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Abstract

We recognize the natural covariant extension for energy-momentum in

general relativity: energy-momentum in spacetime as opposed to space.

The key indicator is the Tolman energy integral for stationary systems.

The demand that the general expression for arbitrary dynamic systems

reduce to the Tolman integral in the case of stationary bounded distri-

butions leads to the matter-localized Ricci integral for energy-momentum

in support of the energy localization hypothesis. The role of the observer

is addressed and it is recognized that the field of freely-falling observers

extract the global Tolman energy. It is suggested that in the extreme

of strong gravity, the Heisenberg Uncertainty Principle be generalized in

terms of spacetime energy-momentum.
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The unresolved problems of energy and the issue of its localization within
general relativity were debated in the early years of the theory’s formulation
and remain subjects of considerable interest today. In the 1920s, some authors
including Einstein and Eddington held the view that while one could work use-
fully with energy in the traditional sense as a global concept in general relativity,
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no satisfactory meaning could be attached to its localization. Their belief was
based on the manner in which energy-momentum for the gravitational field was
incorporated into general relativity. Rather than having a bona fide energy-
momentum tensor T k

i
1 in general relativity to incorporate energy-momentum

as in the rest of physics, these authors relied upon an energy-momentum pseu-
dotensor tki , first introduced by Einstein, to play the equivalent role for gravity.
Unlike true tensors, this pseudotensor could be made to vanish at any pre-
assigned point by an appropriate transformation of coordinates, rendering its
status rather nebulous.

Through the years, other pseudotensors performing the same function as
that of Einstein’s pseudotensor were introduced but they all carried the stigma
of being non-covariant objects. In addition, they were not symmetric and hence
did not lend themselves to forming an angular momentum construct as does
the symmetric energy-momentum tensor T ik of special relativity. Landau and
Lifshitz [1] were able to produce a symmetric energy-momentum peudotensor
but their construct was not Lagrangian-based. Moreover, like all pseudotensors,
their’s suffered from a lack of general covariance and could be made to vanish
at any pre-assigned point by an appropriate choice of coordinate system.

Over the years, the debate over energy-momentum in general relativity took
some interesting turns. Various authors including Bondi [2] argued that gravita-
tional energy must be localizable while Misner and Sharp [3] accepted that en-
ergy was localizable for cases of spherical symmetry but not otherwise. Related
to the energy issue was that of the nature of gravitational radiation, waves of
gravity presumably carrying energy off to infinity in analogy with electromag-
netic radiation. Many authors had calculated energy fluxes via gravitational
radiation using energy-momentum pseudotensors and it was widely believed
that the process was placed on a secure footing by Bondi [4] who developed a
“news function” to describe the flux. However, it was later shown that the news
function is related to the pseudotensor and hence it carries the drawbacks and
limitations of the latter [5].

As a result of this history, the prevailing general feeling would appear to
be that the energy of the gravitational field itself is not localizable and for
total energy of a system including gravity one must take a so-called “quasi-
local” approach. This has largely grown out of the ADM analysis of energy and
momentum for spatially asymptotically flat models which in turn generalizes
the Komar mass and momentum for models admitting timelike Killing fields.
The Komar mass and momentum are defined as 2-surface integrals which for
boundaries coincide with the Tolman integral via Gauss’ Theorem. The proofs
of the Positive Energy Theorem for the ADM mass and momentum under the
assumption of the dominant energy condition, first provided by Schoen and Yau
[6] and the simpler spinor proof given by Witten [7] have led to several different
definitions of quasi-local mass having various differing properties, advantages
and disadvantages. Later authors have made the Witten spinor proof rigorous
(e.g. [8]) and generalized it to include the Bondi mass [9] in the asymptotically

1 Latin indices range from 0 to 3 and Greek indices range from 1 to 3.
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flat case. In spirit, we can say that these approaches attempt to make sense of
how an observer sees the energy density in regions away from his location as
compared to the energy density at his own location event, and are thus formed
using integration. The Positive Energy Theorem itself has been a major factor in
the acceptance of the quasi-local approach, but it must be noted that it depends
on the assumption of the dominant energy condition. However, recently, all the
energy conditions of general relativity have come into question [10]. On the
other hand, if we have an acceptable energy-momentum tensor for the total
energy including the gravitational field, it would be natural for an observer
wishing to evaluate the total energy in a remote region to require observers
located at each event in the region to report the energy density they observe
and then to integrate all the results. Such an approach would not depend on
any assumptions of energy conditions, but of course would depend on the choice
of observers throughout the region.

In a series of papers [11], author FIC presented a new hypothesis that en-
ergy, including the contribution from gravity, was localized in the non-vanishing
regions of the energy-momentum tensor T k

i . This carries the significant conse-
quence that gravity waves do not actually convey energy in the course of their
propagation through the vacuum. (This is assuming that the waves really do
exist and they must exist if the essential element of finite velocity of propagation
of information in relativity holds).

Various reasons were advanced in support of the hypothesis. There was
the work of Gurses and Gursey [12] showing that an exact gravitational plane
wave, the simplest of all wave types, is of the Kerr-Schild class for which one
can always find a coordinate system where all the components of the gravita-
tional energy-momentum pseudotensor vanish identically everywhere, not just
at a pre-selected point. Thus, one would be hard-pressed to believe that energy
is flowing if the construct representing its energy can be transformed out of ex-
istence in one fell swoop. This is in contrast to the energy-momentum tensor in
electromagnetism whose time-time component T 0

0 and time-space components
Tα
0 which represent respectively the energy density and Poynting vector of en-

ergy flux, are non-zero for an electromagnetic wave and remain non-zero for all
transformations of the coordinates. Various other reasons were advanced in sup-
port of the localization hypothesis but the goal of finding a tensorial construct
for general relativity embodying such a localization, remained unrealized.

In a very recent paper [13], author MJD provided arguments in favor of the
Ricci tensor Rik as the essential tensor embodying energy-momentum in general
relativity, i.e. for the inclusion of the contribution from gravity. Clearly this is
in support of the localization hypothesis as the Ricci tensor vanishes in vacuum.
The choice of the Ricci tensor has immediate appeal as it is generally covariant, a
true tensor unlike the pseudotensor. As well, it is attractive from another aspect:
Bondi [14] had noted that since the Riemann tensor characterizes the presence
of spacetime curvature, i.e. the essence of gravity, in an invariant manner,
it would be natural, he reasoned, if the Riemann tensor were to describe the
energy-momentum including the contribution from gravity. Since the second-
rank Ricci tensor is formed as a trace of the fourth-rank Riemann tensor, it
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carries in part the content of the latter and hence could be seen to embody at
least the spirit of the Bondi idea.

In this paper, we approach the problem from a different direction. The most
reliable identification that we can make with energy for a system that includes
the contribution from gravity within the framework of general relativity, stems
not from local measure but rather global measure. Tolman [15] was able to
show that the total energy of an isolated stationary (i.e. having no explicit
dependence on time) distribution of matter could be expressed as

E =
c4

4πG

∫

R0
0

√
−gd3x (1)

where g is the determinant of the four-dimensional spacetime metric and R0
0 is

the mixed time-time component of the Ricci tensor. (Naturally the coordinate
system that is chosen for the derivation is one for which the system shows no
explicit time dependence.) Its measure as the correct total energy is secured by
its connection with the coefficient of the 1/r term in the asymptotic form of the
g00 component of the metric tensor. There is no ambiguity about this measure
of total energy. Through the use of the Einstein field equations it is more often
expressed in terms of the components of the energy-momentum tensor as

E =

∫

(

T 0
0 − T 1

1 − T 2
2 − T 3

3

)√
−gd3x. (2)

Tolman used the pseudotensor to achieve this result and a more elegant approach
that did not rely upon the pseudotensor was later applied in [1] which produced
the same answer.

An immediate point to note is that for either expression (1) or (2), while
the square root of the metric determinant is for the complete four-dimensional
spacetime metric, the integral is over the three-space coordinate volume d3x.
The integral would be one over the desired proper volume if d3x were replaced
by d4x to connect properly with

√
−g.

At this point, we consider what is the minimum modification that we can
make to (1) that would render an expression with wholly covariant elements
for energy-momentum distributions including the contribution from gravity in
the case of arbitrary systems, systems that may have intrinsic time-dependence,
while incorporating the demand that its energy component reduce to (1) 2 in
the case of a bounded stationary distribution. As a minimum, we must change
to a spacetime integral (i.e. replace d3x with d4x) to have a proper volume
element. As well, we must replace the R0

0 component with the complete Ricci
tensor in the integrand to have covariant elements. We designate the resulting
structure Ek

i ,
3

Ek
i =

c4

4πG

∫

Rk
i

√
−gd4x. (3)

2 That is apart from a necessary multiplicative factor of t, the time interval that it is being
observed.

3 While the integral is not a tensor and hence is not “covariant” in the sense that physicists
use the term (see however below regarding the manner in which mathematicians interpret
“covariant tensors”), it is emphasized that a change in coordinates changes the integral in
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This expands the original expression into several components. In the case of
bounded stationary systems, its 0 − 0 component does give the correct answer
multiplied by the time over which the system is analyzed. We propose that
the integral (3) is the necessary generalization for energy-momentum measure
in general relativity. We will refer to it as “spacetime energy-momentum”. It is
the entirely natural generalization of the concept of energy-momentum for gen-
eral relativity as we are, by necessity, engaged with a curved four-dimensional
spacetime in general relativity. It is an expression of the inextricable link be-
tween space and time in general relativity. While the change is not dramatic
for stationary systems as it simply multiplies the traditional value by the time
interval being measured, it is of considerable interest and complexity for intrin-
sically dynamic systems. In the latter, the admixture with time carries through
the Ricci tensor and in a non-trivial manner in the metric determinant. We
are familiar with integrals of the form of (3) in field theory, integrals of ten-
sors over proper spacetime volume. Thus it should come as no surprise that
general-relativistic energy-momentum should require such a structure. In par-
ticular, such integrals over spacelike hypersurfaces and over 2-surfaces are also
employed in the quasi-local approach. For instance, using the Witten integral
[9] in the case where R is a region foliated by asymptotically flat spacelike hy-
persurfaces Σt for t in the interval J of real numbers, we can compare the ADM
mass to our spacetime energy- momentum. Let ua = uAA′

be the unit timelike
normal vector field to the foliation. We take αt to be an asymptotically constant
solution of the Dirac-Weyl neutrino equation DAA′αA = 0 on Σt and form the
null vector field Ka = αAᾱA′ . Here D denotes the spacetime Dirac operator
restricted to operate on vector fields tangent to the foliation hypersurfaces. Let
Ka(t,∞) be the asymptotically constant value of Ka on Σt and let PADM

a (t)
denote the ADM energy-momentum of Σt.. Witten’s technique of proof for the

a uniquely determined manner. Indeed this is the most that could be expected for such a
measure over an extended distribution. As an explicit example of the uniquely determined
transformed expression, consider the x1 component of linear momentum in frame A and its
transformation: Its density in frame A is R1

0
. The total spacetime x1 value is its integral over

proper spacetime volume. We find its unique value in frame A′ as follows: The local density

in A′ is R1
′

0
= (Rk

i )(∂x
i/∂x′0)(∂x′1/∂xk). This follows here because of the tensorial character

of the local value of energy-momentum. The uniquely determined spacetime x′1 component

of momentum in A′ is the integral
∫
R1

′

0

√
−g′d4x′ where g′ is the 4-metric determinant in A′.

Actually, mathematicians by contrast regard the integral as being a covariant tensor in their
manner of interpreting the expression, as follows. The integral of the Ricci tensor here done
componentwise can be made mathematically rigorous by considering the integral as defining
an operator on pairs of vector fields. If U is any Borel subset of spacetime and TU is the
restriction of the tangent bundle of spacetime to the set U, then the set of smooth sections of
TU forms a vector space Γ(TU) which we denote by Γ for short. For any pair of sections v, w
in Γ the integral of Ricci(v, w) = Rijviwj over U with respect to proper spacetime volume
then obviously defines a bilinear map with real number values. It is thus a second rank tensor
on the vector space Γ. If U happens to be contained in a single coordinate patch, then v and
w can be chosen to be coordinate frame fields which results in the formula we have used to
define spacetime energy. We can note here that the tensor actually is defined for any Borel
subset of the spacetime manifold, and in particular, when restricted to open subsets, it is
also naturally defining a bilinear operator on the pre-sheaf of smooth sections of the tangent
bundle of spacetime.
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positive energy theorem shows that

8πPADM
a (t)Ka(t,∞) =

∫

Σt

[−uAA′

(DbαA)(D
bᾱA′) + 8πTabu

aKb]dΣt

=

∫

Σt

[−uAA′

(DbαA)(D
bᾱA′) + (Rab − (1/2)Rgab)u

aKb]dΣt,

for each time t. Integrating against time on both sides then gives

4πE[ua,Kb]− 8π

∫

J

PADM
a (t)dτ =

∫

R

[uAA′

(DbαA)(D
bᾱA′) + (1/2)Rgabu

aKb]
√
gd4x.

The first term in the last integral is always negative, so any scalar curvature
or metric condition guaranteeing negativity of the second term would mean
that with appropriate consideration of the constant coefficients here that the
spacetime energy-momentum does not exceed the proper time integral of the
ADM energy-momentum.

Returning to the enlarged structure of spacetime energy-momentum in (3),
we recall that this integral satisfies the requirements in a minimal sense. It is
well to ask if there is scope for a more complicated expression in the case of
an intrinsically dynamic system. We consider the feasibility of developing an
extension while maintaining the demand for the construction being composed
of purely covariant elements. Any such extension must reduce to the correct
Tolman expression in the case of bounded stationary systems. Suppose that
for the general case, the Ricci tensor were to be replaced by the Ricci tensor
plus an additional tensor (or tensors) of second rank. However, in order to
reduce to the correct form for stationarity, the generalization must have partial
derivatives with respect to time in such a form so as to reduce to the expression
in (1) when the metric is stationary. However, for the maintenance of purely
covariant elements, such derivatives must be covariant derivatives. While one
could envisage an infinity of such forms, consider the following examples for
different add-on tensors S:

Ri
k + Si

;k, R
i
k + Sij

j;k, R
i
k + Simj

j;km, (4)

where a semi-colon represents covariant differentiation. Regardless of the chosen
form with covariant derivatives, while the desired partial derivatives with respect
to time appear as required, extra undesired terms due to spatial derivatives
appear as well, terms which persist even in the case of stationary systems,
which is unacceptable. Thus, (3) is the only permissible form for spacetime
energy-momentum in generality. 4

4 Although we have justified the general form in (3) by the demand that it hold for
stationary bounded systems with asymptotic flatness, there is no apparent reason why the
resulting general expression could not be applied to arbitrary systems, even homogeneous
isotropic cosmologies where there are no boundary conditions because there are no boundaries.
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The consequences are immediate: since the Ricci tensor is non-zero only in
the regions where the energy-momentum tensor is non-zero, gravitational waves,
waves of propagating spacetime curvature, are not carriers of energy-momentum
through the vacuum, in conformity with the localization hypothesis [11].

At this point, we turn to the important role of the observer in relation to
energy-momentum. Recall that in special relativity we express the mass/energy
of a body with four-momentum pi and four-velocity ui as the inner product p

iui.
However ui can take on a broader role in the inner product; it can be taken as
the four-velocity of an arbitrary observer. With ui chosen as the four-velocity
of the body, the result is the rest mass m. The observer measures the inner
product as m if he is comoving with the body. However, we could choose ui

to be the four-velocity of an observer whose speed is v relative to the body at
the instant of his intersection with the body. Then the product piui gives this
particular observer’s perception of the energy. Its value is mγ where γ is the
relativistic factor (1 − v2/c2)−1/2. The crucial role of observer is the lesson of
great familiarity for us in special relativity.

Clearly, to extend this approach to a distribution of energy-momentum and
a continuum of observers, it would appear to be natural to express the spacetime
energy of a system in general relativity, relative to a field of observers with a
corresponding field of four-velocities ui, in the form of a four-scalar, as

E =
c4

4πG

∫

Rk
i u

iuk

√
−gd4x. (5)

There is a particularly interesting aspect connected with the reduction of
(5) to the Tolman integral (multiplied by the observed time span) by the choice
of the field of rest observers. We note that the asymptotic rest observer at
spatial infinity computes the Tolman massm, the intrinsic mass, for a stationary
system as it connects with the asymptotic expansion of the Schwarzschild metric
[1]. An interesting link-up is as follows: from [1], we realize that it is in the
“synchronous” frame where the metric assumes the form

ds2 = dt2 + gαβdx
αdxβ , α, β = (1, 2, 3), (6)

that the field of “rest” observers have four-velocities both contravariant and

covariant, the same, namely ui = ui = (1, 0, 0, 0). These are the required
fields of four-velocities which link to the Tolman integral. Moreover it is in
this synchronous frame that these “rest” observers are actually physically in
free-fall. Thus we see that it is the global field of freely-falling observers who
compute the Tolman mass, the intrinsic mass of the system. It is often said that
by falling freely, one “eliminates” gravity. In fact, it is through free-fall that
one is positioned to extract the essence of the energy of a system including the

contribution from gravity. This is analogous to the previous example in special
relativity where one extracts the intrinsic mass of the body by choosing the
observer who is at rest relative to the body. One cannot eliminate spacetime
curvature by free-fall and it is the curvature that distinguishes true gravity from
pseudo-gravity.
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While one is free to choose different fields of observers, it is the field of freely-
falling observers that is particularly attractive. The added attractive aspect is
that the clock of each free-fall observer measures the same interval of proper
time by virtue of the structure of (6).

With greater generality, we can view (5) as a special case of

E[ui, vk] =
c4

4πG

∫

Rk
i u

ivk
√
−gd4x, (7)

a bilinear functional of the fields (ui, vk). In the same vein, we can express the
observer-related spacetime linear momentum Pα as

Pα =
c4

4πG

∫

Rα
i u

i√−gd4x (8)

where α = (1, 2, 3). The domains of integration are for our choosing according
to the physical requirements.

There is a new pathway that opens from the extension of energy-momentum
to spacetime. This is suggested by noting that (5) is of the form energy times
time, the combination which manifests itself quantum-mechanically as a minimal
product of uncertainties in the Heisenberg Uncertainty Principle

∆E∆t≥h̄/2, (9)

where ∆ denotes uncertainty.
If the gravitational contribution to energy is localized, it is most reason-

able to assume that gravity must partake in the uncertainty. This directive
is amplified by the crucial role of the observer regarding energy measurement,
as discussed above. We are thus guided to a generalization of the Heisenberg
Uncertainty Principle for energy in the form

∆
c4

4πG

∫

Rk
i u

iuk

√
−gd4x≥h̄/2. (10)

It is only for the regime of very strong gravity that this extended Uncertainty
Principle would present a demonstrable difference from the standard Heisenberg
form.

Similarly, we generalize the standard Heisenberg expressions for linear mo-
mentum

∆Px∆x≥h̄/2,∆Py∆y≥h̄/2,∆Pz∆z≥h̄/2, (11)

to the form

∆
c4

4πG

∫

Rα
ku

k√−gd4x≥h̄/2. (12)

The explicit role of the observer is evident in (10) and (12) through the presence
of the observer four-velocity ui. We submit that it is in the context of general
relativity, where spacetime finds its necessarily unifying character, that these
generalized Uncertainty Principles to include gravity, arise so naturally.
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It is somewhat ironical to consider that Einstein’s original focus was on the
Ricci tensor for his field equations. The attention shifted to the Einstein ten-
sor which is the non-gravitational energy-momentum tensor multiplied by con-
stants. Now we are returning to the Ricci tensor, only now as the embodiment
of full energy-momentum. It is noteworthy in its simplicity.

Gravity waves carry information from their source and hence the question
arises as to whether this is inconsistent with these waves not being energy car-
riers. We know of no reason in principle to preclude the transfer of information
in the absence of energy. Indeed Bonnor [16] had noted that Szekeres asym-
metric collapsing dust spacetimes have time-varying quadrupole moments and
so are presumably energy-emitting according to the old ideas yet since they are
asymptotically matched to the energy-conserving Schwarzschild form, cannot
be losing energy. Our results are fully consistent with this finding.

In the same vein, it is natural to extend the traditional angular momentum
measure to include the contribution from gravity in a new “spacetime angular
momentum” construct M ikl in the form5

M ikl =
c3

4πG

∫

(

xiRkl − xkRil
)√

−gd4x (13)

where the spatial components (x1, x2, x3) of xi for angular momentum are nec-
essarily the quasi-Cartesian coordinates (x, y, z). As with the spacetime energy-
momentum, it is localized within the matter distribution.

One class of dynamic spacetimes is of particular interest because of its sim-
plicity: spherically symmetric spacetimes. This is because the exterior vac-
uum for such systems is uniquely the static Schwarzschild solution as shown in
Birkhoff’s theorem. For dynamic spherically symmetric interiors matching to
the exterior Schwarzschild solution, the resultant spacetime energy is a simply
separable product of the usual mass times the time span of its observation. A
simple example drawn from spherical dust collapse illustrates the result.

As shown in [1] and developed further in [17], the essential equations in
comoving spherical polar coordinates (τ, R, θ, φ) are as follows: The metric is

ds2 = dτ2 − eλdR2 − r2(dθ2 + sin2 θdϕ2) (14)

where λ and r are functions of R and τ . For the case in which the dust has
been released from rest at infinity in the infinitely distant past, the Einstein
field equations yield

eλ = (r′)2 (15)

ṙ2 =
F (R)

r
(16)

r =

(

9F

4

)1/3

(R− τ)2/3 (17)

5 This expression is even less “covariant” than the expression for the extended spacetime
energy-momentum because it employs the non-tensorial spacetime coordinates (as opposed to
their differentials) in the density.
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8πρ =
F ′

r′r2
(18)

where ρ is the mass density, F (R) is a function of integration, a prime denotes
partial differentiation with respect to R and a dot indicates partial differentia-
tion with respect to τ . From (18), it is easy to show with a simple integration
[1] that M(R), the total mass including the contribution from gravity, within
the comoving radial coordinate R is

M(R) = F (R)/2. (19)

From the metric (14), the square root of the complete determinant is

√
−g = eλ/2r2sinθ. (20)

The 4-volume element in the comoving frame is

dτd3x = dτdRdθdϕ. (21)

Since dust is stress-free, in the comoving frame the only non-vanishing compo-
nent of the energy-momentum tensor is T 0

0 and hence, from the Einstein field
equations,

R0
0 =

8πG

c4
T 0
0 . (22)

Thus, from (3),(22),(20),(15),(18),(19) and (21), we find the spacetime energy
up to the comoving radius R and over a proper time interval τ is

∫ √
−gT 0

0 d
4x = M(R)τ (23)

as expected. In spite of intrinsic time-dependence, for this special case, the
result is simply separable in terms of standard energy and time because there
are no gravitational waves emitted by the spherically symmetric system.

Forty-two years ago, the late J. L. Synge, one of the most distinguished
mathematical physicists of the 20th Century, expressed to author FIC his senti-
ment that the concept of energy-momentum is simply incompatible with general
relativity. His view was influenced by the pseudotensorial constructs for energy-
momentum which were an anathema to him. While this view seemed radical at
the time, from the present perspective, we see it conveying an essential element
of truth: the standard energy-momentum concept does not mesh with general
relativity for dynamic systems. However, the extended concept of spacetime

energy-momentum would appear to fit naturally, enabling us to maintain the
concept of energy-momentum in general relativity.
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