉 =

√
E(X2).

More generally, for any positive number p we could define the p−norm by

(18.6) ‖X‖p = (E(Xp))1/p,

but there is no inner product for the general p−norm for p 6= 2. Consequently, we will restrict
attention to the case p = 2 and drop the subscript from the 2-norm and simply refer to it as
the norm or length of a random variable, so ‖X‖ = ‖X‖2 for any random variable X. Now
to see there is geometry in this, let us think for the moment of the example of arrows in
ordinary three dimensional space. We will consider that the only relevant properties of such
arrows are length and direction. That is if the arrow is moved without changing its length
or direction, we consider it to be the same arrow we started with. If v denotes an arrow in
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space, then we let |v| denote its length. Such imaginary arrows are useful for representing
all kinds of geometric information. For instance, a movement from one place to another can
be represented as the arrow pointing in the direction from the initial point to the final point
and whose length specifies the final distance actually moved-that is, it specifies the actual
displacement resulting from the move and not all the motion used to accomplish the move.
Such displacements are easily seen to have a natural addition known as HEAD TO TAIL
ADDITION OF ARROWS. That is, since we can move arrows as long as we do not stretch
them or change their direction, to form v+w we move w so that its tail is at the head of v and
then the sum is the arrow with tail at the tail of v and head at the head of w. Arrows can be
useful in representing forces in physics and velocity and acceleration in motion. For instance
when driving a car, your velocity arrow points straight out in the direction of motion and
has length equal to the speed registered on the speedometer if the wheels are not slipping on
the road surface. The head to tail addition works in these examples as well. We can multiply
arrows by ordinary numbers. If v is an arrow and c is a number, then cv is the arrow whose
length is |cv| = |c||v| and whose direction is the same as that of v in case c is positive and
is the opposite direction of v if c is negative. To form the inner product of the arrows v and
w we imagine a number line through the arrow v and we project perpendicularly onto this
line from the head and tail of w. We put a scale on the number line so that the tail of v is
at 0 and the head of v is at |v|. If x denotes the numerical value on this number line of the
projection of the tail of w and if y denotes the value on this number line of the projection of
the head of w, then we define the inner product 〈v|w〉 = |v|(y − x). If w is the head to tail
sum of to arrows, then the projection of the triangle picture of the three arrows in the head
to tail sum leads to the distributive law for this inner product, and reversing the roles of v
and w in this process can be seen to give the same result by similar triangles. We therefore
have the same rules for arrows as for random variables, and in fact the geometry is the same.
To see the geometric meaning of the inner product, notice that if v and w are perpendicular,
then 〈v|w〉 = |v|(y−x) = 0, because both the head and tail of w project to the same point on
the number line through v so that x = y and y−x = 0. Thus the inner product is measuring
something that takes into account the angle between the arrows. Since the rules for inner
product are the same for random variables and arrows, anything we deduce from these basic
rules for random variables will be true for the arrows, and vis-versa. For instance, from the
basic rules, [18.2] and [18.3], we see that

(18.7) ‖X + Y ‖2 = ‖X‖2 + ‖Y ‖2 + 2〈X|Y 〉.
Now, we can notice that [5.6] can be rewritten as

(18.8) 〈X|Y 〉 = Cov(X, Y ) + µXµY

and in particular [5.7] can be rewritten as

(18.9) ‖X‖2 = V ar(X) + µ2
X .

In fact, because (µX +µY )2 = µ2
X +µ2

Y +2µXµY , we see that by [18.8] and [18.9] it is the case
that [18.7] and [5.12] are actually equivalent equations. Better still, by [5.10] and [5.9] we
see that Cov(X, Y ) also satisfies the basic rules of inner product given by [18.1], [18.2], and
[18.3], and so we could say that [5.12] is actually a special case of [18.7]. Alternately, we can
notice that by definition, [5.3], if X and Y are random variables, then with DX = X − µX

and DY = y = µY we have

Cov(X,Y ) = E(DXDY ) = 〈DX |DY 〉,
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and by [5.4],
V ar(X) = E(D2

X) = ‖DX‖2,

so that [5.12] results from [18.7] and the fact that DX+Y = DX + DY as pointed out in
[5.1]. Thinking in terms of the arrow picture, if 〈X|Y 〉 = 0, then somehow X and Y
should be thought of as perpendicular. In fact, if we think of the addition of random
variables as being geometrically a triangle as in head to tail addition of arrows, then for
the case where 〈X|Y 〉 = 0 we should think of X and Y as perpendicular, so the head to
tail addition picture becomes a picture of a right triangle and in this case [18.7] simplifies to
‖X+Y ‖2 = ‖X‖2+‖Y ‖2 which amounts to the Pythagorean Theorem for random variables.
Somehow then, 〈X|Y 〉 must be related to an angle between the random variables X and Y.

Suppose X and Y are any random variables which we fix for the following argument. Then
for any number t we can form the random variable X+ tY. By [18.4], we have ‖X+ tY ‖2 ≥ 0
for any value of t and so by [18.7] we find that for every value of t we have

(18.10) ‖X + tY ‖2 = ‖X‖2 + t2‖Y ‖2 + 2t〈X|Y 〉 ≥ 0.

If 〈X|Y 〉 6= 0 and ‖Y ‖ = 0, then by choosing t to be very large in absolute value and with
opposite sign to 〈X|Y 〉, we could contradict [18.10] which is not possible. That is to say,
we must conclude from this that 〈X|Y 〉 = 0 if ‖Y ‖ = 0. But, this conclusion must apply
equally well to X meaning that 〈X|Y 〉 = 0 if either ‖X‖ or ‖Y ‖ is 0. In particular, if either
σX or σY is zero, then Cov(X, Y ) = 0, which we see on replacing X and Y by DX and DY ,
respectively. Now, suppose then that Y is not 0, and as [18.10] holds for all values of t, let
us set

(18.11) t =
−〈X|Y 〉
‖Y ‖2

.

This results in the inequality

(18.12) ‖X‖2 +
〈X|Y 〉2

‖Y ‖2
− 2

〈X|Y 〉2

‖Y ‖2
≥ 0.

Multiplying throughout by ‖Y ‖2 and then cancelling this reduces to the general inequality

(18.13) ‖X‖2‖Y ‖2 − 〈X|Y 〉2 ≥ 0,

which is the same as

(18.14) |〈X|Y 〉| ≤ ‖X‖‖Y ‖,
an inequality known as the CAUCHY-SCHWARZ INEQUALITY. In view of our remarks
about the case where either ‖X‖ or ‖Y ‖ is zero, we see that this inequality [18.14] holds
with no restriction-that is to say it holds for any pair of random variables. It gives [6.12]
on replacing X and Y by their deviations from their means, DX and DY , respectively. It
is the Cauchy-Schwarz inequality that allows us to get directly at the angle between two
random variables. We define the angle θ between X and Y to be the angle between 0 and
π radians with the property that cos θ = 〈X|Y 〉/‖X‖‖Y ‖. Because cos(π/2) = 0, it then
follows that when the inner product is zero the angle between the two random variables is
a right angle as before. Moreover, in the head to tail addition rule we see that for arrows v
and w with their tails together we have |v−w| is the distance between their tips. If we think
of the random variables as points in space by placing all their tails at the 0 random variable,
then we are thinking of their tips as being the points in space and ‖X − Y ‖ becomes the
distance from X to Y. For instance, if c is any constant and X any random variable, then
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‖X− c‖2 = V ar(X− c)+ (E(X− c))2 = V ar(X)+ (µX − c)2. Now from this we see that the
smallest the distance from X to any constant c is obtained by choosing that constant to be
c = µX . That is, for each random variable, the constant closest to it is its mean. Notice also
that for any constant c, we have 〈c|DX〉 = cE(DX) = 0, so any deviation random variable
is perpendicular to any constant. Since DX = X − µX , we see that X = DX + µX and
thinking in terms of head to tail addition, the triangle is a right triangle. Now, the constants
form a line through the constant 1, since every constant is just a multiple of 1, (remember
multiplying an arrow by a number just stretches it) so this shows that all the deviation
variables are in a subspace perpendicular to the line of constants. In this picture then, the
deviation DX is just the perpendicular projection of X onto this subspace. We see then that
the correlation coefficient ρ between X and Y is just the cosine of the angle between their
deviations, DX and DY . When we look for the optimal regression line W = mX + c for
guessing Y when the value of X is given to us, we are minimizing the mean squared residual
E(R2), where R = Y −W with optimal choice of m and c. In our picture then we are really
just trying to find m and c so as to make W = mX + c come as close as possible to Y in the
space of random variables. Since DW = mDX , when the choice is optimal, then DY will be
closest to DW and E(Y ) = E(W ).
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