
VECTOR FACTS & FORMULAS

MAURICE J. DUPRÉ

1. VECTOR SPACES

1.1. VECTOR SPACE or LINEAR SPACE. A set V of objects which can be added
and multiplied by scalars. The objects of V are called Vectors. The addition rule is called
Vector Addition and the rule for multiplication by scalars is called Scalar Multiplica-
tion. The set of scalars can be taken here to be the set of all real numbers, denoted R, but
can also be any number system forming an algebraic system called a field, for instance the
complex number system, C, is used as the field of scalars for the vector spaces in quantum
physics. Formulas 2-8 below are assumed as axioms.

1.2. ASSOCIATIVE LAW OF VECTOR ADDITION.

(x+ y) + z = x+ (y + z)

1.3. COMMUTATIVE LAW OF VECTOR ADDITION.

x+ y = y + x

1.4. ZERO VECTOR.

0V + x = x and if x+ x = x, then x = 0V

1.5. ASSOCIATIVE LAW OF SCALAR MULTIPLICATION.

r(sx) = (rs)x, for any scalars r, s and any vector x

1.6. RIGHT DISTRIBUTIVE LAW OF SCALAR MULTIPLICATION.

(r + s)x = rx+ sx, for any scalars r, s and any vector x

1.7. LEFT DISTRIBUTIVE LAW OF SCALAR MULTIPLICATION.

r(x+ y) = rx+ ry for any scalar r and any vectors x, y

1.8. UNIT IDENTITY.
1x = x
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2. FUNCTIONS & MAPPINGS

2.1. DEFINITION OF FUNCTION OR MAPPING. A Function or Mapping or
Transformation is a rule which assigns a member of a set to each member of a set. More
specifically, we say f is a function or mapping of set A to set B, provided that f is a rule
which assigns a member f(x) in B to each member x in A. Note that the notation f(x)
is NOT multiplication in general, even though in some situations it might be. We use the
notation

f : A −→ B

to mean f is a function or mapping from set A to set B. If f : A −→ B is a function we call
A the Domain of f and we call B the Codomain of f. In order for two functions f and g to
be equal it is necessary and sufficient that they have the same domain, the same codomain,
and the same rule, that is, f(x) = g(x) for each x in their domain. Think of a function f
as an input-output device with domain as the set of allowable inputs and codomain as a set
containing the outputs.

2.2. COMPOSITION OF FUNCTIONS. If f : A −→ B and g : B −→ C are both
functions, we can form their Composition by using the outputs of f as the inputs for g,
resulting in the new function

g ◦ f : A −→ C

with rule

[g ◦ f ](x) = g(f(x)), for each x in A.

2.3. ASSOCIATIVE LAW OF COMPOSITION OF FUNCTIONS. If U, V,W,X
are all sets and if R : U −→ V, S : V −→ W, T : W −→ X are all functions, then

(T ◦ S) ◦R = T ◦ (S ◦R)

2.4. IDENTITY FUNCTION. If S is any set, then the Identity Function on S, de-
noted IdS : S −→ S is defined by the rule

IdS(x) = x, for any x in S.

Note that if S and T are any sets and if f : S −→ T is any function, then

IdT ◦ f = f = f ◦ IdS.
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2.5. INVERSE FUNCTION. If S and T are sets, we say that f : S −→ T and g : T −→
S are Mutually Inverse Functions provided that

g ◦ f = IdS and f ◦ g = IdT .

We note that this is equivalent to saying that g(f(x)) = x for any x in S and f(g(y)) = y, for
any y in T. Thus, each undoes what the other does. We say that g is the Inverse of f and
that f is the inverse of g. Moreover, in this situation, each function completely determines
the other, and we write

g = f−1 and f = g−1.

2.6. SETS OF FUNCTIONS. If R and S are sets, then the set of all functions with
domain R and codomain S is denoted by SR.

SR = {f | f : R −→ S is a function }.

2.7. IMAGE OF A SUBSET UNDER A FUNCTION. If f : B −→ D and if A is a
subset of B, in symbols, A ⊂ B, then we define the Image of A under f, denoted by f(A),
as the subset of D given by

f(A) = {f(x) | x in A} ⊂ D.

2.8. RANGE OR IMAGE OF A FUNCTION. If f : B −→ C, then the Range of f,
denoted Im(f) is the image of the whole domain of f, so

Range of f = Im(f) = f(B) ⊂ C.

2.9. INVERSE IMAGE OF A SUBSET UNDER A FUNCTION. If f : B −→ D
and if C is a subset of D, in symbols, C ⊂ D, then we define the Inverse Image of C under
f, denoted f−1(C), as the subset of B given by

f−1(C) = {x in B | f(x) in C}.

2.10. CARTESIAN PRODUCT OF SETS. If A and B are sets, then their Cartesian
Product, denoted A×B, is the set of all ordered pairs (x, y) with x in A and y in B.

2.11. GRAPH OF A FUNCTION. If V and W are any sets and T : V −→ W is a
function, then the Graph of T, denoted Graph(T ) is the subset of V ×W consiting of all
pairs (v, w) for which w = T (v).

(v, w) belongs to Graph(T ) if and only if w = T (v).
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3. FUNCTIONS AND TRANSFORMATIONS OF VECTORS

3.1. PARAMETRIZED LINE. For any vectors u and v the set L consisting of vectors
x(t) for t in R is the Line through u with direction (velocity) v provided

x(t) = u+ tv, for all scalars t in R
or, more precisely, x : R −→ V is the function with rule x(t) = u + tv, for t in R, and
L = x(R) is the image of R under the function x.

3.2. LINEAR TRANSFORMATIONS. If V and W are vector spaces, then any function
T : V −→ W is called a Linear Transformation provided that T preserves all lines:

T (x+ ry) = T (x) + rT (y) for any scalar r and any vectors x, y.

Equivalently, if x : R −→ V is any line through u with velocity v, then T ◦ x : R −→ W is
the line through T (u) with velocity T (v).

NOTE: T is linear if and only if T is both

Additive: T (x+ y) = T (x) + T (y), for any vectors x, y,

and

Homogeneous: T (rx) = rT (x), for any scalar r and any vector x.

3.3. THE COMPOSITION OF LINEAR TRANSFORMATIONS IS LINEAR. If
S : U −→ V and T : V −→ W are both linear transformations of vector spaces, then so
is T ◦ S. Moreover, the function IdV is linear if V is any vector space. If U = W and if S
and T are mutually inverse, then if either is linear then both are linear and we say each is
a Linear Isomorphism, and we say that U and V are Isomorphic. In this case, U and
V are essentially the same vector space with vectors simply given different names via the
isomorphism.

3.4. NOTATION. If T : V −→ W is a linear transformation of vector spaces, then the
usual function notation is often abreviated to

T (v) = Tv, for any vector v in V

and if R : U −→ V and T : V −→ W are both linear transformations, the composition
notation is often abbreviated to

T ◦R = TR,

and we think of the composition of linear transformations as a way of multiplying linear
transformations, that is, as a generalization of ordinary multiplication but which is not
commutative, since the order of composition of functions matters.
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3.5. VECTOR VALUED FUNCTIONS ON A SET FORM A VECTOR SPACE.
If S is any set and V is any vector space, and if f, g both belong to V S, then f : S −→ V
and g : S −→ V and we define f + g by

[f + g](x) = f(x) + g(x), for any x belonging to S

and we define scalar multiplication rf by

[rf ](x) = r[f(x)], for any x belonging to S;

it is easy to see the axioms are all true here. Therefore, if S is any set and V is any vector
space, then V S is a vector space. As R is a vector space, it follows that [R]S is a vector space
for any set S.

We define V n to be the vector space RS where S is the set of positive integers k with
1 ≤ k ≤ n. If x belongs to V n, then x is completely determined by its list of values and we
write these values as xk instead of using the usual function notation x(k), so we can also
write

x = (x(1), x(2), x(3), ..., x(n)) = (x1, x2, x3, ..., xn), with each xk in V, 1 ≤ k ≤ n.

Such a list enclosed by parenthesis is called an n−tuple, where n is of course the length of
the list. In particular, as R is a vector space, it follows that Rn is a vector space, consisting
of all possible lists of n numbers, that is, all possible n−tuples of real numbers.

3.6. THE VECTOR SPACE OF LINEAR TRANSFORMATIONS. If U and V
are both vector spaces, then V U is the set of all functions from U to V and therefore all
linear transformations from U to V also belong to V U . The subset of V U consisting of linear
transformations is denoted L(U ;V ).

L(U ;V ) = {T in V U | T is linear }.
It follows easily that L(U ;V ) is a vector subspace of V U . In particular it is customary to
denote

V † = L(V ;R),

and V † is called the Dual space to V.

3.7. DISTRIBUTIVE LAWS. If U, V,W are all vector spaces, if S, S1, S2 are in L(U ;V )
and T, T1, T2 are in L(V ;W ), then

S[T1 + T2] = ST1 + ST2 and [S1 + S2]T = S1T + S2T.

Because of these distributive laws, composition of linear transformations behaves like an
ordinary multiplication except that the order matters, so it is not commutative.
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3.8. VECTOR SUBSPACE OR LINEAR SUBSPACE. A subset U of the vector
space V is called a Vector Subspace or Linear Subspace provided that for any vectors
u, v which belong to U it is the case that the line through u with velocity v is entirely
contained in U. In order that U be a linear subspace, it is necessary and sufficient that the
sum of any two vectors belonging to U again belongs to U and any scalar multiple of a vector
in U again belongs to U. For example, the set consisting of the zero vector alone is a linear
subspace also denoted 0V and as well, V is a linear subspace of itself. In addition any line
through 0V is a vector subspace of V. If W is also a vector space and if T : V −→ W is a
linear transformation and if U is a vector subspace of V, then

TU = {Tu | u belongs to U} ⊂ W is a vector subspace of W,

the Image of U under T. On the other hand, if X is a vector subspace of W, then

T−1X = {v in V | Tv is in X} ⊂ V is a vector subspace of V,

the Inverse Image of X under T. In particular, we define

Im(T ) = TV and Ker(T ) = T−10W .

We call Im(T ) the Image or Range of T and we call Ker(T ) the kernel of T. It follows
that T is surjective or onto if and only if the image of T is all of W and T is injective or
one-to-one if and only if Ker(T ) = 0V . Thus, if Im(T ) = W and Ker(T ) = 0V , then T is a
bijection and therefore a vector space isomorphism.

3.9. CARTESIAN PRODUCT OF VECTOR SPACES. If V andW are vector spaces,
the cartesian product V ×W which consists of all ordered pairs of vectors (v, w) where v
belongs to V and w belongs to W is made a vector space where the vector addition rule is:

(v1, w1) + (v2, w2) = (v1 + v2, w1, w2),

and the scalar multiplication rule is:

r(v, w) = (rv, rw).

More generally, if V1, V2, V3, ..., Vn are all vector spaces, then we can similarly make the
cartesian product V1× V2× V3× ...× Vn into a vector space. As a set, it has as members all
possible n−tuples of vectors (v1, v2, v3, ..., vn) where vk belongs too Vk for each k with 1 ≤ k ≤
n. To add the n−tuples v and w, where v = (v1, v2, v3, ..., vn) and w = (w1, w2, w3, ..., wn),
we use the formula

v + w = (v1 + w1, v2 + w2, v3 + w3, ..., vn + wn),

and to multiply the n−tuple v by the scalar r, we use the formula

rv = (rv1, rv2, rv3, ..., rvn).

We can say here that the operations are defined ”slot wise”. Notice that the vectors in the
kth slot all come from the same vector space Vk so it makes sense to add them.
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3.10. GRAPH OF A LINEAR TRANSFORMATION. If U and V are linear spaces
and if T : U −→ V is any function, then T is linear if and only if Graph(T ) is a linear
subspace of U × V.

3.11. DUAL OF A LINEAR TRANSFORMATION. If U and V are linear spaces
and S : U −→ V is a linear transformations, then the Dual of S is the linear transformation
denoted S† : V † −→ U † given by the rule

S†λ = λS, for every λ in V †.

The linearity of T † follows from the distributive laws above. Also, from the distributive and
associative laws, it follows that the function

DAG : L(U ;V ) −→ L(V † : U †)

with rule

DAG(S) = S†, for every S in L(U ;V ),

is linear. Moreover, if T is in L(V ;W ) then TS is in L(U ;W ) and

(TS)† = S†T †.

Also,

(IdV )† = IdV † ,

and if T is invertible, then so is T †, and

(T †)−1 = (T−1)†.

3.12. THE DOUBLE DUAL. If V is a vector space, then for v in V we can define a
function ev : V † −→ R by the rule

ev(λ) = λv, for all λ in V †.

Then the distributive law guarantees that ev is linear and therefore belongs to the Double
Dual of V, namely,

V †† = (V †)†.

Moreover, the distributive laws also guarantee that the mapping

E : V −→ V ††

with rule

Ev = ev, for every v in V,

is a linear transformation. If Ev = 0, then

0 = [Ev]λ = evλ = λv, for every λ in V †.
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This in fact guarantees that v = 0. Thus, E is injective and defines a vector space isomor-
phism of V onto a linear subspace of V ††. In particular, if V is finite dimensional, then

dim(V ) = dim(V †) = dim(V ††).

Thus, for V a finite dimensional vector space, we can, via the very natural transformation
E, regard

V = V ††.

3.13. LINEAR COMBINATION AND SPAN. If V is a vector space and if S is a
subset of V we say that a vector v in V is a Linear Combination of vectors in S provided
that there are vectors v1, v2, v3, ..., vn belonging to S and scalars r1, r2, r3, ..., rn such that

v = r1v1 + r2v2 + r3v3 + ...+ rnvn.

The numbers r1, r2, r3, ..., rn are called the Coefficients of the linear combination. The set
of all vectors in V which are expressible as linear combinations of vectors in S is called the
Linear Span of the subset S and denoted Span(S). Obviously the sum and scalar multiple of
any two vectors in Span(S) is again in Span(S). It follows that Span(S) is a vector subspace
of V. If Span(S) is all of V, the we say that S Spans V.

If R, T : V −→ W are linear maps and S is a subset of V and if Rv = Tv for every v in
S, then in fact Rv = Tv for every vector in Span(S). Thus if S spans V, then every linear
transformation on V is determined on S.

If v = (v1, v2, v3, ..., vn) is in V n, then we define Tv : Rn −→ V by the rule

Tv(r1, r2, r3, ..., rn) = r1v1 + r2v2 + r3v3 + ...+ rnvn.

Then Tv is linear, and Tv(Rn) is the linear subspace of V spanned by the vectors in the set
{v1, v2, v3, ..., vn}.
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4. COORDINATE AND MATRIX DESCRIPTIONS OF VECTORS AND
LINEAR TRANSFORMATIONS

4.1. MATRIX AND TRANSPOSE. If L is any horizontal list, then L† denotes the same
list written vertically and we call L† the Transpose of L. We define Rn to be the result
of transposing all the vectors in Rn, so Rn is a vector space isomorphic to Rn. If K is any
vertical list, then K† denotes the horizontal list obtained by writing the same list horizontally
instead of vertically. Thus S : Rn −→ Rn defined by Sv = v† and T : Rn −→ Rn defined by
Tv = v† are mutually inverse vector space isomorphisms.

More generally, we define Rn
m = [Rm]n, so that Rn

m consists of horizontal lists of vertical
lists forming a rectangular array having m rows and n columns. The members of Rn

m are
called Matrices, and more specifically, they are called m by n matrices. Thus the set of all m
by n matrices is a vector space. If M is an m by n matrix with columns (K1, K2, K3, ..., Kn),
then

M = [K1, K2, K3, ..., Kn],

and M † is the n by m matrix having row i given by K†i . Thus all the columns of M become
the rows of M † and the rows of M become the columns of M †. Notice that

[M †]† = M.

If T n
m : Rn

m −→ Rm
n is defined by T (M) = M †, for M in Rn

m, then T n
m and Tm

n : Rm
n −→ Rn

m

are mutually inverse isomorphisms of vector spaces. A useful notation is to let Mk be the
kth column of M and let Mk be the kth row of M. Thus,

[M †]k = [Mk]† and [M †]k = [Mk]†.

4.2. FRAME IN A VECTOR SPACE. If V is a vector space, a Frame is an ordered list
of n vectors F = (b1, b2, b3, ..., bn) in V n, also called an n−frame, provided that TF : Rn −→ V
is injective or one-to-one. Thus F is a frame if and only if Ker(TF ) = 0. Then the only way
to form 0V as a linear combination of frame vectors is to have all coefficients equal to zero.
We say that a frame in V is a Frame For V provided that the frame vectors also span V.
Thus, F is a frame for V if and only if TF is a vector space isomorphism of Rn onto V. If
F † = (b1, b2, b3, ..., bn) is a frame for V †, so that bibj is one or zero according to whether i and
j are the same or not, then F † is said to be the Dual Frame to F and is in fact uniquely
determined by F. Keep in mind that the superscipts in the preceding notations are not to
be exponents but merely tags. If F is a frame for V, then a unique dual frame F † for V †

always exists.
More generally, if A is any subset of V, we say that A is Linearly Independent if any

n−tuple of distinct vectors in S, no matter how big n, is a frame in V. If B is a linearly
independent subset of V which also spans V, then B is called a Basis for V.

If A as a subset of C and C is a subset of V which spans V and if A is linearly independent,
then there is a subset B of C which contains A as a subset and which forms a basis for V.
In particular, if v 6= 0V , then {v} is a linearly independent set, and is a subset of V, and V
itself certainly spans V, so therefore every vector space has a basis. Thus, given any nonzero
vector, we can find a basis for V containing that nonzero vector as one of the basis vectors.
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4.3. DIMENSION OF A VECTOR SPACE. If B1 and B2 are subsets of V and if
each is a basis for V, then there is a bijective map of B1 onto B2, so they have the same
Cardinality which we call the Dimension of V.

If V is a vector space and F = (b1, b2, b3, ..., bn) is a frame for V then we say that n is the
Dimension of V and we write

n = dim(V ).

We say that V is Finite Dimensional if V has a finite basis. The set of vectors in an
ordered list which form a frame for V are thus also a basis for V which is finite. Any two
bases for V must have the same cardinality. In particular, if F is an m−frame for V and if G
is an n−frame for V, then m = n. Thus, if V is finite dimensional, then there is an n−frame
for V, where n = dim(V ).

If V and W are finite dimensional, then so are V ×W and L(V ;W ). In fact,

dim(V ×W ) = [dim(V )] + [dim(W )],

and

dim(L(V ;W )) = [dim(V )][dim(W )].

Since dim(R) = 1, it follows that if V is finite dimensional, then

dim(V †) = dim(V ).

More generally, if V1, V2, V3, ..., Vn are all finite dimensional vector spaces, then

dim(V1 × V2 × V3 × ...× Vn) = dim(V1) + dim(V2) + dim(V3) + ...+ dim(Vn).

In particular,

dim(Rn) = n = dim(Rn).

4.4. STANDARD FRAMES. For V = Rn we have the Standard Frame F = (e1, e2, e3, ..., en)
where

e1 = (1, 0, 0, 0, ..., 0)

e2 = (0, 1, 0, 0, ..., 0)

e3 = (0, 0, 1, 0, ..., 0)

and so on, so ek has all zero entries except in slot k which contains a one, for each k, with
1 ≤ k ≤ n. For this frame F we have TF = IdV is just the identity map of Rn = V, and
thus vF = v† for each vector v in Rn. Here v† is the Transpose of v that is the vector in Rn

expressed as a vertical list instead of a horizontal list or row.
We define the coordinate projections ek : Rn −→ R by

ek(v1, v2, v3, ..., vn) = vk.

Then ek is linear so belongs to L(Rn;R) = [Rn]†. Moreover, (e1, e2, e3, ..., en) is the dual
frame for [Rn]† determined by the standard frame for Rn, as obviously eiej is one or zero
according to whether i and j are equal or not. The standard frame for Rn is likewise
(e†1, e

†
2, e
†
3, ..., e

†
n).
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4.5. VECTOR COMPONENTS RELATIVE TO A FRAME. If v is a vector in V
and if F † = (b1, b2, v3, ..., bn) is the dual frame for V †, then the vector T−1F v in Rn is the list
of Components of v with respect to the frame F, and in fact

T−1F (v) = (b1(v), b2(v), b3(v), ..., bn(v)), where F † = (b1, b2, b3, ..., bn)

It is customary here to set vk = bkv, so

T−1F (v) = (v1, v2, v3, ..., vn) in Rn.

Let vF be the vertical list which is the transpose of the list T−1F (v), for v in V,

vF = [T−1F v]†.

Each vector v in V then has a unique expression as a linear combination of frame vectors,
namely,

v = FvF = TF (v1, v2, v3, ..., vn) = v1b1 + v2b2 + v3b3 + ...+ vnbn,

which can sometimes be very misleading for an unwary reader, as these superscripts are
here not denoting exponential powers, rather they are simply tags just as are the subscripts.
Notice the frame F is also defining a linear isomorphism F : Rn −→ V given by

F [w1, w2, w3, ..., wn]† = w1b1 + w2b2 + w3b3 + ...+ wnbn.

Notice that the transformation F is the inverse of the transformation which sends a vector
v in V to the component list vF in Rn. Thus we can write

vF = F−1v, for v in V.



12 M. J. DUPRÉ

4.6. LINEAR TRANSFORMATION MATRIX. If V is a vector space with frame F
and of W is a vector space with frame G where dim(V ) = m and dim(W ) = n, and if
S : V −→ W is any linear transformation, then

M = G−1SF : Rm −→ Rn

is a linear transformation completely determined by S and which in turn completely deter-
mines S. Any linear transformation is completely determined by its values on the frame vec-
tors, thus S is completely determined as soon as we know (Sv1, Sv2, Sv3, ..., Svm) where F =

(b1, b2, b3, ..., bm). Likewise, M is completely determined by the list Me†1,Me†2,Me†3, ...,Me†m,

so as Me†k is a vector in Rn for each k, it is customary to write the entries of Mek in a vertical

list so the list (Me†1,Me†2,Me†3, ...,Me†m) becomes a horizontal list of vertical lists forming a
square array of numbers called the Matrix of M, denoted [M ] which completely determines
M and hence the matrix [M ] together with the frames F and G completely determine S,
and vice-versa. Indeed,

S = GMF−1.

We can denote this relationship by writing

[M ] = [SG
F ], so SG

F = G−1SF.

If T : W −→ X is also a linear transformation of vector spaces, and if H is a frame for X,
then matrix multiplication is defined by the rule

[(TS)HF ] = [TH
G ][SG

F ].

Moreover, for v in V, we then have

[Sv]G = [SG
F ][vF ]

so the matrix multiplication defined when applied to lists of components of vectors gives
the computation of the linear transformation. Thus all computations in linear algebra are
turned into matrix computations once frames are chosen. In addition, in terms of vector
components, all the operations on vectors are simply the operations in Rn where n is the
dimension of the vector space.

As to the matrix of the dual of a linear transformation, we have the very convenient fact
that

[(T †)F
†

G† ] = [TG
F ]†,

which is to say, the matrix of the dual transformation with respect to the dual frames is
simply the transpose of the transformations’s matrix with respect to the given frames.

To see in more detail, keep in mind that [M ] and M determine each other. Then,

[Sv]G = G−1Sv = G−1SFvF = SG
F v

F = [SG
F ]vF ,

and

[(TS)HF ]vF = H−1TSFvF = H−1TGG−1SFvF = [TH
G ][SG

F ]vF .
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If we consider the relationship between Rn and Rn, we can define the action of a row list
on a column list via the rule

(r1, r2, r3, ..., rn)(s1, s2, s3, ..., sn)† = r1s1 + r2s2 + r3s3 + ...+ rnsn.

Notice that in this way, we can regard members of Rn as actually members of R†, and in
fact in this way we regard

Rn = (Rn)† and therefore (bRn)† = (Rn)†† = Rn.

More generally, when we multiply matrices, in the product AB, the entry in row i and
column j of the product, that is, (AB)ij, is simply AiBj, where we again recall the notation

that Ai is row i of A and Bj is column j of B.
In terms of the frames using the notation

T−1F v = (v1, v2, v3, ..., vm)

we have

v = v1b1 + v2b2 + v3b3 + ...+ vmbm, v in V

and if G = (c1, c2, c3, ..., cn), in W n, then

T−1G w = (w1, w2, w3, ..., wn), w in W

so

w = w1c1 + w2c2 + w3c3 + ...+ wncn, w in W

and consequently
Sv = [Sv]1c1 + [Sv]2c2 + [Sv]3c3 + ...+ [Sv]ncn.

Then for 1 ≤ k ≤ n we have

[Sv]k = [S(v1b1 + v2b2 + v3b3 + ...+ vmbm)]k

= v1[Sb1]
k + v2[Sb2]

k + v3[Sb3]
k + ...+ vm[Sbm]k.

Putting

Sk
i = [Sbi]

k

we have

Sk
i = ckSbi, where G∗ = (c1, c2, c3, ..., cn)

is the dual frame to G, and

[Sv]k = Sk
1v

1 + Sk
2v

2 + Sk
3v

3 + ...+ Sk
mv

m.

This means that [SG
F ] is the matrix array which has Sk

i in row k and column i, and also
means that the multiplication of matrices is given by rows of the first factor multiplied by
columns of the second factor.
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5. BILINEAR MAPPINGS AND INNER PRODUCTS

5.1. BILINEAR MAPPINGS. If U, V,W are all vector spaces and B : U × V −→ W,
then holding u in U fixed we can define a function

Bu : V −→ W by the rule Bu(v) = B(u, v).

On the other hand, if instead we hold v in V fixed, we can define a function

vB : U −→ W by the rule vB(u) = B(u, v).

We say that B is Bilinear if Bu is linear for each u in U and vB is linear for each v in V.

Notation: if B is bilinear, we often abbreviate the function notation and write

Buv = B(u, v), for any vectors u in U and v in V.

Notice that the linearity in each slot is making Buv work like a multiplication of vectors
as it is then both left and right distributive, so the B is like a coefficient for the multipli-
cation. As there are many linear transformations, there are even more bilinear maps and
consequently many ways to multiply vectors, where in this instance we are multiplying a
vector in U by a vector in V to get a vector in W. In case U = V, then it makes sense to ask
if B(u, v) = B(v, u), and if this is always the case, then B is called Symmetric. Notice,
then the multiplication Buv is commutative if B is symmetric. In this case we have

B[u± v][u± v] = Buu+Bvv ± 2Buv

which gives the

GENERAL POLARIZATION IDENTITY:

Buv =
1

4
[B[u+ v][u+ v]−B[u− v][u− v]]

showing the any commutative multiplication is deterimined by squaring-if you know how to
square anything then you can multiply any two things.

5.2. SEMINORM AND VECTOR LENGTH. If V is a vector space, we say that
n : V −→ R is a Seminorm provided that

LENGTH SCALING RULE

n(rv) = |r|n(v), for every scalar r and every vector v,

and

TRIANGLE INEQUALITY

n(v + w) ≤ n(v) + n(w), for all vectors v, w

both hold.
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Notation: we write

‖v‖n = n(v), for every vector v.

When there is no confusion as to n, the subscript is dropped here. These two properties are
the minimum that should be expected for properties of length of a vector. The first property
in particular implies that the zero vector has zero length.

5.3. NORM AND LENGTH. Notice that with a seminorm it is possible for a non-zero
vector to have zero length. The seminorm is called a Norm if the only vector with zero
length is the zero vector.

5.4. INNER PRODUCTS. If V is a vector space, we say that B is an Inner Product
for V provided that

B : V × V −→ R is a symmetric bilinear map.

In this case we write

〈u|v〉B = Buv

and if B is understood on V × V, we write Buv = 〈u|v〉V . If both B and V are understood,
we drop the subscript on the angle bracket altogether. We say the inner product is Positive
if

〈v|v〉 ≥ 0, for every vector v.

We can notice that using the symmetry and bilinearity that always

〈v ± w|v ± w〉 = 〈v|v〉+ 〈w|w〉 ± 2〈v|w〉

and therefore we again have the

POLARIZATION IDENTITY FOR INNER PRODUCTS

〈v|w〉 =
1

4
[〈v + w|v + w〉 − 〈v − w|v − w〉]

If V is finite dimensional, then we can find linear subspaces V+ and V− such that B is
positive on V+ and −B is positive on V− with

V = V+ + V− and V+ ∩ V− = 0V .
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5.5. POSITIVE INNER PRODUCTS AND LENGTH. If V is vector space with a
positive inner product then we can try to define the length of a vector by the rule

‖v‖ =
√
〈v|v〉.

Since this is equivalent to

‖v‖2 = 〈v|v〉
we would have easily that the length scaling rule holds but the triangle inequality depends
on the

CAUCHY-SCHWARZ INEQUALITY:

|〈v|w〉| ≤ ‖v‖‖w‖, for all vectors v, w.

To see that the Cauchy-Scwarz Inequality must hold for the case of a positive inner product,
we can use the fact that for any real numbers s, t and any vectors v, w, it must be the case
that

0 ≤ 〈sv − tw|sv − tw〉 = s2〈v|v〉+ t2〈w|w〉 − 2st〈v|w〉
and therefore

2st〈v|w〉 ≤ s2〈v|v〉+ t2〈w|w〉 = s2‖v‖2 + t2‖w‖2.
If either 〈v|v〉 = ‖v‖2 or 〈w|w〉 = ‖w‖2 = 0, then the preceding inequality valid for all real
numbers s, t will guarantee that 〈v|w〉 = 0, whereas if both are not zero, then choose

s =
1

‖v‖
and

1

‖w‖
,

and the inequality becomes

2
〈v|w〉
‖v‖‖w‖

= 2st〈v|w〉 ≤ 2,

from which the Cauchy-Schwarz Inequality follows immediately.

5.6. RIESZ REPRESENTATION. If v is a vector in the vector space with inner product,
V, then we can use it to define a linear map v† in the dual vector space V † = L(V ;R) by
the rule v∗(w) = 〈v|w〉V . Since the inner product is bilinear, it follows by definition, that
v∗ is linear, so in fact, v∗ belongs to V †. We can define the linear map RZV : V −→ V † by
the rule RZV v = v∗. If the inner product is positive definite, and if v∗ = 0, then ‖v‖2 =
〈v|v〉 = v∗v = 0, and therefore v = 0. Thus, in case of a positive definite inner product,
RZV : V −→ V † is injective. More generally, if the inner product is not positive, we
say that it is Non-degenerate if RZV is injective. If λ belongs to V †, we say that λ is
Representable if λ is in the image of RZV , which is to say there is a vector v with v∗ = λ.
The Riesz Representation Theorem guarantees that under certain technical conditions, every
member of V † is representable, and therefore RZV is a vector space isomorphism of V onto
V †. In particular, if V is finite dimensional and the inner product is non-degenerate, then
every member or V † is representable and RZV : V −→ V ∗ is an isomorphism, since V † has
the same finite dimension as V.
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5.7. CARTESIAN PRODUCT OF INNER PRODUCT VECTOR SPACES. If
V1, V2, V3, ..., Vm are all vector spaces with inner products, Vk having inner product Bk, then
we can give the cartesian product

V = V1 × V2 × V3 × ...× Vm
the inner product B where

〈(v1, v2, v3, ..., vm)|(w1, w2, w3, ..., wm)〉B = 〈v1|w1〉B1 +〈v2|w2〉B2 +〈v3|w3〉B3 +...+〈vm|wm〉Bm .

The ordinary multiplication of numbers serves as the inner product in R. Thus, Rm is
given the resulting inner product as the cartesian product, where Vk = R for each k ≤ m.

5.8. ORTHONORMAL FRAMES. A frameE = (e1, e2, e3, ..., em) for the vector space V
with inner product is said to be Orthonormal provided that |〈ei|ej〉| is one or zero according
to whether i = j. If the inner product is non-degenerate and if V is finite dimensional,
then there is an orthonormal frame and every vector v in V is easily expressed as a linear
combination of these frame vectors using

v = 〈v|e1〉〈e1|e1〉e1 + 〈v|e2〉〈e2|e2〉e2 + 〈v|e3〉〈e3|e3〉e3 + ...+ 〈v|em〉〈em|em〉em.
Moreover, the dual frame E∗ for V ∗ dual to E is given by

E† = (〈e1|e1〉e∗1, 〈e2|e2〉e∗2, 〈e3|e3〉e∗3, ..., 〈em|em〉e∗m).

That is to say, E† = (e1, e2, e3, ..., em) where

ek = 〈ek|ek〉e∗k.
We can easily see that the standard frames for bRm and Rm are the duals of each other and
are orthonormal.

If T : V −→ W is a linear transformation of vectors spaces having inner products and
if E = (e1, e2, e3, ..., em) is an orthonormal frame for V and G = (g1, g2, g3, ..., gn) is an
orthonormal frame for W, then the matrix of T relative to these frames has 〈gi|gi〉〈gi|Tej〉
in row i and column j.

If f belongs to [Rm]†, then taking E to be the standard frame for Rm, (fe1, fe2, fe3, ..., fem)
belongs to Rm, and if v = (fe1, fe2, fe3, ..., fem), then it is easy to see that f = v∗, giving
direct proof of the Riesz Representation Theorem in case of finite dimensions, so

[RZRm ]−1f = (fe1, fe2, fe3, ..., fem).

We also have the notations commonly used in calculus here,

[RZRm ]−1f = grad f = ∇f.
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5.9. ADJOINT OF A LINEAR TRANSFORMATION. If V and W are vector spaces
with inner product and if R : V −→ W and S : W −→ V, then we say that R and S are
Mutually Adjoint if

〈Rv|w〉W = 〈v|Sw〉V , for every v in V and every w in W.

Notice this is saying

w∗Rv = [Sw]∗v, for every v in V and every w in W,

or

([R†w∗)v = [Sw]∗v, for every v in V and every w in W,

and therefore

([R†]w∗) = [Sw]∗, for every w in W,

which is the same as

([R†]RZWw) = RZV [Sw], for every w in W,

and this in turn is equivalent to

[R†]RZW = [RZV ]S.

In particular, any time that the Riesz Representation Theorem holds for V, that is, any time
that RZV : V −→ V ∗ is an isomorphism, it follows that S is determined by R with the
formula

S = [RZV ]−1[R†]RZW .

For this reason, we define the Adjoint of R denoted by R∗ by the formula

R∗ = [RZV ]−1[R†]RZW ,

and we say that R has an adjoint.
Thus, whenever R : V −→ W has an adjoint, which we see must be the case if V is finite

dimensional with a non-degenerate inner product, then we have R∗ : W −→ V, is linear and

〈Rv|w〉W = 〈v|R∗w〉V , for every v in V and every w in W.
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5.10. PROPERTIES OF ADJOINTS. From the equation

〈Rv|w〉W = 〈v|R∗w〉V , for every v in V and every w in W,

we see clearly that if R has an adjoint, then so does its adjoint R∗, and

R∗∗ = R,

moreover, the same formula also makes it is easy to see that if R : V −→ W and Q : U −→ V
both have adjoints, then so does RQ and we have

[RQ]∗ = Q∗R∗.

It is also easy to see that if R and S both belong to L(V ;W ) and have adjoints, then so
does R + tS and

[R + tS]∗ = R∗ + tS∗, for every t in R.
Thus, when all members of L(U ;V ) have adjoints then the transformation

Adj : L(U ;V ) −→ L(V ;U)

given by

[Adj]R = R∗, for every R in L(U ;V )

is a linear mapping with (Adj)(Adj) = IdL(U ;V ), so Adj is a vector space isomorphism which,
in case U = V, is its own inverse.

If T : V −→ W is a linear transformation and if RZV and RZW are both isomorphisms,
then every linear transformation in L(V ;W ) has an adjoint and every linear transformation
in L(W ;V ) has an adjoint, and if T is invertible, then so is T ∗ and

[T−1]∗ = [T ∗]−1.

5.11. THE MATRIX OF THE ADJOINT. If R : V −→ W is a linear transformation
and B = (b1, b2, b3, ..., bm) is an orthonormal frame for V and if C = (c1, c2, c3, ..., cn) is an
orthonormal frame for W, then the matrix of R relative to these frames is [RC

B] having entry
〈ci|Rbj〉W in row i and column j. But, from the fact that

〈Rv|w〉W = 〈v|R∗w〉V , for every v in V and every w in W,

it follows that

〈ci|Rbj〉W = 〈bj|R∗ci〉, for every i ≤ n and every j ≤ m.

This means that the matrix of R∗ is the transpose of the matrix of R, that is

[(R∗)BC ] = [RC
B]†.

Of course, this means that the adjoint is very easy to compute using matrices.
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