
SETS & FUNCTIONS

MAURICE J. DUPRÉ

1. SETS

1.1. SET:. an undefined term. A set S can also be called a Collection.

1.2. SET MEMBERSHIP:. The statement that x is a member of set S is denoted x ∈ S.
We also say x is in S to mean x ∈ S. We write x /∈ S to mean that x is not a member of S.

2. FUNCTIONS

2.1. FUNCTION:. For sets R and S we say f is a function from R into S to mean that
f is a rule which assigns a member f(r) ∈ S to each member r ∈ R. NOTE: f(r) is usually
NOT multiplication.

2.2. FUNCTION DIAGRAM:. We write f : R −→ S to mean f is a function from set
R into set S, and call R the Domain of f and S the Codomain of f.

2.3. FUNCTION EQUALITY:. For functions f : P −→ Q and g : R −→ S the state-
ment f = g means that P = R and Q = S and for every x ∈ P also f(x) = g(x). That is to
say, equal functions must have the same domain, the same codomain, and the same rule.

2.4. IDENTITY FUNCTION:. For any set S we denote by IdS : S −→ S the Identity
Function given by the rule IdS(x) = x, for every x ∈ S.

2.5. FUNCTION COMPOSITION:. For any sets Q,R, S, and any functions

f : Q −→ R and g : R −→ S

the Composition f followed by g, denoted g ◦ f, is the function

g ◦ f : Q −→ S

given by the rule

(g ◦ f)(x) = g(f(x)), for every x ∈ Q.
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2.6. ASSOCIATIVE LAW OF FUNCTION COMPOSITION:. For sets Q,R, S, T
and any functions

f : Q −→ R, g : R −→ S, h : S −→ T,

it is true that

(h ◦ g) ◦ f = h ◦ (g ◦ f).

2.7. IDENTITY COMPOSITION:. For any function f : R −→ S,

IdS ◦ f = f = f ◦ IdR.

3. SUBSETS

3.1. SUBSET:. We say R is a Subset of set S, denoted R ⊂ S, to mean every member of
R is also a member of S.

3.2. SET CONTAINMENT:. We say the set R Contains S, denoted R ⊃ S, to mean
S ⊂ R.

3.3. EMPTY SET:. We denote by ∅, the set which has no members and thus if R is any
set, then

∅ ⊂ R.

3.4. SET BUILDER NOTATION:. If A(x) is a statement for each x in set U, then the
subset of U consisting of all members x of U for which A(x) is true is denoted

{x ∈ U : A(x)} or {x ∈ U | A(x)},

or simply by {x : A(x)} = {x | A(x)}, when U is understood. If a1, a2, ..., an all belong to
U, then

{a1, a2, a3, ..., an} = {x ∈ U | x = ak, for some k, 1 ≤ k ≤ n}.

In particular, ∅ = {x ∈ U | x 6= x}.

3.5. SET DIFFERENCE:. If A and B are sets, then A \B called the Set Difference of
A and B is defined by

A \B = {x ∈ A | x /∈ B}.
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3.6. SET INTERSECTION:. If A and B are sets, then their Intersection, denoted
A ∩B, is the set

A ∩B = {x ∈ A : x ∈ B} = {x : x ∈ A & x ∈ B} = {x ∈ B : x ∈ A},
and thus consists of their common membership. The symbol ∩ is called the Cap symbol.

3.7. INTERSECTION PROPERTY:. If A,B,C are sets, then

B ∩ C ⊂ B and B ∩ C ⊂ C,

and moreover,

[(A ⊂ B) & (A ⊂ C)] implies [A ⊂ B ∩ C].

Thus B ∩ C is the largest subset common to both sets B and C.

3.8. UNION AXIOM:. Given any two sets there is a set which contains both of them as
subsets. Consequently, for any finite number of sets there is a set which contains all of them
as subsets. More generally, we assume axiomatically, that for any collection all of whose
members are sets, there is a set containing all the sets in the collection as subsets.

3.9. SET BUILDING AXIOM:. Every set is itself the member of some set. Thus for
any set A, we can form the set {A} which is the set having exactly one member, namely the
set A, itself. Thus, if A1, A2, A3, ..., An are all sets, then so is {A1, A2, A3, ..., An}.

3.10. SET UNION:. Given any two sets A and B, choose a set U containing both A and
B as subsets, and define their Union, denoted A ∪B, as the subset of U given by

A ∪B = {x ∈ U : x ∈ A or x ∈ B}.
The symbol ∪ is called the Cup symbol.

3.11. UNION PROPERTY:. If A,B,C are all sets, then

A ⊂ A ∪B and B ⊂ A ∪B,

and moreover

[(A ⊂ C) & (B ⊂ C)] implies [A ∪B ⊂ C].

Thus A ∪B is the smallest set containing both A and B as subsets.

3.12. GENERAL SET UNION:. If C is a collection of sets, choose a set U which contains
every set in the collection as a subset, and define the union of the collection, denoted

⋃
C,

as the subset of U given by⋃
C = {x ∈ U | x ∈ A, for some A ∈ C}.

Thus, in particular,

A ∪B =
⋃
{A,B}.
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3.13. GENERAL UNION PROPERTY:. If C is any collection of sets, then

A ⊂
⋃

C, for every A ∈ C,

and moreover, for any set U,

if A ⊂ U, for every A ∈ C, then
⋃

C ⊂ U.

Thus
⋃

C is the smallest set containing all the sets in C as subsets.

23. GENERAL SET INTERSECTION: If C is a collection of sets, then the inter-
section of the collection is the intersection of all the sets in the collection, denoted

⋂
C and,

defined by ⋂
C = {x ∈

⋃
C | x ∈ A, for every A ∈ C}.

Thus, in particular,

A ∩B =
⋂
{A,B}.

3.14. GENERAL INTERSECTION PROPERTY:. If C is a collection of sets, then⋂
C ⊂ A, for every A ∈ C,

and moreover, for any set B,

if B ⊂ A, for every A ∈ C, then B ⊂
⋂

C.

Thus,
⋂

C is the largest set which is a subset of every member of C

4. INFINITE SETS

4.1. NATURAL NUMBERS:. We define the natural number zero as the empty set,
0 = ∅. We define the natural number one as the set containing one member which is the
empty set, in symbols, 1 = {0}. We define the natural number 2 as the set containing
zero and one, in symbols, 2 = {0, 1}. And So On. In this way, every Natural Number n
becomes a set with exactly n members.

4.2. AXIOM ON INFINITY:. There is a set which contains every natural number.

4.3. THE SET OF NATURAL NUMBERS:. We define N to be the Set of all Natural
Numbers. To actually make N simply choose any set U containing all the natural numbers
and define

N = {n ∈ U | n is a natural number}.

4.4. THE SET OF RATIONAL NUMBERS:. We define the Set of all Rational
Numbers, denoted by Q as the set of all fractions of natural numbers:

Q = {p/q | p, q ∈ N, q 6= 0}.
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4.5. THE SET OF REAL NUMBERS:. We denote the Set of all Real Numbers with
the symbol R, so N ⊂ R. The construction of the real numbers as a set involves technicallities
beyond the scope of these notes. However, in brief, one possible way to construct a real
number is to define the concept of a Cut, a construction due to Dedekind. We can say that
J ⊂ Q is a Cut provided that it has the property that if r ≤ s and s ∈ J, then r ∈ J. If J
is a cut and K = Q \ J, and if r ≤ s with r ∈ K, then s ∈ K, since otherwise s ∈ J which
would mean r ∈ J, a contradiction. If r ∈ J and s ∈ K = Q \ J, then either r < s or s < r,
but the latter would imply that s ∈ J, a contradiction, so it must be the case that r < s
here. One then defines R as the set of all such cuts of rational numbers. Next it must be
shown that such cuts behave like numbers as we think of them, namely, we need to be able
to add and multiply with the usual laws holding. For instance, if H and J are cuts, we say
H ≤ J to mean H ⊂ J. If H and J are cuts, then the sum and product of cuts to produce
new cuts must be defined. For instance,

H + J = {r + s | r ∈ H, s ∈ J},
which is not hard to see must be a cut of rational numbers. Likewise,

HJ = {rs | r ∈ H, s ∈ J}.
If H and J are cuts, and if H is not contained in J, then there is h ∈ H which is not in J,
so and if j ∈ J were to have j > h, then it would be the case that h ∈ J, as J is a cut, so it
must be that j < h, and therefore j ∈ H, as H is a cut. This means that for any two cuts
H and J, either H ⊂ J, or J ⊂ H. If we define H ≤ J to mean that H ⊂ J, then the set of
all cuts has an order which behaves like the order for real numbers. In particular, if S is a
set of cuts, then

⋃
S is also a cut which is the least upper bound of the cuts in S, so we say

the set of cuts is Order Complete, which is the crucial property of the set of real numbers
which allows us to think of the set of all real numbers as being continuous like a line.
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5. SET CONSTRUCTIONS WITH FUNCTIONS

5.1. FUNCTION SETS AXIOM:. If R and S are sets, then there is a set which contains
all functions with domain R and codomain S.

5.2. SET EXPONENTIATION:. If R and S are sets, then choosing any set U which
contains all functions with domain R and codomain S, we define SR as the set

SR = {f ∈ U | f : R −→ S}.

5.3. PAIRING:. If U is a set and x, y ∈ U, then we can define a function f : 2 −→ U by
the rule f(0) = x and f(1) = y. Notice that as 2 = {0, 1}, the rule is completely specified
on the domain 2. We henceforth denote this function by (x, y) and call it an Ordered Pair.
Notice that for ordered pairs (a, b) and (c, d), equality, (a, b) = (c, d) means both a = c and
b = d.

5.4. LISTING:. If x0, x1, x2, ..., xm−1, are all members of a set U, then we can form the
Ordered List, denoted x = (x0, x2, x3, ..., xm−1), called a Tuple or, more precisely, an
m−tuple, defined as the unique function f : m −→ U whose rule is f(k) = xk, 0 ≤ k < m.
Therefore, for any two tuples x = (x0, x1, x2, ..., xm−1) and y = (y0, y1, y2, ..., yn−1) we have
x = y means that m = n and for every k with 0 ≤ k < m, we also have xk = yk. That is two
lists are the same if and only if they have the same length and the same entries.

5.5. CARTESIAN PRODUCT:. For any two sets A and B, we define their Cartesian
Product, denoted A×B, by

A×B = {(x, y) | x ∈ R and y ∈ S} = {f ∈ [A ∪B]2 | f(0) ∈ A and f(1) ∈ B}.

5.6. GENERAL CARTESIAN PRODUCT OF A COLLECTION OF SETS:. If C
is a collection of sets set U =

⋃
C and define the Cartesian Product of the Collection,

denoted
∏

C, by ∏
C = {f ∈ UC | f(A) ∈ A, for every A ∈ C}.

If D is a set and A : D −→ C, we often denote A(d) = Ad for d ∈ D, and call D an Index
Set and write A = (Ad)d∈D, calling this an Indexed Collection of Sets in which case we
define the cartesian product, denoted

∏
D Ad, by∏

D

Ad =
∏
d∈D

Ad = {f ∈ UD | f(d) ∈ Ad, for every d ∈ D}.

If n ∈ N and A0, A1, A2, ..., An−1 are sets, define C = {A0, A1, A2, ..., An−1} and define
f : n −→ C by f(k) = Ak, 0 ≤ k < n. Then the cartesian product of these sets is

A0 × A1 × A2, ..., An−1 =
∏
k<n

Ak = {(x0, x1, x2, ..., xn−1) | xk ∈ Ak, 0 ≤ k < n}.
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5.7. AXIOM OF CHOICE:. If C is a non-empty collection of non-empty sets, then∏
C 6= ∅.

5.8. DISTRIBUTIVE LAWS:. For any sets A,B,C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A× (B ∩ C) = (A×B) ∩ (A× C),

A× (B ∪ C) = (A×B) ∪ (A× C).

5.9. COMMUTATIVE LAWS:. For any sets A,B,

A ∩B = B ∩ A,

A ∪B = B ∪ A.

5.10. SET COMPLEMENT:. When dealing with sets which are all subsets of a given
fixed set U, sometimes called a Universe in this setting, for A ⊂ U, we call U \ A the
complement of A and denote this by A′. Then,

A \B = A ∩B′, if A ⊂ U and B ⊂ U.

5.11. DEMORGAN LAWS:. If U is a set and if C is a non-empty collection of subsets
of U, then [⋃

C
]′

=
⋂
{A′ | A ∈ C}

[⋂
C
]′

=
⋃
{A′ | A ∈ C}.

For instance, if A and B are subsets of U, then

[A ∪B]′ = A′ ∩B′,

[A ∩B]′ = A′ ∪B′.
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5.12. IMAGES:. If f : R −→ S, and if A ⊂ R, then we define the Image of A under f,
denoted f(A) ⊂ S by

f(A) = {f(x) | x ∈ A} = {y ∈ S | y = f(x) for some x ∈ A}.
We say that f is Surjective or Onto provided f(R) = S. A surjective function is called a
Surjection.

5.13. COMPOSITION OF IMAGES:. If f : Q −→ R and g : R −→ S and A ⊂ Q,
then

[g ◦ f ](A) = g(f(A)).

In particular, the Composition of Surjective functions is again Surjective.

5.14. UNION OF IMAGES IS IMAGE OF UNION:. If f : R −→ S, if C is a
collection of subsets of R, then

f
(⋃

C
)

=
⋃
{f(A) | A ∈ C}.

5.15. INVERSE IMAGE:. If f : R −→ S, and if B ⊂ S, we define the Inverse Image
of B under f, denoted f−1(B) ⊂ R, by

f−1(B) = {x ∈ R | f(x) ∈ B}.

5.16. COMPOSITION OF INVERSE IMAGES:. If f : Q −→ R, if g : R −→ S, if
B ⊂ S, then

[g ◦ f ]−1(B) = f−1(g−1(B)).

5.17. INJECTIVE FUNCTIONS:. If f : R −→ S, then f is Injective or One to One
if and only if for each y ∈ S the subset f−1(y) has at most one member. Equivalently, f is
one to one if and only if for any x1, x2 ∈ R, the equation f(x1) = f(x2) always implies that
x1 = x2. An injective function is called an Injection.

5.18. COMPOSITION OF INJECTIVES IS INJECTIVE:. If f : Q −→ R and
g : R −→ S are both injective, then so is their composition g ◦ f.

5.19. INVERSE IMAGE AND SET OPERATIONS:. If f : R −→ S and if C is a
collection of subsets of S and if B is a subset of S, then

f−1
(⋃

C
)

=
⋃
{f−1(K) | K ∈ C},

f−1
(⋂

C
)

=
⋂
{f−1(K) | K ∈ C},

f−1(S \B) = R \ f−1(B).
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5.20. MUTUALLY INVERSE FUNCTIONS:. We say that f and g are Mutually
Inverse Functions provided that g ◦ f is the identity on the domain of f and f ◦ g is
the identity on the domain of g. Thus g ◦ f and f ◦ g are identity functions. In more
detail, if f : R −→ S and g : S −→ R, then f and g are mutually inverse functions if
and only if g ◦ f = IdR and f ◦ g = IdS. Thus, if f and g are mutually inverse funtions,
f : R −→ S, g : S −→ R, then

g(f(x)) = x, for every x ∈ R and f(g(y)) = y, for every y ∈ S.

In particular, we notice that if f and g are mutually inverse functions, then both must be
injective or One to One, and moreover, f and g are both also surjective. A function which
is injective and surjective is Bijective. Thus, f and g are both bijective. Conversely, if f is
bijective, then there is a function g so that f and g are mutually inverse, in which case, g is
also bijective. A bijective function is also called a Bijection.

5.21. INVERSE FUNCTIONS:. We say f : R −→ S is Invertible or has an inverse
provided there is g : S −→ R so that f and g are mutually inverse. Thus f is invertible if
and only if f is bijective. Then g is uniquely determined by f and we call g the Inverse of f
and denote this by writing g = f−1. This can sometimes be a confusing notation in case that
S is a set of real numbers, so be careful with this notation. If f : R −→ S and h : Q −→ R
are both invertible functions, then so is f ◦ h, and

(f ◦ h)−1 = h−1 ◦ f−1.
Also be careful to notice that inversion reverses the order of composition. This is significant
because generally composition of functions is not commutive, even if Q = R = S.

5.22. POWER SET AXIOM:. If A is a set, then there is a set which has every subset of
A as a member.

5.23. POWER SET:. If S is a set, we define P (S) to be the set of all subsets of S and call
P (S) the Power Set of S. If f ∈ 2S, then f : S −→ 2 = {0, 1}, and we call f an Indiator.
Then

f−1(1) ⊂ S.

On the other hand, if A ⊂ S, we define then Indicator of A to be the function IA : S −→ 2
defined by IA(x) = 1 if x ∈ A and IA(x) = 0 if x ∈ S \ A. Notice that each indicator
determines a unique subset of S and each subset of S defines a unique indicator, that is,
A = f−1(1) if and only if IA = f. Through the correspondence between indicators and
subsets, we can regard P (S) as the same as 2S, which is the reason P (S) is called the power
set of S. That is, more precisely, we can define the bijection I : P (S) −→ 2S by the rule

I(A) = IA for A ∈ P (S),

and then its inverse is the bijection J : 2S −→ P (S) given by the rule

J(f) = f−1(1), for f ∈ 2S.
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5.24. FUNCTION GRAPH:. If f : R −→ S is any function, then we can define its
Graph, denoted Graph(f), as the subset of R× S given by

Graph(f) = {(r, s) ∈ R× S | s = f(r)}.

5.25. FUNCTION GRAPH PICTURE:. Suppose that f : R −→ S is a function.
Notice that if R and S are subsets of R, then we can picture the graph of f, as a subset of
R × S ⊂ R2, and R2 is easily pictured as the ordinary two-dimensional coordinate plane.
Thus, the graph of f in this case can be pictured as a subset of the plane. In general, for
r ∈ R we set r×S = {r}×S and think of this as the ”vertical slice” of R×S passing through
r ∈ R. Likewise, for s ∈ S, we set R× s = R×{s} and think of this as the ”horizontal slice”
of R × S passing through s ∈ S. Thus, when we ”picture” the graph of f, we realize that
all vertical slices intersect the graph in exactly a single point. In fact, if F ⊂ R × S with
the property that all vertical slices intersect F in exactly a single point, then F =Graph(f)
for a uniquely deterimined function f : R −→ S. To define f, we use the rule that f(r) = s
where (r, s) is the unique point of F ∩ [r × S].

We also see that f : R −→ S is surjective if and only if every horizontal slice intersects the
graph of f at least once. Moreover, f is injective if and only if each horizontal slice intersects
the graph of f at most once. In particular, f is bijective if and only if each horzontal slice
intersects the graph of f exactly once. In this case, we see that

Graph(f−1) = {(s, r) ∈ S ×R | (r, s) ∈ Graph(f)}, for f invertible .

The graph of IdR : R −→ R is the set

Graph(IdR) = {(r, s) ∈ R×R | r = s},
which we call the Diagonal of R × R. In case that R ⊂ R, then the diagonal is contained
in the actual diagonal line of the coordinate plane, R2.

We can define the twist map Twist(R,S) : R× S −→ S ×R by the rule

Twist(R,S)(r, s) = (s, r), for (r, s) ∈ R× S.

Notice that Twist(R,S) and Twist(S,R) are mutually inverse functions, so each is a bijection.
For any F ⊂ R × S, we define F−1 = Twist(F ) ⊂ S × R, so F−1 is simply the result of
reversing the order of all ordered pairs in the set F. We then have

Graph(f−1) = [Graph(f)]−1, if f : R −→ S is invertible.
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