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There are several operations that can be done on functions to produce new functions in ways
that can aid in various calculations and that are referred to as transforms. The general setup
is a transform operator T which is really a function whose domain is in fact a set of functions
and whose range is also a set of functions. You are used to thinking of a function as something
that gives a numerical output from a numerical input. Here, the domain of T is actually a
set D of functions and for f ∈ D the output of T is denoted T (f) and is in fact a completely
new function. A simple example would be differentiation, as the differentiation operator D
when applied to a differentiable function gives a new function which we call the derivative of
the function. Likewise, antidifferentiation gives a new function when applied to a function. As
another example, we have the Laplace transform, L, which is defined by

[L(f)](s) =

� ∞

0

e−sxf(x)dx.

With a general transform, it is best to use a different symbol for the independent variable of
the transformed function than that used for the independent variable of the original function
in applications, so as to avoid confusion. The idea of the Laplace transform is that it has useful
properties for solving differential equations-it turns them into polynomial equations which can
then be solved by algebraic methods. A related transform is the Fourier transform, F , which
is defined by

[F(f)](t) =

� ∞

−∞
eitxf(x)dx.

More generally, we can take any function h of two variables, say w = h(s, x) and for any function
f viewed as a function of x, we can integrate h(s, x)f(x) with respect to x and the result is a
function of s alone. Thus we can define the transform H by the rule

[H(f)](s) =

� ∞

−∞
h(s, x)f(x)dx.

A transform like H is called an Integral Transform as it primarily works through integration.
In this situation, we refer to h as the Kernel Function of the transform. Thus, for the Laplace
transform L and the Fourier transform F , the kernel function is an exponential function. Keep
in mind that integration usually makes functions smoother. For instance antidifferentiation
certainly increases differentiability.

In general, to make good use of a transform you have to know its properties. A very useful
property which the preceding examples are easily seen to have is Linearity:

T (a · f ± b · g) = a · T (f)± b · T (g), a, b ∈ R, f, g ∈ D.

A transform which has the property of being linear is called a linear transform, and we see that
for a linear transform, to find the transform of a function which is itself a sum of functions we
just work out the transform of each term and add up the results. Notice that the Fourier and
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Laplace transforms are linear as integration is linear and differentiation and antidifferentiation
are also linear. As an example of a transform which is not linear, we can define

[T (f)](t) =

� ∞

−∞
etf(x)dx.

The transform we want to look at in more detail is one that is useful for probability theory.
If the Laplace transform is modified so that the limits of integration go from −∞ to ∞, the
result is called the bilateral Laplace transform, Lb, given by

[Lb(f)](s) =

� ∞

−∞
e−sxf(x)dx,

and there is clearly no real advantage to the negative sign in the exponential if we are integrating
over all of R. If we drop this negative sign, then we get the reflected bilateral Laplace transform
which we can denote simply by M, so

[M(f)](t) =

� ∞

−∞
etxf(x)dx.

This transform has many of the properties of the Laplace transform and its domain is the set
of functions which decrease fast enough at infinity so that the integral is defined. For instance,
if f(x) = e−x2

, then M(f) is defined or if there is a finite interval for which f is zero everywhere
outside that interval. In this last case, we say that f has compact support.

We see right away that M is linear, but we can also notice that if we differentiate M(f)
with respect to t, then we have

[
d

dt
M(f)](t) =

d

dt

� ∞

−∞
etxf(x)dx =

� ∞

−∞
xetxf(x)dx = [M(xf)](t).

Notice that this tells us that M is turning multiplcation by x into differentiation with respect
to t. On the other hand, if we use integration by parts, we find that

[M(
d

dx
f)](t) =

� ∞

−∞
etxf �(x)dx = etxf(x)|x=∞

x=−∞ −

� ∞

−∞
tetxf(x)dx,

and as we are assuming that f vanishes faster than ext as we go to ±∞, it follows that the first
term on the right is zero and the second term is t[M(f)](t), so we have

[M(
d

dx
f)](t) = −t[M(f)](t).

If we had used the biliateral Laplace transform instead of M, we would not have had this
minus sign, and that is one of the real reasons for the negative sign in exponential of the
Laplace transform. In any case, for our transform, we see that multiplication by x gets turned
into differentiation with respect to t and differentiation with respect to x gets turned into
multiplication by −t.

A simple example is the indicator of an interval [a, b] which we denote by I[a,b]. This function
is 1 if a ≤ x ≤ b and zero otherwise. Thus,

[M(I[a,b])](t) =

� ∞

−∞
etxI[a,b]dx =

� b

a
etxdx =

etx

t
|
x=b
x=a =

ebt − eat

t
,

so finally,

[M(I[a,b])(t) =
ebt − eat

t
.

This is more useful than it looks at first, because if we need the transform of x · I[a,b] we just
differentiate the previous result with respect to t.

Thus, using the product rule for differentiation,
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[M(x · I[a,b])](t) =
d

dt
([ebt − eat]t−1) = [bebt − aeat]t−1 + [ebt − eat](−t−2)

=
1

t
[bebt − aeat]−

1

t2
[ebt − eat].

Likewise, if we wanted to find M(x2 ·I[a,b]) we would just differentiate again. Notice that the
graph of x · I[a,b] is just a straight line segment connecting the point (a, a) to the point (b, b). If
we have a straight line connecting (a, ha) to (b, hb, then it is the graph of the function f where

f = [ha +m · (x− a)] · I[a,b],

where m is the slope of the line,

m =
hb − ha

b− a
.

Therefore to find M(f), we just use linearity and the fact that we already know M(I[a,b]) and
M(x · I[a,b]). Specifically, we have

[M(f)](t) = (hb −m · ha)[M(I[a,b])](t) +m[M(x · I[a,b])](t).

Another useful property of M is the way it handles shifting along the line. If g(x) = f(x−c),
we know that the graph of g is just the graph of f shifted c units to the right along the horizontal
axis. Then

[M(g)](t) =

� ∞

−∞
etxf(x− c)dx,

and if we substitute u = x− c, we have dx = du whereas x = u+ c, and we have

[M(g)](t) =

� ∞

−∞
et(u+c)f(u)du = ect

� ∞

−∞
etuf(u)du = ect[M(f)](t),

so finally here

[M(f(x− c))](t) = ect[M(f)](t).

Put another way, we can notice that shifting actually defines a transform. For c ∈ R, we can
define the transform Sc called the Shift Operator by

[Sc(f)](x) = f(x− c).

Then our previous result says simply

M(Sc(f)) = ect · M(f),

or shifiting by c is turned into multiplication by ec. For any function g we can also define the
transform Kg called the Multiplication operator by

Kg(f) = g · f,

so

[K(f)](x) = g(x)f(x).

We can then say that

M(Sc(f)) = Kect(M(f)),

or

MSc = KectM.
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The most important property of the Laplace transform, the Fourier transform and our transform
M is that if we have two functions f and h and if these two functions have the same transform,
then they are in fact the same function. Better still, the inverse transform can be found, so
there is a transform R, which reverses M, meaning that if

F = M(f),

then
R(F ) = f.

The reverse transform is a little more complicated-it involves complex numbers and calculus
with complex numbers, but it is computable. However, the fact that it exists, is the useful fact,
since if we recognize the transform, then we can be sure where it came from.

In probability theory, if X is an unknown or random variable, then we define its Moment

Generating Function, denoted mX by the formula

mX(t) = E(etX).

If we think of the expectation as an integral, we recognize that it is related to our non-linear
transform example. However, the useful fact about the moment generating function is that

d

dt
mX(t) = E(

d

dt
etX) = E(X · etX),

and likewise

dn

dtn
mX(t) = E(Xn

· etX).

Evaluating these expressions at t = 0 thus gives all the moments E(Xn) for all non-negative
integer powers n. In particular, mX(0) = E(X0) = E(1) = 1. It is convenient to denote the nth

derivative of the function f by f (n), so

dn

dtn
mX = m(n)

X ,

and

E(Xn) = m(n)
X (0), n ≥ 0.

Thus knowledge of the moment generating function allows us to calculate all the moments of X.
The distribution of X is for practical purposes determined when its Cumulative Distribution

Function or cdf is known. In general, we denote the cdf for X by FX , so

FX(x) = P (X ≤ x), x ∈ R,

0 ≤ FX(x) ≤ 1,

lim
x→−∞

FX(x) = 0,

and

lim
x→∞

FX(x) = 1.

Notice we then have generally

P (a < x ≤ b) = FX(b)− FX(a), a < b.

If X is a continuous random variable, then its distribution is govenerned by its Probability

Density Function or (pdf) which is the derivative of its cumulative distribution function (cdf).
We denote its pdf by fX , so
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fX =
d

dx
FX .

We then have by The Fundamental Theorem of Calculus

P (a < X ≤ b) = FX(b)− FX(a) =

� b

a

d

dx
FX(x)dx =

� b

a
fX(x)dx.

This means that in terms of the pdf, probability is area under the graph between the given
limits. As a consequence we also have

E(h(X)) =

� ∞

−∞
h(x)fX(x)dx,

for any ”sufficiently reasonable” function h. In particular, we have

mX(t) = E(etX) =

� ∞

−∞
etxfX(x)dx = [M(fX)](t),

so

mX = M(fX).

That is, the moment generating function of X is the transform of its pdf. Since the transform
is reversible, this means that if X and Y are continuous random variables and if mX = mY ,
then fX = fY and therefore FX = FY . If X is a discrete unknown with only a finite number of
possible values, then mX(t) is simply a polynomial in et so it distribution is easily seen to be
determined by its moment generating function. Thus in fact, for any two unknowns X and Y,
if mX = mY , then X and Y have the same distribution, that is, FX = FY .

The most important pdf is the normal density. If Z is standard normal (and therefore with
mean zero and standard deviation one), then its pdf is

fZ(z) =
1

√
2π

e−
1
2 z

2

.

Then

mZ(t) = [M(fZ)(t) =
1

√
2π

� ∞

−∞
etze−

1
2 z

2

dz =
1

√
2π

� ∞

−∞
e−

1
2 (z

2−2tz)dz

=
1

√
2π

� ∞

−∞
e

1
2 t

2

e−
1
2 (z−t)2dz = e

1
2 t

2

,

so finally we have the simple result for Z a standard normal:

mZ(t) = e
1
2 t

2

.

Just as it is useful to know the properties of the transform M it is also useful to realize how
simple modifications to X cause changes in mX . For instance, if c ∈ R, then

m[X±c](t) = E(et(X±c)) = E(e±ctetX) = e±ctE(etX) = e±ctmX(t).

Thus in general,

m[X±c](t) = e±ct
·mX(t).

On the other hand,

mcX(t) = E(etcX) = E(e(ct)X) = mX(ct),

so we always have

mcX(t) = mX(ct).
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Lets recall that for any unknown X it is often useful to standardize in terms of standard
deviation units from the mean. That is, we define the new unknown ZX , given by

ZX =
X − µX

σX
,

so

X = µ+ σ · ZX .

We call ZX the Standardization of X. This means

mX(t) = eµtmZ(σXt), Z = ZX , µ = µX .

Now, ifX is normal with mean µ and standard deviation σ, then its standardization, Z = ZX ,
is a standard normal unknown and

mX(t) = eµt ·mσZ(t) = eµt ·mZ(σt) = etµ · e
1
2 (σt)

2

= eµt+
1
2σ

2t2 .

This means that the moment generating function of the normal random variable X is

mX(t) = eµt+
1
2σ

2t2 , µ = µX , σ = σX .

When we get big complicated expressions up in the exponent, it is usually better to adopt the
notation exp for the exponential function with base e, so

exp(x) = ex, x ∈ R,
and for X any normal random variable,

mX(t) = exp

�
µt+

1

2
σ2t2

�
.

Going the other way, if we know that moment generating function mX , for the unknown X,
then as ZX = (X − µX)/σX , we have

mZ(t) = m(X−µ)

�
t

σ

�
= exp

�
−
µt

σ

�
·mX

�
t

σ

�
.

Lets see what we can deduce about the distribution of X2 when we know that for X. First
of all, we know that X2 ≥ 0, and if t ≥ 0, then

FX2(t) = P (X2
≤ x) = P (−

√
x ≤ X ≤

√
x) = FX(

√
x)− FX(−

√
x),

so

FX2(x) = FX(
√
x)− FX(−

√
x), x ≥ 0

and

FX2(x) = 0, x < 0.

If X is continuous, then so is X2 and the pdf for X2 can be found by differentiating the cdf
using the Chain Rule:

fX2(x) =
d

dx
FX2(x) =

d

dx
[FX(

√
x)− FX(−

√
x)] = fX(

√
x) ·

1

2
t−1/2

− fX(−
√
x)

(−1)

2
x−1/2,

so

fX2(x) =
1

2
(fX(

√
x) + fX(−

√
x)) ·

1
√
x
, x ≥ 0, fX2(x) = 0, x < 0.
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We say that the function g is symmetric about the origin if g(−x) = g(x), always. For instance
if X is normal with mean µ = 0, then the pdf for X is symmetric about the origin. If X has a
pdf symmetric about the origin, then our formula simplifies to

fX2(x) =
fX(

√
x)

√
x

, x ≥ 0, fX2(x) = 0, x < 0.

In particular, if Z is standard normal, then using the pdf for Z we find

fZ2(z) =
fZ(

√
z)

√
z

=
exp(−z/2)�

(2πz)
, z ≥ 0,

and of course,
fZ2(z) = 0, z < 0.

From the distribution for Z2 for standard normal Z, we can now calculate the moment
generating function for Z2. Thus

mZ2(t) =

� ∞

−∞
etzfZ2(z)dz =

� ∞

0

etz
exp(−z/2)�

(2πz)
dz =

1�
(2π)

� ∞

0

etz
e−z/2

√
z

dz.

Here we can substitute u =
√
z, so z = u2 and therefore dz = 2udu. When we do, we find (don’t

forget to check the limits of integration-they stay the same here, why?)

mZ2(t) =
1�
(2π)

� ∞

0

exp(−(1− 2t)u2/2)
1

u
2udu =

2�
(2π)

� ∞

0

exp(−(1− 2t)u2/2)du.

If we put

σt =
1

√
1− 2t

,

then

2t− 1 =
1

σ2
t

,

so our integrand becomes

exp(−(1− 2t)u2/2) = exp(−
1

2
· (

u

σt
)2),

and we recognize this as proportional to the pdf for a normal random variable U with mean 0
and standard deviation σt. Therefore we can see what the integral is easily by looking at it as

mZ2(t) = (2 · σt)
1

σt

√
2π

� ∞

0

exp(−
1

2
· (

u

σt
)2)du.

But, since the distribution of U is symmetric about zero, P (U ≥ 0) = 1/2, and therefore

1

σt

√
2π

� ∞

0

exp(−
1

2
· (

u

σt
)2)du = P (U ≥ 0) =

1

2
.

Putting this into the expression for the generating function of Z2 and cancelling now gives

mZ2(t) = σt =
1

√
1− 2t

.

If we want the moments of the unknown X, it is often laborious to calculate all the derivatives
of mX and evaluate at zero. In addition, sometimes the expression for the moment generating
function has powers of t in denominators, as for instance in case X has uniform distribution in
the interval [a, b] since then
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mX(t) =
ebt − eat

(b− a) · t
.

Differentiating with the quotient rule would lead to ever more complicated expressions the more
times we differentiate. We must keep in mind that as long as the pdf is vanishing sufficiently
fast at infinity, which is certainly the case if it has compact support, then mX is analytic and
can be expressed as the power series in a neighborhood of zero. We then have

mX(t) =
∞�

n=0

m(n)
X (0)

n!
tn =

∞�

n=0

E(Xn)

n!
tn.

It is easily seen, if you accept that power series can be differentiated termwise, that for any
power series

f(x) =
∞�

n=0

cn(x− a)n,

we have

cn =
f (n)(a)

n!
, n ≥ 0.

This means that if we can calculate all the derivatives at x = a, then we can write down the
power series but also it means that if we have the power series we can instantly write down all
the derivatives at x = a, using

f (n)(a) = cn · n!.

For instance in case of determining mZ2 , we can note that as

ex =
∞�

n=0

xn

n!
, x ∈ R,

it follows that

mZ(t) = et
2/2 =

∞�

n=0

(t2/2)n

n!
=

∞�

n=0

t2n

2n · n!
,

and therefore all odd power moments are zero and for the even powers,

E((Z2)n) = E(Z2n) = (2n)!
1

2n · n!
=

(2n)!

2n · n!
,

thus giving all the moments of Z2 as well. Therefore the power series expansion of mZ2 for
standard normal Z is

mZ2(t) =
∞�

n=0

(2n)!

2n · n!

tn

n!
=

∞�

n=0

(2n)!

2n · (n!)2
tn.

The same applies to calculating moment generating functions using M because even though
we have

M(I[a,b]) =
ebt − eat

t
,

this function is analytic and if we write out the power series, the t cancels out of the denominator,
so then when we calculate M(x · I[a,b]) we do not have to deal with the quotient rule for
differentiation, we just differentiate the power series termwise. Thus,
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M(I[a,b]) =
1

t
[
∞�

n=0

(bt)n

n!
−

∞�

n=0

(at)n

n!
] =

1

t

∞�

n=0

(bn − an)

n!
tn =

∞�

n=1

(bn − an)

n!
tn−1.

Thus we have

M(I[a,b]) = (b− a) +
b2 − a2

2
t+

b3 − a3

3 · 2
t2 +

∞�

n=4

(bn − an)

n!
tn−1.

To calculate M(x · I[a,b]) we just differentiate termwise, so

M(x · I[a,b]) =
d

dt

∞�

n=1

(bn − an)

n!
tn−1 =

∞�

n=2

(bn − an)

n!
(n− 1)tn−2,

or

M(x · I[a,b]) =
∞�

n=2

(bn − an)

n!
(n− 1)tn−2 =

b2 − a2

2
+

b3 − a3

3
t+

∞�

n=4

(bn − an)

n!
(n− 1)tn−2,

and using this together with the power series for the indicator itself we can calculate the moment
generating function for any unknown whose pdf is a straight line segment supported on [a, b].

We can also break up the transform process over disjoint intervals. Thus, if f and g are
functions with domain [a, b] and [c, d] respectively where b ≤ c, then

h = f · I[a,b] + g · I+[c,d],

is the function which agrees with f on [a, b] and agrees with g on [c, d], and using linearity of
M we have

M(h) = M(f · I[a,b]) +M(g · I[c,d]).

In particular, we can easily find the transform of any function whose graph consists of straight
line segments such as the graph of a frequency polygon or a histogram.

One of the most useful facts about the moment generating function is that if X and Y are
independent, then m(X+Y ) = mX ·mY . This is because if X and Y are independent, then f(X)
and g(Y ) are uncorrelated for any functions f and g, so

E(f(X) · g(Y )) = [E(f(X))] · [E(g(Y ))],

and in particular then

E(etX · etY ) = [E(etX)] · [E(etY )]

so

m(X+Y )(t) = E(et(X+Y )) = E(etX · etY ) = [E(etX)] · E(etY )] = mX(t) ·mY (t).

In particular, for any independent random sample X1, X2, X3, ..., Xn of the random variable X,
we have

FXk = FX , k = 1, 2, 3, ..., n,

that is to say, all have the same distribution as X, and therefore

mXk = mX , k = 1, 2, 3, ..., n.

But this means that for the sample total Tn given by

Tn =
n�

k=0

Xk = X1 +X2 +X3 + ...+Xn,
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we must have

mTn = mX1 ·mX2 ·mX3 · · ·mXn = [mX ]n,

so we have the simple result

mTn = mn
X ,

that is the moment generating function for Tn is simply the result of taking the nth power of
mX . For the sample mean

X̄n =
1

n
Tn,

we then have its moment generating function

mX̄n
(t) = mTn(t/n) = [mX(t/n)]n.

Finally, we should observe that if X and Y are unkowns and if there is δ > 0 with

mX(t) = mY (t), |t| < δ,

then
m(n)

X (0) = m(n)
Y (0), n = 0, 1, 2, 3, ...

and therefore

E(Xn) = E(Y n), n = 0, 1, 2, 3, ...

which in turn implies that

E(f(X)) = E(f(Y )), f ∈ P,

where P denotes the set of all polynomial functions. But in fact, on any bounded closed
interval, any continuous bounded function can be uniformly approximated arbitraily closely by
polynomial functions,

and this means that

E(f(X)) = E(f(Y )), f ∈ B,

where B denotes the set of all bounded continuous functions which have compact support, and
that in turn implies that FX = FY . Thus, if mX and mY agree on an open neighborhoof of zero
then X and Y must have the same distribution. In fact, this is most easily seen for the case
where X and Y are continuous by using an inversion transform for M which we can denote by
R. Thus for continuous X

R(M(fX)) = fX ,

but
mX = M(fX),

therefore

fX = R(M(fX)) = R(mX).

Thus, if X and Y are continuous unknowns and if mX = mY , then

fX = R(mX) = R(mY ) = fY ,

and therefore FX = FY , that is, both X and Y have the same distribution. In the general case,
let V (X) ⊂ R denote the set of possible values of X. If X is a simple unknown, then V (X) is
finite and each v ∈ V (X) has positive probability and those probabilities add up to one. Then
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mX(t) =
�

v∈V (X)

[P (X = v)] · etv,

the sum being finite as there are only a finite number of these values with positive probability,
and therefore we can define

pX(w) = mX(lnw) =
�

v∈V (X)

[P (X = v)] · wv,

from which we see that pX completely encodes the distribution of X and it is called the char-
acteristic polynomial of X. Since equality of two polynomials in a neighborhood of one (as
log(1) = 0, ) implies their equality (their difference would be a polynomial with infinitely many
roots and therefore zero), this means that for discrete X and Y both simple, if mX = mY ,
then pX = pY and P (X = v) = P (Y = v), for every v ∈ R, which is to say they have the
same distribution. If X is a general discrete unknown, then there is a sequence of numbers
v1, v2, v3, ... with

V (X) = {v1, v2, v3, ...},

and

mX(t) =
�

v∈V (X)

[P (X = v)] · etv =
∞�

n=1

[P (X = vn)] · e
tvn .

It is reasonable that the infinite sums here are approximated by finite partial sums for which the
simple unknown case applies so that for any discrete unknown mX determines its distribution.
One way to look at this case is to think of v ∈ V (X) as a variable but the coefficients (the
probabilities) in the summation are held constant, so if we differentiate mX with respect to a
particular v in the sum treating all the other values as constants, then we have

∂

∂v
mX = P (X = v) · tetv,

so

∂2

∂v2
mX = P (X = v) · etv(1 + t2),

and putting t− 0 in this last expression gives the value P (X = v) as the second derivative with
respect to v when t = 0, that is

P (X = v) =

�
∂2

∂v2
mX

�

t=0

.

This means that mX determines the probabilities of all possible values of X which then gives
the distribution of X and the cumulative distribution function FX for X. To be more precise
here, if we have

f(t) =
∞�

n=0

pn · evnt,

then for a given k we can view f as also depending on a variable w giving a function of two
variables fk(t, w) by setting

fk(t, w) = pk · ewt +
�

n �=k

pn · evnt,

and then

∂2

∂w2
fk(t, vk) = pk.
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Now admittedly, this is not determining the coefficients from f as a function of t alone, but it
does seem to make plausible that f determines all the coefficients pn, n = 1, 2, 3, ...
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