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Abstract. Given a Banach algebra we construct a principal bundle with con-
nection over the similarity class of projections in the algebra and compute
the curvature of the connection. The associated vector bundle and the con-
nection are a universal bundle with attendant connection. When the algebra
is the linear operators over a Hilbert module, we establish an analytic diffeo-
morphism between the similarity class and the space of polarizations of the
Hilbert module. Likewise, the geometry of the universal bundle over the latter
is studied. Instrumental is an explicit description of the transition maps in
each case which leads to the construction of certain functions. These functions
are in a sense pre-determinants for the universal bundles in question.
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1. Introduction

The book of Helton et al. [22] outlined a program of operator-analytic techniques
using flag manifold models, the theorems of Beurling-Lax-Halmos, Wiener-Hopf
factorization and M×M-theory, which could be applied to the study of integrable
systems (such as the Sato-Segal-Wilson theory [33, 32, 34]) and Lax-Phillips scat-
tering (cf. work of Ball and Vinnikov [2, 3]). Several of the fundamental techniques
implemented in this scheme of ideas can be traced back to the remarkable accom-
plishments of Professor I. Gohberg and his co-workers spanning a period of many
years.

Communicated by J.A. Ball.
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Our interest in this general subject arose from two directions. Initially, the
first two authors (with Evard) studied the problem of smooth as well as analytic
parametrization of subspaces of a Banach space using global techniques. The work
on this problem had been significantly motivated by that of Gohberg and Leiterer
[18, 19]. The general results that were obtained appear in [17, 11, 12]. From another
direction [14, 15, 16] we have developed an operator-theoretic, Banach algebra
approach to the Sato-Segal-Wilson theory, in the setting of Hilbert modules with
the extension of the classical Baker and Tau(τ)-functions to types of operator-
valued functions. One aspect of this latter work involved looking at the geometry
of the space of polarizations of a Hilbert module using a Grassmannian over the
Banach algebraA in question, a topic which is developed in this paper. We consider
the techniques and results as presented here to be also of independent interest in
related areas of operator theory.

If P (A) denotes the space of projections in A, then we consider the geometry
of the space Λ = Sim(p,A), namely the similarity class of a given projection
p ∈ P (A). We construct a principal bundle with connection over Λ and compute
the curvature of the connection. The transition map for this bundle leads to the
construction of a function which we refer to as the T -function. If P denotes the
space of polarizations of a Hilbert module HA (where A is a unital C*-algebra),
we show that Λ and P are analytically diffeomorphic (Theorem 4.1). Related (in
the case A = C) is the T-function of [28, 39] obtained over P via a cross-ratio
approach.

To be more specific, let us point out that the T -function is effectively the
co-cycle for the universal bundle over the space of restricted polarizations, relating
essentially the same two underlying sections, but initially this is viewed in terms of
the corresponding principal bundle. Hence the interest is in the calculation of the
geometry, connection, and curvature of the principal bundle of the universal bundle
using two sections which are each covariantly constant over two complementary
subbundles of the tangent bundle of the space of restricted polarizations. Our
approach is justified by the fact that, technically, one only needs a single section
to trivialize a principal bundle over the domain of the section and hence knowledge
of the covariant derivative of that section allows the computation of the horizontal
subspace over points of the image of the section, which can then be transferred
to any fiber passing through the image of that section using the action of the
structure group of the principal bundle. However, if one can find sections known
to have zero covariant derivative along certain subbundles of the base tangent
bundle, then the computation is certainly simplified, and in the case at hand we
have two which suffice.

One main task we describe in this paper is to use the restricted algebra di-
rectly. Since the analysis only depends on the fact that the restricted algebra is
a Banach algebra, our treatment presents, for any Banach algebra, a representa-
tion of the manifolds in question, as those naturally embedded in Banach spaces
which provide a natural geometry recovering the exact same geometry that arises
in [28, 39] thus leading to the well-known Tau(τ)-function [33, 34]. In particular,
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we are able to obtain simple expressions for the T -function, the connection form,
and the curvature (see, e.g., Theorem 8.1). As observed in [39] one can calculate in
coordinates, but here we have natural embeddings which give the geometry. Using
coordinates we can calculate, but we cannot visualize, whereas using the natural
embeddings we can both visualize and simplify the final formulas. This means the
determination of the Tau-function is reduced purely to analytic questions concern-
ing the existence of determinants of the operator values in the particular subgroup
of the algebra which forms the group of the principal bundle. This, along with
other related issues, is taken up in [16].

2. Algebraic preliminaries

2.1. The Grassmannian over a semigroup

To commence, let A be a (multiplicative) semigroup with group of units denoted
by G(A), if A has an identity. Let

P (A) := {p ∈ A : p2 = p}, (2.1)

that is, P (A) is the set of idempotent elements in A (for suitable A, we can regard
elements of P (A) as projections). Recall that the right Green’s relation is pRq, if
and only if pA = qA for p, q ∈ A.

Let Gr(A) = P (A)/R be the set of equivalence classes in P (A) under R. As
the set of such equivalence classes, Gr(A) will be called the Grassmannian of A.
Note that as the equivalence classes partition A, elements of Gr(A) are in fact
subsets of P (A). Relative to a given topology on A, Gr(A) is a space with the
quotient topology resulting from the natural quotient map

Π : P (A) −→ Gr(A). (2.2)

In fact if A is a Banach algebra, it follows that P (A) is an analytic submanifold
of A, and that Gr(A) has a unique analytic manifold structure (holomorphic, if A
is a complex algebra) such that Π is an analytic open map having local analytic
sections passing through each point of P (A) (see [11, § 4], cf. [30]).

Let h : A −→ B be a semigroup homomorphism. Then it is straightforward
to see that the diagram below is commutative:

P (A)
P (h)−−−−→ P (B)

Π



�



�Π

Gr(A)
Gr(h)−−−−→ Gr(B)

(2.3)

Clearly, if A is a semigroup of linear transformations of a vector space E, then we
have Π(r) = Π(s), if and only if r(E) = s(E) as subspaces of E. Notice that r−1(0)
is a complement for r(E), so if E is a topological vector space and all members of
A are continuous, then r(E) is closed with a closed complement, that is, r(E) is a
splitting subspace.
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If we reverse the multiplication of A, we obtain the opposite semigroup Aop

and consequently, the right Green’s relation in Aop is the left Green’s relation in
A. But P (A) = P (Aop), and so this construction gives Πop : P (A) −→ Grop(A),
where by definition Grop(A) = Gr(Aop).

In the case where A is a semigroup of linear transformations of a vector space
E, we see immediately that Πop(r) = Πop(s), if and only if r−1(0) = s−1(0) as
subspaces of E. Because of this we sometimes denote Π(r) = Im(r), and Πop(r) =
Ker(r), for r ∈ P (A) with A now taken to be an arbitrary semigroup. Clearly, if
h : A −→ B is a semigroup homomorphism, then so too is h : Aop −→ Bop. Thus
Grop and Πop produce an analogous commutative diagram to (2.3). We observe
that Π(r) = Π(s) if and only if both rs = s and sr = r, so in the dual sense,
Πop(r) = Πop(s), if and only if both rs = r and sr = s. Consequently, if both
Im(r) = Im(s) and Ker(r) = Ker(s), then r = s, and thus the map

(Im,Ker) : P (A) −→ Gr(A) × Grop(A), (2.4)

is an injective map which, in the case A is a Banach algebra, we later show to
be an analytic embedding of manifolds whose image is open in the righthand side
product.

Remark 2.1. Notice that if A is commutative, then Aop = A, so Im(r) = Im(s), if
and only if Ker(r) = Ker(s) and therefore by (2.4), Π = Πop is injective and thus
bijective.

2.2. The canonical section

As in the case where A is a Banachable algebra, we know that Π is a continuous
open map [11]. Then it follows that if A is a commutative Banach algebra, then Π
is a homeomorphism. Because of (2.4), we see that if K ∈ Grop(A), then Im|K :
K −→ Im(K) ⊂ Gr(A) is a bijection whose inverse, we refer to as the canonical
section over Im(K). If p ∈ K, then we denote this canonical section by Sp. We set
Up = Im(K) ⊂ Gr(A) and Wp = Im−1(Up) ⊂ P (A). Thus, we have Sp : Up −→
Wp ⊂ P (A) is a section of Im = Π for p ∈ Wp, and Sp(Im(p)) = p. In this situation
we refer to Sp as the canonical section through p. In fact, from the results of [11],
we know that if A is a Banach algebra, then Up is open in Gr(A) and Sp is a local
analytic section of Im = Π.

2.3. Partial isomorphisms and relative inverses

Definition 2.1. We say that u ∈ A is a partial isomorphism if there exists a v ∈ A
such that uvu = u, or equivalently, if u ∈ uAu. If also vuv = v, we call v a relative
inverse (or pseudoinverse) for u. In general, such a relative inverse always exists,
but it is not unique. Effectively, if u = uwu, then w = wuw is a relative inverse for
u. We take W (A) to denote the set (or space, if A has a topology) of all partial
isomorphisms of A.

Notice that W (Aop) = W (A) and P (A) ⊂ W (A). If u and v are mutually
(relative) inverse partial isomorphisms, then r = vu and s = uv are in P (A). In this
latter case, we will find it useful to simply write u : r −→ s and v : s −→ r. Thus
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we can say u maps r to s, regarding the latter as a specified map of idempotents
in P (A). Moreover, v is now uniquely determined by the triple (u, r, s), meaning
that if w is also a relative inverse for u and both wu = r and uw = s hold, then it
follows that v = w. Because of this fact, it is also useful to denote this dependence
symbolically as

v = u−(r,s), (2.5)

which of course means that u = v−(s,r). If u, v ∈ W (A) with u : p −→ r and
v : r −→ s, then vu : p −→ s. Thus we have

(vu)−(p,s) = u−(p,r)v−(r,s). (2.6)

In particular, the map u : r −→ r implies that u ∈ G(rAr) and u−(r,r) is
now the inverse of u in this group. Thus G(rAr) ⊂ W (A), for each r ∈ P (A).
For u ∈ G(rAr), we write u−r = u−(r,r), for short. It is a trivial, but useful
observation that if r, s ∈ P (A) ⊂ W (A), and if Im(r) = Im(s), then r : r −→ s
and s : s −→ r, are mutually inverse partial isomorphisms. Likewise working
in Aop, and translating the result to A, we have that if Ker(r) = Ker(s), then
r : s −→ r and s : r −→ s, are mutually inverse partial isomorphisms. Therefore,
if u : q −→ r, if p, s ∈ P (A) with Ker(p) = Ker(q) and Im(r) = Im(s), then on
applying (2.6), it follows that u = ruq : p −→ s has a relative inverse

u−(p,s) = pu−(q,r)s : s −→ p. (2.7)

Thus the relative inverse is changed (in general) by changing q and r for fixed u,
and (2.7) is a useful device for calculating such a change.

Now it is easy to see [11] that the map Π has an extension Π = Im : W (A) −→
Gr(A), which is well defined by setting Π(u) = Π(s), whenever u ∈ W (A) maps to
s. Again, working in Aop, we have Πop = Ker : W (A) −→ Grop(A), and because
u : r −→ s in A, is the same as u : s −→ r in Aop, this means that Ker(u) = Ker(r)
if u : r −→ s. More precisely, observe that if p, q, r, s ∈ P (A), if u ∈W (A) satisfies
both u : p −→ q and u : r −→ s, then it follows that Ker(p) = Ker(r) and
Im(q) = Im(s). In fact, if v = u−(p,q) and w = u−(r,s), then we have

rp = (wu)(vu) = w(uv)u = wqu = wu = r, (2.8)

so rp = r and symmetrically, pr = p,which implies Ker(p) = Ker(r). Applying this
in Aop, yields Im(q) = Im(s).

Remark 2.2. Of course the commutative diagram (2.3) for Π extends to the same
diagram with W ( ) replacing P ( ) and likewise, in the dual sense, for Πop = Ker,
on replacing A by Aop.

2.4. Proper partial isomorphisms

If p ∈ P (A), then we take W (p,A) ⊂ W (A) to denote the subspace of all par-
tial isomorphisms u in A having a relative inverse v satisfying vu = p. Likewise,
W (A, q) denotes the subspace of all partial isomorphisms u in A having a rela-
tive inverse v satisfying uv = q. So it follows that W (A, q) = W (q, Aop). Now for
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p, q ∈ P (A), we set

W (p,A, q) = W (p,A) ∩W (A, q)

= {u ∈W (A) : u : p −→ q}
= { u ∈ qAp : ∃ v ∈ pAq , vu = p and uv = q }.

(2.9)

Recall that two elements x, y ∈ A are similar if x and y are in the same orbit
under the inner automorphic action ∗ of G(A) on A. For p ∈ P (A), we say that
the orbit of p under the inner automorphic action is the similarity class of p and
denote the latter by Sim(p,A). Hence it follows that Sim(p,A) = G(A) ∗ p.

Definition 2.2. Let u ∈W (A). We call u a proper partial isomorphism if for some
W (p,A, q), we have u ∈ W (p,A, q), where p and q are similar.

We let V (A) denote the space of all proper partial isomorphisms ofA. Observe
that G(A)V (A) and V (A)G(A) are both subsets of V (A). In the following we set
G(p) = G(pAp).

2.5. The spaces V (p,A) and Gr(p,A)
If p ∈ P (A), then we denote by V (p,A) the space of all proper partial isomor-
phisms of A having a relative inverse v ∈W (q, A, p), for some q ∈ Sim(p,A). With
reference to (2.9) this condition is expressed by

V (p,A) :=
⋃

q∈Sim(p,A)

W (p,A, q). (2.10)

Observe that V (p,A) ⊂ V (A) ∩W (p,A), but equality may not hold in general,
since for u ∈ V (A), it may be the case that Ker(p) ⊂ P (A) intersects more than
one similarity class and that u ∈ V (A) by virtue of having u : r −→ s where r and
s are similar. But u : p −→ q only for q �= Sim(p,A). However, we shall see that
if A is a ring with identity, then each class in Gr(A) is contained in a similarity
class and thus also for Grop(A). Further, as Π and Πop are extended to W (A), this
means that as soon as we have u : p −→ q, with p and q belonging to the same
similarity class, then u : r −→ s implies that r and s are in the same similarity
class.

Clearly, we have G(A) · p ⊂ V (p,A) and just as in [11], it can be shown that
equality holds if A is a ring. The image of Sim(p,A) under the map Π defines the
space Gr(p,A) viewed as the Grassmannian naturally associated to V (p,A).

For a given unital semigroup homomorphism h : A −→ B, there is a restric-
tion of (2.3) to a commutative diagram:

V (p,A)
V (p,h)−−−−→ V (q,B)

ΠA



�



�ΠB

Gr(p,A)
Gr(p,h)−−−−−→ Gr(q,B)

(2.11)
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where for p ∈ P (A), we have set q = h(p) ∈ P (B). Observe that in the general
semigroup setting, V (p,A) properly contains G(A)p. In fact, if p ∈ P (A), then
V (p,A) = G(A)G(pAp) (see [13] Lemma 2.3.1).

Henceforth we shall restrict mainly to the case where A and B are Ba-
nach(able) algebras or suitable multiplicative subsemigroups of Banachable al-
gebras. In this case, as shown in [11], the vertical maps of the diagram (2.11)
are right principal bundles, the group for V (p,A) being G(pAp). Moreover, G(A)
acts G(pAp)-equivariantly on the left of V (p,A) simply by left multiplication, the
equivariance being nothing more than the associative law.

Let H(p) denote the isotropy subgroup for this left-multiplication. We have
then (see [11]) the analytically equivalent coset space representation

Gr(p,A) = G(A)/G(Π(p)), (2.12)

where G(Π(p)) denotes the isotropy subgroup of Π(p). Then there is the inclusion
of subgroupsH(p) ⊂ G(Π(p)) ⊂ G(A), resulting in a fibering V (p,A) −→ Gr(p,A)
given by the exact sequence

G(Π(p))/H(p) ↪→ V (p,A) = G(A)/H(p) −→ Gr(p,A) = G(A)/G(Π(p)), (2.13)

generalizing the well-known Stiefel bundle construction in finite dimensions.
In general, if A is a semigroup, we say that the multiplication is left trivial

provided that always xy = x, whereas we call it right trivial if xy = y. In either
case, we have P (A) = A. If the multiplication is right trivial, then obviously
Π = Im is constant and Πop = Ker is bijective. Whereas if the multiplication is
left trivial, then Ker is constant and Im = Π is bijective.

Remark 2.3. For the ‘restricted algebra’ to be considered in § 3.2, we recover the
‘restricted Grassmannians’ as studied in [29, 32, 34] (cf. [21]). Spaces such as
V (p,A) and Gr(p,A) are infinite-dimensional Banach homogeneous spaces of the
type studied in, e.g., [4, 8, 9, 36] in which different methods are employed. Emphasis
on the case where A is a C*-algebra, can be found in, e.g., [5, 25, 26, 27, 37],
again using different methods. Other approaches involving representations and
conditional expectations are treated in [1, 5, 6, 31].

2.6. The role of the canonical section

Suppose that R is any ring with identity. Now for x ∈ R, we define x̂ = 1 − x.
The ‘hat’ operation is then an involution of R leaving P (R) invariant. Further,
it is easy to check that for r, s ∈ P (R), we have Im(r̂) = Im(ŝ), if and only if
Ker(r) = Ker(s). This means that there is a natural identification of Grop(R)
with Gr(R) unique such that Ker(r) = Im(r̂), for all r ∈ P (R). For instance, if
r ∈ P (R), then rRr̂ and r̂Rr are subrings with zero multiplication. On the other
hand, r + r̂Rr is a subsemigroup with left trivial multiplication and r + rRr̂ is a
subsemigroup with right trivial multiplication. Thus Im|(r+ r̂Rr) is injective and
Ker|(r + r̂Rr) is constant, whereas Im|(r + rRr̂) is constant and Ker|(r + rRr̂) is
injective. In fact, we can now easily check that (e.g., see [11])

Im−1(Im(r)) = r + rAr̂, (2.14)
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and
Ker−1(Ker(r)) = r + r̂Ar = P (A) ∩ V (p,A). (2.15)

Thus this section is again none other than the canonical section through r. From
(2.15), it now follows immediately that when Ker(r) = Ker(s), we have

r + r̂Ar = s+ ŝAs, (2.16)

and from the symmetry here, one easily deduces that

r̂Ar = ŝAs. (2.17)

This means that the sub-ring ŝAs is constantly the same as r̂Ar along the points
of the image of the canonical section through r which is r+ r̂Ar = P (A)∩V (p,A),
by (2.15). But this also means that sAŝ is constantly the same as rAr̂ at all points
of r̂ + rAr̂. If s ∈ r + rAr̂, then

ŝ ∈ r̂ − rAr̂ = r̂ + rAr̂, (2.18)

and consequently we obtain again sAŝ = rAr̂. Thus P (A) in effect contains a ‘flat
X-shaped subset’ through any r ∈ P (A), namely

X = (r + r̂Ar) ∪ (r + rAr̂). (2.19)

This suggests that P (A) is everywhere ‘saddle-shaped’.
Now, as in [11], we observe here that if Im(r) = Im(s), then r and s are in the

same similarity class. For there is y ∈ rAr̂ with s = r + y. But the multiplication
in rAr̂ is zero, so ey = 1 + y ∈ G(A) with inverse e−y = 1 − y, and

s = rs = rey = e−yrey. (2.20)

As r : r −→ s, this means that r ∈ V (r, A, s), and so each class in Gr(A) is
contained in a similarity class. In the dual sense then, each class of Grop(A) is also
contained in a similarity class, as is easily checked directly by the same technique
and (2.15). In particular, we now see that for each p ∈ P (A), we have V (p,A) =
V (A) ∩W (p,A), and if u : r −→ s belongs to W (A), and also u ∈ V (A), then r
and s belong to the same similarity class.

Recalling the canonical section Sp (through p) let us take p, r ∈ P (A) with r ∈
Wp, and therefore Im(r) = Im(Sp(Im(r))). We have of course Ker(Sp(Im(r))) =
Ker(p), by definition of Sp, and hence r and p are in the same similarity class. Set
rp = Sp(Im(r)). Thus Im(r) = Im(rp) and Ker(rp) = Ker(p). We can find x ∈ p̂Ap
so that rp = p+ x, and then we have prp = p = prpp and rpprp = rpp = rp. This
shows that

Sp(Im(r)) = p−(Sp(Im(r)),p) (2.21)
and

(Sp(Im(r)))−(p,Sp(Im(r)) = p. (2.22)

Proposition 2.1.

(1) We have the equation

(Sp(Im(r))−(r,p) = pr : r −→ p. (2.23)
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(2) The canonical section is a local section of Π|V (p,A) : V (p,A) −→ Gr(p,A).

Proof. Part (1) follows from (2.7) and (2.22). For part (2), observe that since
Ker(Sp(Im(r))) = Ker(p), we have Sp(Im(r)) and p in the same similarity class and
thus the canonical section is actually simultaneously a local section of Π|V (p,A) :
V (p,A) −→ Gr(p,A). �

If A is any semigroup and u : r −→ s is in W (A) and k ∈ P (A), we say
that u projects along k provided that ku = kr. Thus, if A is a semigroup of linear
transformations of a vector space E, then this condition guarantees that u(h)− h
belongs to k−1(0), for every h ∈ r(E).

Remark 2.4. Clearly this last statement has no content unless k−1(0) is close to
being complementary to r(E) and s(E), but in applications this is not a problem.

If m ∈ P (A) with Ker(m) = Ker(k), then mk = m and km = k, so u ∈W (A)
projects along k if and only if it projects alongm. Thus we can say u projects along
K ∈ Grop(A) provided that it projects along k, for some and hence all k ∈ K.
We can now easily check that if u : r −→ s in W (A) projects along K, then so
too does u−(r,s). It will be important to observe this when later we consider the
T -function.

If r, s ∈ P (A) and it happens that rs : s −→ r, then it is the case that rs
projects along Ker(r), and hence (rs)−(s,r) does also. Thus even though Ker(rs) =
Ker(s), we have rs projecting along Ker(r). In particular, by (2.23), if r ∈ Wp,
then Sp(Im(r)) and its inverse pr both project along Ker(p), and therefore, if also
p ∈Wr, then Sr(Im(p)) and its inverse rp both project along Ker(r). If we consider
the case of a semigroup of linear transformations of a vector space E, then we see
that for rs to be in W (A) requires that r−1(0) has zero intersection with s(E).
Thus, if rs ∈ W (A), then we should think of r as close to s. For instance, if A is
any ring with identity and r, p ∈ P (A) with rp+ r̂p̂ ∈ G(A), then, for g = rp+ r̂p̂,
we have

rg = rp = gp. (2.24)

Therefore, rp = gp, so rp : p −→ r must project along Ker(r). Moreover as
r = gpg−1, we have rp : p −→ r is a proper partial isomorphism and rp ∈ V (p,A)
such that (rp)−(p,r) = pg−1 = g−1r. Note that for A a Banach algebra, the group
of units is open in A, and therefore the set of idempotents r ∈ P (A) for which
rp+ r̂p̂ ∈ G(A), is itself an open subset of P (A).

2.7. The spatial correspondence

If A is a given topological algebra and E is some A-module, then A = LA(E)
may be taken as the ring of A-linear transformations of E. An example is when E
is a complex Banach space and A = L(E) is the Banach algebra of bounded linear
operators on E. In order to understand the relationship between spaces such as
Gr(p,A) and the usual Grassmannians of subspaces (of a vector space E), we will
describe a ‘spatial correspondence’.
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Given a topological algebra A, suppose E is an A-module admitting a de-
composition

E = F ⊕ F c, F ∩ F c = {0}, (2.25)
where F, F c are fixed closed subspaces of E. We have already noted A = L(E)
as the ring of linear transformations of E. Here p ∈ P (E) = P (L(E)) is chosen
such that F = p(E), and consequently Gr(A) consists of all such closed split-
ting subspaces. The assignment of pairs (p,L(E)) 
→ (F,E), is called a spatial
correspondence, and so leads to a commutative diagram

V (p,L(E))
ϕ−−−−→ V (p,E)

Π



�



�Π

Gr(p,L(E)) =−−−−→ Gr(F,E)

(2.26)

where V (p,E) consists of linear homomorphisms of F = p(E) onto a closed split-
ting subspace of E similar to F . If u ∈ V (p,L(E)), then ϕ(u) = u|F and if
T : F −→ E is a linear homeomorphism onto a closed complemented subspace
of E similar to F, then ϕ−1(T ) = Tp : E −→ E. In particular, the points of
Gr(p,L(E)) are in a bijective correspondence with those of Gr(F,E).

Suppose E is a complex Banach space admitting a decomposition of the type
(2.25). We will be considering a ‘restricted’ group of units from a class of Banach
Lie groups of the type

Ĝ(E) ⊂ {
[

T1 S1

S2 T2

]

: T1 ∈ Fred(F ), T2 ∈ Fred(F c), S1, S2 ∈ K(E)}, (2.27)

that generates a Banach algebra A acting on E, but with possibly a different norm.
Here we mention that both compact and Fredholm operators are well defined in the
general category of complex Banach spaces; reference [38] provides the necessary
details.

3. The restricted Banach *-algebra Ares and the space of
polarizations

3.1. Hilbert modules and their polarizations

Let A be a unital C*-algebra. We may consider the standard (free countable
dimensional) Hilbert module HA over A as defined by

HA = {{ζi} , ζi ∈ A , i ≥ 1 :
∞
∑

i=1

ζiζ
∗
i ∈ A } ∼= ⊕Ai, (3.1)

where each Ai represents a copy of A. Let H be a separable Hilbert space (separa-
bility is henceforth assumed). We can form the algebraic tensor product H ⊗alg A
on which there is an A-valued inner product

〈x⊗ ζ , y ⊗ η〉 = 〈x, y〉 ζ∗η , x, y ∈ H , ζ, η ∈ A. (3.2)
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Thus H ⊗alg A becomes an inner product A-module whose completion is denoted
by H ⊗A. Given an orthonormal basis for H , we have the following identification
(unitary equivalence) given by H ⊗ A ≈ HA (see, e.g., [23]).

3.2. The restricted Banach *-algebra Ares

Suppose now that HA is polarizable, meaning that we have a pair of submodules
(H+,H−), such that HA = H+ ⊕ H− and H+ ∩ H− = {0} (cf., e.g., [24]). Thus we
call the pair (H+,H−) a polarization of HA. If we have a unitary A-module map J
satisfying J2 = 1, there is an induced eigenspace decomposition HA = H+ ⊕H−,
for whichH± ∼= HA. This leads to the Banach algebraAres = LJ (HA) as described
in [14] (generalizing that of A = C in [32]). Specifically, we define

Ares := LJ (HA) = {T ∈ LA(HA) : [J, T ] is Hilbert-Schmidt}, (3.3)

for which the norm is ‖T ‖J = ‖T ‖ + ‖[J, T ]‖2, for T ∈ Ares.
• Once this restriction is understood, we shall simply write A = Ares :=

LJ (HA) until otherwise stated, and let G(A) denote its group of units.

Remark 3.1. Note that A is actually a (complex) Banach *-algebra. The spaces
Gr(p,A) are thus generalized ‘restricted Grassmannians’ [14, 15], which for the
case A = C, reduce to the usual restricted Grassmannians of [32, 34]. In this case,
V (p,A) is regarded as the Stiefel bundle of ‘admissible bases’ (loosely, those for
which a ‘determinant’ is definable).

The space Gr(p,A) may be realized more specifically in the following way.
Suppose that a fixed p ∈ P (A) acts as the projection of HA on H+ along H−.
Therefore Gr(p,A) is the Grassmannian consisting of subspaces W = r(HA), for
r ∈ P (A), such that:
(1) the projection p+ = pr : W −→ H+ is in Fred(HA), and
(2) the projection p− = (1 − p)r : W −→ H− is in L2(H+,H−) (Hilbert-Schmidt

operators).
Alternatively, for (2) we may take projections q ∈ P (A) such that for the fixed
p ∈ P (A), the difference q − p ∈ L2(H+,H−). Further, there is the big cell Cb =
Cb(p1, A) ⊂ Gr(p,A) as the collection of all subspaces W ∈ Gr(p,A), such that
the projection p+ ∈ Fred(HA) is an isomorphism.

3.3. The space P of polarizations

Let us define p± ∈ A by

p± =
1 ± J

2
. (3.4)

Then p± ∈ P (A) can be seen to be the spectral projection of J with eigenvalue
±1. Clearly p− + p+ = 1, so p− = 1 − p+ = p̂+. Thus,

(H+,H−) = (p+(HA), p−(HA)), (3.5)

is a polarization. Notice that if HA is infinite-dimensional, then members of the
group of units G = G(L(HA)) of the unrestricted algebra, are clearly not Hilbert-
Schmidt in general. If g ∈ G with g(p+)g−1 = p−, then using (3.4), we find
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gJ+Jg = 0, which means that [g, J ] = 2gJ ∈ G. This means that in the restricted
algebra A = Ares, the projections p+ and p− must be in different similarity classes.
For this reason, when dealing with the Grassmannian Gr(p+, A) and the Stiefel
bundle V (p+, A) over it, the map Ker will take values in Gr(p−, A) which is an
entirely different space referred to as the dual Grassmannian of Gr(p+, A). Thus
for any p ∈ P (A), let

Gr∗(p,A) = Gr(p̂, A) = Grop(p,A). (3.6)

We also note that by (3.4), we have [T, J ] = 2[T, p+], for any operator in L(HA). So
the definition of the restricted algebra is equally well given as the set of operators
T ∈ L(HA) for which [T, p+] is Hilbert-Schmidt.

Now let (H+,H−) be the fixed polarization defined by p+ and (K+,K−) an-
other polarization, so that HA = H+ ⊕ H− = K+ ⊕ K−, whereby the projections
parallel to H− and K− are isomorphisms of the spaces H+ and K+ respectively.
Further, when restricting K± to be in Gr(p±, A), then under these specified condi-
tions, the Grassmannian Gr(p−, A) is the ‘dual Grassmannian’ of Gr(p+, A). Let
us denote this dual Grassmannian by Gr∗(p+, A). Then, on setting p = p+, the
space P of such polarizations can be regarded as a subspace

P ⊂ Gr(p,A) × Gr∗(p,A). (3.7)

3.4. The case where A is commutative

Here we address the case where A is a commutative separable C*-algebra. The
Gelfand transform implies there exists a compact metric space Y such that Y =
Spec(A) and A ∼= C(Y ). Setting B = LJ (H), we can now express the Banach
*-algebra A in the form

A ∼= B ⊗ A ∼= {continuous functions Y −→ B}, (3.8)

for which the ‖ ‖2-trace in the norm of A is regarded as continuous as a function
of Y . The Banach algebra B = LJ(H) corresponds to taking A = C, and as
mentioned in Remark 3.1, with respect to the polarization H = H+ ⊕ H−, we
recover the usual restricted Grassmannians Gr(H+, H). Given our formulation,
and in view of the spatial correspondence, it will sometimes be convenient to set
Gr(q,B) = Gr(H+, H), for suitable q ∈ P (A). In fact, there is a natural inclusion
Gr(q,B) ⊂ Gr(p,A) as deduced in [15].

4. Constructions for the submanifold geometry and bundle theory

4.1. Some preliminaries

In this section we will compute in various bundles where the manifolds involved
are submanifolds of Banach spaces, and in this context, adopt some notation which
will facilitate the calculations. If ξ = (π,B,X) denotes a bundle, meaning simply
that we start with a map π : B −→ X , and denote by ξx = Bx = π−1(x), the fiber
of ξ over x ∈ X . We write π = πξ for the projection of this bundle and B = Bξ for
its total space. When no confusion results, we will simply write B for the bundle



Curvature of Universal Bundles of Banach Algebras 207

ξ. If ψ = (h; f) : ξ −→ ζ, meaning that πζh = fπξ, then ψx = hx denotes the
restriction of h to a map of ξx into ζf(x). By the same token we shall simply write
h in place of ψ. As usual, by a section of ξ, we simply mean a map s : X −→ B
satisfying πs = idX .

If ξ is a vector bundle over X , then we take zξ to denote the zero section
of ξ. We denote by ε(X,F ) the trivial bundle X × F over X with fiber F . If M
is a manifold (of some order of differentiability), then we will need to distinguish
between the tangent bundle T(M) of M and the total space TM of the former.
We let zM = zT(M). Thus, zM is a standard embedding of M into TM .

When ξ is a subbundle of the trivial bundle ε = ε(X,F ), then πε is the first
factor projection and the second factor projection, π2 assigns each b ∈ X × F its
principal part. Thus we have a subset Fx = π2(Bx) ⊂ F , so that Bx = {x} × Fx.
Moreover, if s is here a section of ξ ⊂ ε, then we call π2s the principal part of s.
Consequently, s = (idX , f), where f = π2s : X −→ F , must have the property
that f(x) ∈ Fx for each x ∈ X , and any f : X −→ F having this property is the
principal part of a section. In particular, if M is a submanifold of a Banach space
F , then T(M) is a vector subbundle of ε(M,F ), and we define TxM = Fx. Thus
Tx(M) = {x} × TxM . If H is another Banach space, N a submanifold of H , and
f : M −→ N is smooth, then Txf : Tx −→ Tf(x), is the principal part of the
tangent map, so that we have Tfx = idx × Txf .

Locally, we can assume that M is a smooth retract in F which means any
smooth map on M can be assumed to have at each point, a local smooth extension
to some open set in F containing that point. So if v ∈ TxM , then Txf(v) =
Dvf(x) = f ′(x)v, this last term being computed with any local smooth extension.
In our applications, the maps will be defined by simple formulas which usually
have obvious extensions, as both F and H will be at most products of a fixed
Banach algebra A and the formulas defined using operations in A.

4.2. The tangential extension

If ϕ : M × N −→ Q is a smooth map, then we have the associated tangent map
Tϕ : TM×TN −→ TQ. If we write ϕ(a, b) = ab, then we also have Tϕ(x, y) = xy,
if (x, y) ∈ TM × TN . Employing the zero sections, we shall write ay in place of
zM (a)y and xb in place of xzN (b). Thus it follows that ab = zM (a)zN (b) is again
identified with ϕ(a, b); that is, we regard Tϕ as an extension of ϕ which we refer
to as the tangential extension (of ϕ).

Since T (M × N) = TM × TN , which is fiberwise the direct sum of vector
spaces, we readily obtain for (x, y) ∈ TaM × TbN , the relation

xy = ay + xb = ay +ab xb, (4.1)

where for emphasis, we denote by +ab the addition map in the vector space TabQ
(recall that ϕ(a, b) = ab).
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4.3. Tangential isomorphisms

In the following, we will have to be particularly careful in distinguishing between
the algebraic commutator ‘[ , ]alg’ and the Lie bracket ‘[ , ]L’ (of vector fields),
when dealing with functions taking values in a Banach algebra. Specifically, we let
[x, y]alg denote the algebraic commutator which can be taken pointwise if x, y are
algebra-valued functions, and [x, y]L to denote the Lie bracket of vector fields or
principal parts of vector fields which may also be algebra-valued functions.

Relative to the restricted algebra Ares in (3.3), let us recall that the space of
polarizations is the space P of complementary pairs in the product

P ⊂ Gr(p,Ares) × Grop(p,Ares). (4.2)

A significant observation, is that as a set, P can be identified with the similarity
class Sim(p,Ares) of Ares. In fact (see below),

P ∼= Sim(p,Ares) ⊂ P (Ares). (4.3)

Now from [11], we know that Π = Im and Πop = Ker are analytic open maps.
In fact, the calculations are valid in any Banach algebra, so henceforth, A can be
taken to be any Banach algebra with identity. Thus, we can begin by observing
from (2.4) that for any Banach algebra A, the map φ = (Π,Πop) = (Im,Ker) is an
embedding of the space of idempotents P (A) as an open subset of Gr(A)×Gr(A).

Theorem 4.1. Let φ = (Π,Πop) = (Im,Ker) : P (A) −→ Gr(A) × Gr(A), be as
above and let r ∈ P (A).
(1) We have an isomorphism

TΠr|[{r} × (r̂Ar)] : {r} × (r̂Ar)
∼=−→ TΠ(r)Gr(A), (4.4)

and
Ker TΠr = {r} × (rAr̂). (4.5)

(2) In the dual sense, we also have an isomorphism

TΠop
r |[{r} × (rAr̂)] : {r} × (rAr̂)

∼=−→ TΠ(r̂)Gr(A), (4.6)

and
Ker TΠop

r = {r} × (r̂Ar). (4.7)
(3) The map φ is an injective open map and an analytic diffeomorphism onto its

image P. Hence P is analytically diffeomorphic to Sim(p,A).

Proof. As we already know, since the map φ is injective, it suffices to apply the
Inverse Function Theorem (see, e.g., [20]) when noting that the tangent map Tφ
is an isomorphism on fibers of the tangent bundles. To do this, we apply the
formulation of [11]. Firstly, from [11], we know that

TrP (A) = r̂Ar + rAr̂. (4.8)

If r ∈ P (A), then we deduce from [11] the canonical section Sr : Ur −→ P (A)
whose image is P (A) ∩ V (r, A) = r + r̂Ar, which is analytic on its domain
Ur ⊂ Gr(A). Specifically, we know from [11] that Sr is the inverse of the analytic
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diffeomorphism Π|(r + r̂Ar), which maps onto Ur and that Ur is an open subset
of Gr(A) containing r. This shows that TrΠ|{r} × (r̂Ar) is an isomorphism onto
TΠ(r)Gr(A). On the other hand, Π is constant on r + rAr̂ = Π−1(Π(r)) ⊂ P (A).
Thus, we see that Ker TrΠ = {r} × (rAr̂). This establishes part (1).

Likewise for part (2), Ker|(r + r̂Ar) is constant and Ker|(r + rAr̂) is an
analytic diffeomorphism onto an open subset of Gr(r̂, A) which of course is an
open subset of Gr(A) as Π is an open map and Sim(q, A) is open in P (A). Thus
(2) follows.

For part (3), note that since r̂Ar and rAr̂ are complementary subspaces of
TrP (A), it follows that Trφr = Tr(Π,Πop) is an isomorphism onto Tφ(r)[Gr(A) ×
Gr(A)]. Thus φ is indeed an injective open map and an analytic diffeomorphism
onto its image P. Now Grop(p,A) = Gr∗(p,A) = Gr(p̂, A), and clearly φ carries
Sim(p,A) onto this sub-product, namely the space of polarizations P. �

5. The space VΛ and its geometry

5.1. Transversality and the transition map

We now fix any idempotent p ∈ P (A), and for ease of notation in the following,
we set

Λ = Sim(p,A), Gr(p) = Gr(p,A), V = V (p,A)

πΛ = Π|Λ, and πV = Π|V. (5.1)

Note that from Theorem 4.1(3), we have the analytic diffeomorphism Λ ∼= P.
From [11, § 7] we know that (πV , V,Gr(p)) is an analytic right principal

G(pAp)-bundle whose transition map

tV : V ×π V −→ G(pAp), (5.2)

is the analytic map such that if u, v ∈ V , and r ∈ Λ, with πV (u) = πV (v) = πΛ(r),
then (recalling the notation of (2.5)) we have

tV (u, v) = u−(p,r)v. (5.3)

Define VΛ = π∗
Λ(V ), so then VΛ ⊂ Λ × V is an analytic principal right G(pAp)-

bundle over Λ, and clearly

VΛ = {(r, u) ∈ Λ × V : πΛ(r) = πV (u)}. (5.4)

The fact that VΛ is an analytic submanifold of Λ× V and hence of A×A, follows
from the fact that by (4.4) any smooth map to Gr(p) is transversal over πΛ.

Likewise, we denote by tΛ the transition map for VΛ, as the analytic map
given by the formula:

tΛ((r, u), (r, v)) = tV (u, v) = u−(p,r)v. (5.5)

We keep in mind that if (r, u) ∈ VΛ, then as πΛ(r) = πV (u), it follows that
u : p −→ r and therefore u−(p,r) is defined.
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The next step is to uncover the geometry natural to VΛ coming from the fact
that we can calculate T(r,u)VΛ ⊂ A×A. Since πΛ and πV are transversal as maps
to Gr(p), it follows that

T(r,u)VΛ = {(x, y) ∈ TrΛ × TuVΛ : [TπΛ]r(r, x) = [TπV ]u(u, y)} ⊂ A×A. (5.6)

Lemma 5.1. We have TuV = Ap, and rAp is the vertical tangent space of V over
πE(r) = πV (u). Further, r̂Ap and rAp are complementary subspaces of Ap = TuV .

Proof. It is straightforward to see that TrΛ = r̂Ar + rAr̂ ⊂ A, and from [11], we
know that V = G(A)p is open in Ap. It follows that TuV = Ap. As πV is a principal
bundle projection, we know that Ker TuπV = Tu[uG(pAp)], the tangent space to
the fiber over u ∈ V , is the kernel of TπV . As there is a g ∈ G(A) with u = gp,
and as left multiplication by g is G(pAp)-equivariant (simply by the associative
law for multiplication in A), it follows that

Tu[uG(pAp)] = gTpG(pAp) = gpAp = uAp. (5.7)

Since ru = u, and uu−(p,r) = r, it follows that uAp = rAp. Thus rAp is the vertical
tangent space of V over πE(r) = πV (u), so r̂Ap and rAp are complementary
subspaces of Ap = TuV . �

On the other hand, from [11], we know that Λ ∩ V = Sp(Up) is the image
of the canonical section and both πΛ, πV coincide on Λ ∩ V . This means that by
(4.4), we know [Tπv]p carries {p}× p̂Ap isomorphically onto Tπ(p)Gr(p) and agrees
with the isomorphism (4.4), so we see easily that

T(p,p)VΛ = {x, y) ∈ [p̂Ap+ pAp̂] : xp = p̂y}. (5.8)

Differentiating the equation ru = u, we see that any (x, y) ∈ T(r,u)VΛ must
satisfy xu + ry = y which is equivalent to the equation xu = r̂y. Notice this is
exactly the equation for the tangent space at (p, p), so we claim

T(r,u)VΛ = {(x, y) ∈ TrΛ ×Ap : xu = r̂y}. (5.9)

Effectively, a straightforward calculation using (5.8) and the fact that G(A) acts
G(pAp)-equivariantly on V on the left by ordinary multiplication to translate the
result in (5.8) over to the point (r, u), establishes (5.9).

5.2. The connection map V
Now the projection π∗ = πVΛ of VΛ is a restriction of the first factor projection of
A × A onto A which is linear. Thus T(r,u)π

∗(x, y) = x, and therefore the vertical
subspace of T(r,u)VΛ is the set {0} × rAp. The projection of the tangent bundle
TVΛ onto this vertical subbundle is clear, and we define

V : TVΛ −→ TVΛ

V((r, u), (x, y)) = ((r, u), (0, ry)),
(5.10)

for any (x, y) ∈ T(r,u)VΛ, and for any (r, u) ∈ VΛ. For convenience, let V(r,u) be the
action of V on principal parts of tangent vectors, so that we obtain

V(r,u)(x, y) = (0, ry). (5.11)
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It is obvious that V is a vector bundle map covering the identity on VΛ and that
V ◦ V = V . Thus we call V the connection map.

Since the right action of G(pAp) on V is defined by just restricting the mul-
tiplication map on A×A, it follows that the tangential extension of the action of
G(pAp) to act on TV is also just multiplication on the right, that is, yg is just
the ordinary product in A. This means that in TVΛ we have (x, y)g = (x, yg) as
the tangential extension of the right action of G(pAp) on T(r,u)VΛ. From this, the
fact that V is G(pAp)-equivariant, is clear. Thus the map V defines a connection
on VΛ.

Let H = (idTV −V), so H is the resulting horizontal projection in each fiber.
Then clearly for (x, y) ∈ T(r,u)VΛ, we have on principal parts of tangent vectors

H(r,u)(x, y) = (x, y) − (0, ry) = (x, r̂y) = (x, xu). (5.12)

Moreover, this clarifies that (x, xu) ∈ H(T(r,u)VΛ) is (the principal part of) the
horizontal lift of x ∈ TrΛ.

If σ is any smooth local section of VΛ, then for a vector field χ on Λ it follows
that the covariant derivative is just the composition

∇χσ = V [Tσ]χ, (5.13)

which is a map of Λ to V(TVΛ) lifting σ. Because the differentiation here is essen-
tially applied to the principal part of the vector field, if f is the principal part of
σ and w is the principal part of χ, then for the purpose of calculations, we can
also write ∇wf = V [f ′w] = VDwf , where the meaning is clear.

6. The connection form and its curvature

6.1. The connection form ωΛ

The right action of G(pAp) on VΛ in (5.4), when tangentially extended, gives
(r, u)y ∈ T(r,u)VΛ when y ∈ TpG(pAp) = pAp. As the right action of G(pAp)
on VΛ is defined by (r, u)g = (r, ug), it follows that (r, u)y = (0, uw), for any
w ∈ TpG(pAp) = pAp. The connection 1-form ω = ωΛ can then be determined
because it is the unique 1-form such that, in terms of the connection map V , we
have

(r, u)ω(r,u)(x, y) = V(r,u)(x, y). (6.1)

Notice that if (x, y) ∈ T(r,u)VΛ, then we have y ∈ Ap, and so u−(p,r)y ∈ pAp =
TpG(pAp). We therefore have both

(r, u)ω(r,u)(x, y) = (0, ry) and (r, u)u−(p,r)y = (0, ry), (6.2)

which by comparison expresses the connection form as

ω(r,u)(x, y) = u−(p,r)y ∈ TpG(pAp) = pAp. (6.3)
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6.2. The curvature form ΩΛ

To find the curvature 2-form ΩΛ of ωΛ, we simply take the covariant exterior
derivative of ωΛ:

ΩΛ = ∇ωΛ = H∗dωΛ. (6.4)
Notice that by (5.12), as rr̂ = 0, we have ωΛ(Hv) = 0, for any v ∈ TVΛ, as should
be the case, and therefore if w1 and w2 are local smooth tangent vector fields on
VΛ, then, on setting Ω = ΩΛ for ease of notation, we have

Ω(w1, w2) = −ω([H(w1),H(w2)]L). (6.5)

This means that the curvature calculation is reduced to calculating the Lie bracket
of two vector fields on VΛ. Since VΛ ⊂ A × A is an analytic submanifold, it is a
local smooth retract in A×A.

In order to facilitate the calculation, let

(r̃, ũ) : W −→ W ∩ VΛ, (W ⊂ A×A), (6.6)

be an analytic local retraction of an open set W in A × A, onto the open subset
W ∩ VΛ of VΛ. We can then use (r̃, ũ) to extend all functions on W ∩ VΛ to be
functions on W . As w1 and w2 are tangent vector fields, assumed analytic on
W ∩ VΛ, their principal parts can be expressed in the form a1 = (x1, y1) and
a2 = (x2, y2), and we can therefore assume that as functions, they all are defined
on W . We then have pointwise on W ∩ VΛ,

xiũ = ˆ̃ryi = (1 − r̃)yi, for i = 1, 2. (6.7)

But then H(r,u)(xi, yi) = (xi, xiu) on W ∩ VΛ, meaning that the principal part of
[H(w1),H(w2)]L is just [(x1, x1ũ), (x2, x2ũ)]L|(W ∩ VΛ).

The next simplification is to notice that on W ∩ VΛ, the function ũ is just
the same as the second factor projection A × A −→ A. On differentiating, this
simplifies the application of the product rule. The result is that the principal part
of [H(w1),H(w2)]L evaluated at (r, u) ∈ VΛ, has the form

(c, cu+ [x2, x1]algu), (6.8)

for suitable c, and where xi is now just the value of the preceding function of the
same symbol at (r, u).

Proposition 6.1. For w1, w2 ∈ (TVΛ)(r,u) having principal parts (x1, y1) and (x2, y2)
respectively, we have the curvature formula

ΩΛ(w1, w2) = u−(p,r)[x1, x2]algu. (6.9)

Proof. As the Lie bracket of a pair of vector fields tangent to a submanifold, again
remains tangent to that submanifold, this means that (c, cu+[x2, x1]algu) in (6.8),
is tangent to VΛ. Hence, we must also have

cu = r̂(cu+ [x2, x1]algu), (6.10)

and therefore,
rcu = r̂[x2, x1]alg. (6.11)
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Applying (6.3) and (6.5), we now obtain

ω([H(w1),H(w2)]L)(r,u) = u−(p,r)(cu + [x2, x1]algu). (6.12)

In view of the fact that u−(p,r)r = u−(p,r) and (6.12) above, we deduce that

ω([H(w1),H(w2)]L)(r,u) = u−(p,r)[x2, x1]algu. (6.13)

Thus by (6.5), we finally arrive at

Ω(w1, w2) = u−(p,r)[x1, x2]algu, (6.14)

where now w1, w2 ∈ (TVΛ)(r,u) have principal parts (x1, y1) and (x2, y2) respec-
tively. �

This of course means that x1, x2 ∈ TrΛ = r̂Ar + rAr̂, that y1, y2 ∈ TuVΛ =
Ap, and thus xiu = r̂yi, for i = 1, 2. But, VΛ = G(A)u, so there is g ∈ G(A) with
u = gp. It then follows that u−(p,r) = pg−1, and therefore we can also write, when
u = gp,

Ω(w1, w2) = [g−1x1g, g
−1x2g]alg. (6.15)

In this way we can simply transfer the computation to the Lie algebra of G(pAp).
We make the following observations:

(1) Because ru = u and u−(p,r)r = u−(p,r), when (r, u) ∈ VΛ, it follows that
(6.14) can also be written as

Ω(w1, w2) = u−(p,r)r[x1, x2]algru, (6.16)

and the factor r[x1, x2]algr simplifies greatly because x1, x2 ∈ rAr̂ + r̂Ar.
(2) If x1 and x2 both belong to rAr̂, or both belong to r̂Ar, then the result is

Ω(w1, w2) = 0.
(3) If x1 ∈ rAr̂ and x2 ∈ r̂Ar, the result is

Ω(w1, w2) = u−(p,r)x1x2u. (6.17)

Whereas if the reverse is the case, that is x1 ∈ r̂Ar and x2 ∈ rAr̂, the result is

Ω(w1, w2) = −u−(p,r)x2x1u. (6.18)

Remark 6.1. Again, by Theorem 4.1(3), since Λ ∼= P, the construction of the
principal bundle with connection (VΛ, ωΛ) −→ Λ, may be seen to recover that of
the principal bundle with connection (VP, ωP) −→ P as in [39, § 3]. We will elab-
orate on matters when we come to describe the T -function in § 8.1. This principal
bundle has for its associated vector bundle (with connection) the universal bundle
(γP,∇P) −→ P. In the following section, the latter will be recovered when we
construct the universal bundle (with connection) (γΛ,∇Λ) −→ Λ associated to
(VΛ, ωΛ) −→ Λ.
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7. The universal bundle over Λ

7.1. The Koszul connection

Next we relate the geometry of VΛ to the geometrical context of [39] (cf. [28]).
First we must show that VΛ is the principal bundle of the universal bundle in an
appropriate sense. In fact, if E is a Banach A-module, then we can form an obvious
universal vector bundle, denoted γΛ over Λ, as defined by

γΛ = {(r,m) ∈ Λ × E : rm = m}, (7.1)

and whose projection πγ is just the restriction of first factor projection. Thus the
principal part of a section is here simply a map f : Λ −→ E with the property
that f(r) ∈ rE, for every r ∈ Λ.

In this case, a natural Koszul connection ∇Λ arises. Effectively, we have
a covariant differentiation operator, given by its operation on principal parts of
sections of γΛ, via the formula

∇xf(r) = rDxf(r) = rTrf(x), x ∈ TrΛ. (7.2)

If x is the principal part of a tangent vector field on Λ, then it follows that

∇xf = idΛDxf = idΛTidΛf(x). (7.3)

If (r,m) ∈ γΛ, then the principal part of the tangent space to γΛ at the point
(r,m) is just

T(r,m)γΛ = {(x,w) ∈ TrΛ × E : rw + xm = w}, (7.4)

which can also be written as

T(r,m)γΛ = {(x,w) ∈ TrΛ × E : xm = r̂w}. (7.5)

Since πγ is simply the restriction of first factor projection which is linear, it follows
that the vertical subspace is

V T(r,m)γΛ = Ker T(r,m)πγ = {(0, w) ∈ TrΛ × E : rw = w}, (7.6)

so the vertical projection
Vγ : TγΛ −→ TγΛ, (7.7)

as a vector bundle map covering idγΛ , is given by

Vγ((r,m), (x,w)) = ((r,m), (0, rw)). (7.8)

This of course means that the horizontal projection Hγ is given by

Hγ((r,m), (x,w)) = ((r,m), (x, r̂w)) = ((r,m), (x, xm)), (7.9)

which makes it clear that the horizontal lift to (r,m) ∈ γΛ of (r, x) ∈ TΛ is just
((r, x), (x, xm)).

Thus, the geometry of the universal bundle γΛ turns out to be very natural
and straightforward. In order to see that γΛ is the associated vector bundle to the
principal bundle VΛ, we first note that the principal part of the fiber of γΛ over
p ∈ Λ is pE and we can define the principal map

Q : VΛ × pE −→ γΛ, (7.10)
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by
Q((r, u),m) = (r, um), ((r, u),m) ∈ VΛ × pE. (7.11)

Proposition 7.1. The map Q in (7.11) is the analytic principal bundle map for
which the universal bundle (γΛ = VΛ[pE],∇Λ) is an analytic vector bundle with
connection associated to the principal bundle with connection (VΛ, ωΛ).

Proof. Clearly VΛ × pE has a principal right G(pAp)-action given by

((r, u),m))g = ((r, u)g, g−pm) = ((r, ug), g−pm), (7.12)

with transition map

t(((r, u),m), ((r, v), n)) = tΛ((r, u), (r, v)), (7.13)

and Q establishes a bijection with the orbit space of this action. To conclude that
Q is the actual principal map making γΛ = VΛ[pE] the associated bundle to VΛ

with fiber pE, it suffices to show that Q has analytic local sections, because Q
itself is clearly analytic.

To that end, observe that if σ is a local section of VΛ over the open subset
U ⊂ Λ, then σ = (idΛ, u) where u : U −→ V = V (p,A), such that for every r ∈ U ,
we have u(r) : p −→ r is a proper partial isomorphism. We then define λ, the
corresponding local analytic cross section of Q by

λ(r,m) = ((r, u(r)), u(r)−(p,r)m). (7.14)

Following [11] we know that u−(p,r) as a function of r ∈ U , is analytic as a map
to V (A). Indeed, Q is the principal map and γΛ = VΛ[pM ]. It is now a routine
calculation to see that the connection on γΛ defined above is the same as the
connection derived from the connection ωΛ already defined on VΛ. �

For instance, if f : VΛ −→ pE is an equivariant smooth map, and x is any
section of TΛ, then f defines a smooth section s of γΛ whose covariant derivative
∇xs is the same as the section defined by the derivative of f in the direction of the
horizontal lift of x. As Q is the principal map, it is the projection of a principal
bundle and therefore TQ is vector bundle map covering Q which is surjective on
the fibers. We have

TQ(((r, u),m), ((x, y), w)) = ((r, um), (x, ym+ uw)), (7.15)

and
VγTQ((r, u),m), ((x, y), w)) = ((r, um), (0, r[ym+ uw])), (7.16)

along with
TQ(V∗(((r, u),m), ((x, y), w)) = TQ(((r, u),m), ((0, ry), w))

= ((r, um), (0, rym+ uw)).
(7.17)

But ru = u for (r, u) ∈ VΛ. Hence from (7.16) and (7.17), we have VγTQ = TQV∗,
where V∗ denotes the connection map of the vertical projection on VΛ ×pE pulled
back from VΛ by the first factor projection map of VΛ × pE −→ VΛ, which being
equivariant, defines a pullback square. This shows that the vertical projection on
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γΛ is that defined by the vertical projection on VΛ. Thus we have constructed VΛ

to be the principal bundle for any universal bundle defined by any left Banach A-
module such as E. In particular, we could take E = A for the existence of one, but
for the T -function construction we would take E = HA. In other words, we would
take E to be the underlying Banach space of HA so A would act as a subalgebra
of the commutant of A in the algebra of bounded operators.

8. The T -function

8.1. Definition of the T -function

From our constructions so far, even though they are quite general, it should be clear
that we have all the ingredients for the construction of a function, denoted by T ,
that generalizes the function, denoted by T and defined via cross-ratio in [28, 39] as
a pre-determinant, thus providing the Tau (τ)-function studied in [28, 34]. Similar
to [39], we will define two local sections αp and βp over W 0

p , the latter taken to
be an open neighborhood of p ∈ P (A), which is our reference projection. For W 0

p

we take the set of r ∈ Wp = π−1
Λ (p+ pAp̂) such that φp(r) = rp + r̂p̂ ∈ G(A). As

G(A) is open in A, and as φp(p) = 1 ∈ G(A), it follows that W 0
p is indeed open in

Λ and contains p.
Next we describe the sections αp and βp:

(1) For αp we take the restriction of the pullback by πΛ of the canonical section
Sp which is defined over πΛ(Wp) ⊂ Gr(p,A). Thus, as in the pullback, αp

becomes a composition with πΛ. It follows from (4.5) that if w = (r, x) ∈ TΛ
with x ∈ rAr̂, then ∇wαp = 0.

(2) For βp, with g = φp(r) and r ∈ W 0
p , we have g ∈ G(A) and rp : p −→ r

is a proper partial isomorphism which projects along Ker(r), so we define
βp(r) = (r, rp).

As Sp(Im(r)) projects along Ker(p), we generalize the T-function of [39] by the
function T by recalling the transition map tΛ in (5.5), and then defining

T (r) = tΛ(αp(r), βp(r)). (8.1)

Hence we may express the latter by T = tΛ(αp, βp).
In [39], the function T constructed via cross-ratio is used to define the con-

nection form ωP on the principal bundle VP −→ P, where the corresponding
curvature 2-form ΩP can be computed in coordinates on the product of Grass-
mannians. In order to see that the geometry here is essentially the same as that
of [39], we show that under certain conditions, αp and βp are parallel (covariantly
constant) sections. Specifically, it suffices to show that ∇wαp = 0, if w = (r, x)
with x ∈ rAr̂, and that ∇wβp = 0 if w = (r, x) with x ∈ r̂Ar. The first of these
has already been observed in (1) above. As for the second, since βp(r) = (r, rp), it
follows that Trβp(x) = (x, xp), for any x ∈ TrΛ, and therefore

∇wβp = V((r, rp), (x, xp)) = ((r, rp), (0, rxp)). (8.2)
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As x ∈ r̂Ar implies rxp = 0, we also have ∇wβp = 0, for w = (r, x) with x ∈ r̂Ar.
We therefore know that the geometry is the same as in [39] and we can now apply
our formulas to calculate T . But, we know from the definition of the transition
function tΛ in (5.5), that we have

tΛ((r, u), (r, v)) = u−(p,r)v, (8.3)

and we know that the relative inverse for the canonical section is p itself, indepen-
dent of r. Hence, we finally have T (r) = prp.

8.2. Curvature formulas

Returning to the universal bundle (with connection) (γΛ,∇Λ) −→ Λ, we can easily
calculate the curvature form using the Koszul connection of the connection ∇Λ

operating on principal parts of sections of γΛ. If x and y are principal parts of
local smooth tangent vector fields to Λ, and if f is an E-valued smooth function
on the same domain, then we can consider that ordinary differentiation D acting
on functions, is the Koszul connection of the flat connection on ε(Λ, E). So the
curvature operator R∇ can be computed keeping in mind that RD = 0. Thus,
letting L : Λ −→ L(E,E) be the action of left multiplication of Λ on E, noting
that L(r)m = em, we then have

R∇(x, y)f = [∇x,∇y]f −∇[x,y]Lf. (8.4)

Theorem 8.1. With respect to the above action L : Λ −→ L(E,E) of left multipli-
cation of Λ on E, we have the following formulas for the curvature operator R∇,
for x, y ∈ TrΛ:
(1)

R∇(x, y) = L[(DxL)Dy − (DyL)Dx]. (8.5)
(2)

R∇(x, y) = L[x, y]alg. (8.6)

Proof. Firstly, observe that notationally ∇xf = LDxf . Since the pointwise prod-
uct is LL = L, it follows that

∇x∇yf = LDx(LDyf) = L[DxL][Dyf ] + LDxDyf, (8.7)

and therefore (8.4) becomes

R∇(x, y)f = L[DxL][Dyf ] + LDxDyf − (L[DyL][Dxf ] + LDyDxf) − LD[x,y]Lf.
(8.8)

Consequently, we have

R∇(x, y)f = (L[DxL]Dy − [DyL]Dx)f + LRD(x, y)f, (8.9)

and therefore, as RD = 0, it follows that

R∇(x, y)f = L[(DxL)Dy − (DyL)Dx]f. (8.10)

Thus we may write

R∇(x, y) = L[(DxL)Dy − (DyL)Dx], (8.11)

which establishes (1).
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On the other hand, we note that L is the restriction of the linear map defined
by the left regular representation LA of A on E, defined by the module action of
A on M . So we have DxL = LA(x), the composition of LA with x. This means
that

[(DxL)(r)]m = LA(x(r))m = [x(r)]m = (xm)(r), (8.12)

for r ∈ Λ and m ∈ rE. Therefore, we have for f , that

R∇(x, y)f = L[(LA(x))Dy − (LA(y))Dx]f = L[xDy − yDx]f. (8.13)

For the curvature operator at a specific point, we can take any m ∈ E, and define
fm = Lm, so that we have fm(r) = L(r)m = rm. Then f is given by the module
action of A on E which is linear, for fixed m ∈ E. Thus, Dxf = LA(x)m = xm
and (8.13) becomes

R∇(x, y)f = L[x, y]algm, (8.14)

which means that we finally arrive at (2):

R∇(x, y) = L[x, y]alg. (8.15)

�

8.3. Remarks on the operator cross ratio

Returning to the case A = LJ (HA), let us now mention some examples (to be
further developed in [16]). Firstly, we recall the T function of [39] defined via cross-
ratio. Consider a pair of polarizations (H+,H−), (K+,K−) ∈ P. Let H± and K±
be ‘coordinatized’ via maps P± : H± −→ H∓, and Q∓ : K± −→ K∓, respectively.
Following [39] (Proposition 2), we can consider the composite map

H+
K−−→ K+

H−−→ H+, (8.16)

as represented by the operator cross-ratio (cf. [39]):

T(H+,H−,K+,K−) = (P−P+−1)−1(P−Q+−1)(Q−Q+−1)−1(Q−P+−1). (8.17)

For this construction there is no essential algebraic change in generalizing from po-
larized Hilbert spaces to polarized Hilbert modules. The principle here is that the
transition between charts define endomorphisms of W ∈ Gr(p,A) that will become
the transition functions of the universal bundle γP −→ P. These transition func-
tions are defined via the cross ratio as above and thus lead to End(γP)-valued 1-
cocyles, in other words, elements of the cohomology group H1(Gr(p,A),End(γP)).

Regarding the universal bundle γΛ −→ Λ, the transition between charts is
already achieved by means of the T -function on Λ. From Theorem 4.1 (3) we have
an analytic diffeomorphism φ̃ : P −→ Λ (where φ̃ = φ−1), and effectively, φ̃∗T = T
in this case.
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8.4. The connection and curvature forms on VP

In view of § 8.1, we will exemplify the construction of [39, § 3] for the connection
form ωP on the principal bundle VP −→ P, and the curvature form ΩP. We start
by fixing a point P = (H+,H−) ∈ P, and consider a pair of local sections α, β of
VP, which are related as follows:

α = βT , β = αT−1. (8.18)

Next let ∇± denote covariant differentiation with respect to the direction H±. The
local sections α, β have the property that:
(a) α is covariantly constant along {H+} × Gr∗(p,A), with respect to fixed H+.
(b) β is covariantly constant along Gr(p,A) × {H−} with respect to fixed H−.
(c) Properties (a) and (b) imply the equations ∇−α = 0,∇+β = 0, along with

∇+α = β∇+T = αT−1∇+T.
We obtain the connection ωP on the principal bundle VP by setting ωP =

ω+ = T−1∇+T. We have the exterior covariant derivative d = ∂+ + ∂−, where
∂± denotes the covariant derivative along H±. Straightforward calculations as in
[39, § 3] yield the following:

∂+ω+ =0 , (8.19)

∂−ω+ =(Q−Q+−1)−1dQ−Q+(Q−Q+−1)−1Q−dQ+−(Q−Q+−1)−1dQ−dQ+.

The curvature form ΩP relative to ωP is then given by

ΩP = (Q−Q+ − 1)−1dQ−Q+(Q−Q+ − 1)−1Q−dQ+ − (Q−Q+ − 1)−1dQ−dQ+.
(8.20)

8.5. Trace class operators and the determinant

An alternative, but equivalent, operator description leading to T above can be
obtained following [28]. Suppose (H+,H−), (K+,K−) ∈ P are such that H+ is the
graph of a linear map S : K+ −→ K− and H− is the graph of a linear map
T : K− −→ K+. Then on HA we consider the identity map H+⊕H− −→ K+⊕K−,
as represented in the block form

[

a b
c d

]

(8.21)

where a : H+ −→ K+, d : H+ −→ K− are zero-index Fredholm operators, and
b : H+ −→ K+, c : H+ −→ K− are in K(HA) (the compact operators), such that
S = ca−1 and T = bd−1.

The next thing is to consider the operator 1−ST = 1−ca−1bd−1. In particu-
lar, with a view to defining a generalized determinant leading to an operator-valued
Tau-function, we need to consider cases where ST is assuredly of trace class.
(a) When A = C as in [28, 34, 39], we take b, c to be Hilbert-Schmidt operators.

Then ST is of trace-class, the operator (1 − ST ) is essentially

T(H+,H−,K+,K−)
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above, and the Tau (τ)-function is defined as

τ(H+,H−,K+,K−) = Det T(H+,H−,K+,K−) = Det(1 − ca−1bd−1). (8.22)

Starting from the universal bundle γE −→ Gr(p,A), then with respect to an
admissible basis in V (p,A), the Tau function in (8.22) is equivalently derived
from the canonical section of Det(γE)∗ −→ Gr(p,A).

(b) The case where A is a commutative C*-algebra is relevant to von Neumann
algebras (see, e.g., [7]), and we may deal with a continuous trace algebra. In
particular, for Hilbert *-algebras in general, we have the nested sequence of
Schatten ideals in the compact operators [35]. Thus if we take the operators
b, c as belonging to the Hilbert-Schmidt class, then ST is of trace class [35],
and τ(H+,K−,K+,K−) is definable when the operator (1 − ST ) admits a
determinant in a suitable sense.
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Department of Mathematics
Tulane University
New Orleans, LA 70118, USA
e-mail: mdupre@tulane.edu

James F. Glazebrook
(Primary Inst.)
Department of Mathematics and Computer Science
Eastern Illinois University
600 Lincoln Avenue
Charleston, IL 61920–3099, USA

and

(Adjunct Faculty)
Department of Mathematics
University of Illinois at Urbana – Champaign
Urbana, IL 61801, USA
e-mail: jfglazebrook@eiu.edu

Emma Previato
Department of Mathematics and Statistics
Boston University
Boston, MA 02215–2411, USA
e-mail: ep@math.bu.edu


