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Abstract. We give a fully covariant energy momentum stress tensor for the gravitational field which is
easily physically and intuitively motivated, and which leads to a very general derivation of the Einstein
equation for gravity. We do not need to assume any property of the source matter fields’ energy momentum
stress tensor other than symmetry. We give a physical motivation for this choice using laser light pressure.
As a consequence of our derivation, the energy momentum stress tensor for the total source matter fields
must be divergence free, when spacetime is 4 dimensional. Moreover, if the total source matter fields are
assumed to be divergence free, then either the spacetime is of dimension 4 or the spacetime has constant
scalar curvature.
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1. INTRODUCTION

Our purpose here is two-fold. First, we wish to give a fully covariant energy momentum stress tensor for
the gravitational field. Second, we will use our gravitational field energy momentum stress tensor to give a
general derivation of the Einstein equation for gravity, and find as a consequence that the divergence of the
energy momentum stress tensor for matter and fields other than gravity must be zero.

This manuscript is an expanded version of a manuscript submitted for publication. In communication
with physicists, it has come to my attention that in general, they are not as comfortable as mathematicians
with some of the more modern results in analysis and differential topology and geometry. Here we will attach
an appendix for each mathematical topic that possibly needs more coverage.

Since Einstein’s and Hilbert’s original ”derivations” of the Einstein equation for gravity in classical gen-
eral relativity (CGR), there have appeared too many different derivations to list. The many different types
of derivations are summarized in [47]. In fact, all these subsequent derivations as well as Hilbert’s orig-
inal derivation contrast markedly from Einstein’s original derivation and usually appeal to some abstract
mathematical principle which though desirable, is usually not justifiable beyond mere desire. For instance,
one of the most popular textbook derivations simply modifies one side of the equation to make it have zero
divergence on grounds that physical considerations make the other side, the matter energy momentum stress
tensor, have zero divergence.

If one uses a Lagrangian or variational method, then one is immediately faced with the question of
justifying the choice of Lagrangian which is generally not really possible. In fact, to quote from [25], after a
detailed rigorous treatment of the Lagrangian formulation of Einstein’s equation (pages 271-279), ”That the
Lagrangian ansatz described in this section works is by no means trivial and I have no explanation for it”.

On the other hand, in Einstein’s original derivation, [17], we see the realization that mathematically the
Ricci tensor should be proportional to the source which should be the total energy density due to both the
energy-stress tensors of matter as well as the gravitational field itself. However, in [17], Einstein was not able
to arrive at a fully covariant tensor expression for the energy density of the gravitational field. Instead, using
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a Hamiltonian or variational method (therefore a weakness in the argument) he arrived at a pseudo-tensor
defined in terms of the connection coefficients for certain special coordinate systems and which he argued
(on grounds it could be shown that the pseudo-tensor was coordinate divergence free) served to give the
energy density of the gravitational field for purposes of deriving the equation.

As the arguments in [16] leading up to the development of CGR show, Einstein was clearly thinking of
the energy of the gravitational field in a Newtonian way, since in particular, the connection coefficients are
the generalized gravitational forces from the Newtonian viewpoint. In particular, in his elementary analysis
of the conversion of gravitational potential to energy through absorption of a light pulse, he represented the
gravitational potential as height. Moreover, in [17], Einstein was very clear that his equation was using the
energy density of the gravitational field in addition to the energy-stress tensor as the total source of gravity.
Indeed, his derivation there uses a break-up of the already accepted vacuum equation as an equation for the
gravitational field pseudo-tensor and then he merely argued that the source should have the matter tensor
added in with the pseudo-tensor so that putting the pseudo-tensor back to the Ricci side of the equation
gave the final fully covariant field equation.

In fact, subsequent attempts to mathematically characterize the energy of the gravitational field have all
basically clung to the Newtonian framework which makes the energy of the gravitational field a function of
a non-local arrangement of masses and energies, or combinations of connection coefficients, the results all
giving pseudo-tensors. So much so, that these views are now taken for granted to the point that in [31] we
have the claim of the impossibility of existence of a local energy density tensor for the gravitational field (see
also [49],[22],[19],[6],[48]). This attitude clearly persists to the present as expressed, for instance, in chapter
3 of [48], or [37].

The non-localizability of gravitational field energy is often, but unnecessarily, used as a justification for
the development of the profusion of mathematically inspired notions of quasi-local mass, which all have their
advantages and drawbacks as discussed in [48] and [30], along with extremely involved analysis required to
arrive at their basic properties. In the case of pseudo-tensors and quasi-local mass definitions developed
using Hamiltonian methods, the results are sensitive to boundary conditions, as pointed out in [37]. As
these attempts at forming quasi-local mass are potentially very valuable for the global analysis of general
relativistic models, the question of the actual energy density is often irrelevant.

As energy in physics has historically been defined to be a conserved quantity, the extension of notions of
energy in general relativity have been heavily influenced by this desirable property. But as soon as Einstein
formulated E = mc2, energy in relativity took on a physical reality beyond a mere calculation tool, as it was
in Newtonian physics. This means that any physically real energy, and in particular, gravitational energy,
must be physical, localizable, and itself a source of gravity. For instance, to quote H. Bondi [3], ”In relativity
a non-localizable form of energy is inadmissible, because any form of energy contributes to gravitation and
so its location can in principle be found.” Whether or not it is conserved then becomes a separate question.
Unfortunately we will find this must be generally answered negatively, unless the only matter fields present
have energy momentum stress tensor having zero contraction, as is the case for the electromagnetic field
energy momentum stress tensor. Trying to force it to be conserved can only lead to problems. In fact Dirac,
the ultimate mathematical physicist, puts it best, concluding that for the gravitational field energy, being
localizable and being conserved (meaning divergence free) are not mutually compatible (page 62 in [10]).
Consequently, we must be content to think of the various pseudo-tensors which are conserved in certain
situations as useful to the extent they are helpful in calculations, but we should not think of them as giving
actual real inertial energy. Likewise, we must be content to think of the various definitions of quasi-local
mass or energy as tools for calculation and thus judge them purely on their utility for helping us understand
global solutions to the Einstein equation.

In summary, we give a physical motivation for the postulate that each observer should view the sum of
principal pressures as being the energy density of the gravitational field he observes. We demonstrate that
mathematically, Einstein’s equation is equivalent to the combination of three statements (see Theorems 6.1
and 7.1). The first is that each observer should see Newton’s Law for infinitesimal tidal acceleration at his
location, in a manner to be made mathematically precise. The second is that each observer must include
the gravitational energy density he observes in the source. The third is that each observer must see the
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energy density of the gravitational field as the sum of principal pressures. The first two statements are
obviously the minimal required modifications of Newton’s Law to give a law which makes sense in relativity,
and the third is the postulate which we motivate physically with an argument involving lasers. The fact that
these assumptions are mathematically equivalent to Einstein’s equation for gravity would seem to make our
postulate for the energy density of the gravitational field very compelling. We prove a mathematical theorem
we call the observer principle which is really a special case of the uniqueness of power series for analytic
functions which is at the heart of the principle of analytic continuation. As a consequence of the observer
principle, our postulate that each observer sees the gravitational field as the sum of principal pressures means
that the covariant energy momentum stress tensor for the gravitational field (see Theorem 6.1) is T − c(T )g
where c(T ) denotes the contraction of T.

In order to make the presentation clear to a more general audience than specialists in the field, we have
included possibly more details than an expert will need. Since the dimension of spacetime does not really
enter into the argument, we will actually derive the gravitation equation for a spacetime of n+1 dimensions,
and arrive at the usual Einstein equation in case n+1 = 4. It is in higher dimensions that the weakness of pure
mathematical arguments involving desirable forms of equations or of purely Lagrangian-variational methods
becomes clear. It gives the Einstein tensor as the geometric side of the equation plus other terms with free
parameters [29]. No clearly unique equation emerges. On the other hand, our energy momentum stress
tensor for the gravitational field dictates a clear choice for the gravitation equation in higher dimensions. In
particular, the resulting general gravitation equation shows the assumption of infinitesimal conservation (zero
divergence) of the energy momentum stress tensor of the matter and fields other than gravity implies that
the spacetime must have constant scalar curvature in spacetime dimension other than n+1 = 4. This would
seem to be a strong physical indicator that spacetime should be, or at least appear to be, 4-dimensional.
Thus it is only for spacetime of dimension n + 1 = 4 that our derivation gives div(T ) = 0 as an automatic
consequence, where T denotes the energy momentum stress tensor of all matter and fields other than gravity.

2. MATHEMATICS AND THE OBSERVER PRINCIPLE

For general references on differential geometry, semi-Riemannian and Lorentz geometry, we refer to [27],
[25], [31], [49], and [38]. To begin, we assume that our spacetime is an (n + 1)−manifold M equipped with
a Lorentz metric tensor g, with signature (−, +, +, +, ..., +), and we denote by ∇ the resulting Levi-Civita
Koszul connection or covariant differentiation operator on M. We use TM for the tangent bundle of M and
TmM to denote the tangent space of M at m ∈ M. If f : M −→ N is a differentiable map of manifolds, say
of class Cr, then Tf : TM −→ TN is the tangent map which is of class Cr−1 and we note here the simple
property T (hf) = (Th)(Tf) as regards composition of differentiable mappings. In case f(m) = n ∈ N, then
Tmf : TmM −→ TnN is a linear map. It is convenient in this setting to refer to u ∈ TmM as a unit vector
to mean merely |g(u, u)| = 1. Thus u is a time-like unit vector when g(u, u) = −1. Because M is a Lorentz
manifold, each of its tangent spaces is a Lorentz vector space of dimension n + 1.

If u is a time-like unit vector in a Lorentz vector space, L, then u⊥ ⊂ L is a Euclidean space. We define
the projection operator Pu : u⊥ −→ u⊥ by Pu(v) = v + g(v, u)u, for any v ∈ L. If B and C are any linear
transformations of L, we say that C is the adjoint of B to mean that g(Bv, w) = g(v, Cw) for all pairs of
vectors v, w ∈ L. In this case, C is uniquely determined by B and we write C = B∗. It is easy to see that in
general for any two linear operators B and C on L we have (BC)∗ = C∗B∗. In particular, Pu is self-adjoint,
P ∗

u = Pu and as well P 2
u = Pu, so Pu is an idempotent in the algebra of linear maps of L.

If B is any self-adjoint linear transformation of L, then PuBPu is also self-adjoint but has u⊥ as an
invariant subspace and therefore defines a self-adjoint linear transformation Bu : u⊥ −→ u⊥. But since
u⊥ is a Euclidean space, this means that Bu is diagonlizable. We call the eigenvalues (also called proper
values) of Bu the u−spatial eigenvalues of B, we call the principal axes or lines through eigenvectors of Bu

the u−spatial principal directions of B, and we call the average of the eigenvalues of Bu the u−isotropic
eigenvalue of B. Thus, if λu is the u−isotropic eigenvalue of B, then trace(Bu) = nλu. In particular, if u
is also an eigenvector of B with eigenvalue r, then B is completely diagonalizable and trace(B) = r + nλu.
But, more generally, since g(u, u) = −1, we always have,



4 MAURICE J. DUPRÉ

(2.1) trace(B) = −g(Bu, u) + nλu,

even if u is not an eigenvector of B. Thus, we emphasize that even though Bu is always diagonalizable, B
itself need not be.

Using the time-like unit vector u allows us to also define a Euclidean metric or inner product gu on L
by defining gu(v, w) = g(v, w) + 2g(v, u)g(u, w). This makes L a topological vector space and in case L is
finite dimensional, this gives L its unique vector topology. Thus even though the Euclidean inner product
on L depends on the choice of u, the resulting topology does not. It is easy to see that for B = B∗ to be
also self-adjoint with respect to the Euclidean inner product gu, it is necessary and sufficient that u be an
eigenvector of B in which case B is itself then diagonalizable.

If T is a second rank tensor on L, which is merely to say that T is a real-valued bilinear map on L, then
there is a unique linear map BT : L −→ L with T (v, w) = g(Bv, w), for all v, w ∈ L. We can now invariantly
define the contraction of T, denoted c(T ), by

(2.2) c(T ) = trace(BT ).

Any question of eigenvalues, eigenvectors, or diagonalizbility for T is really the same question for BT . Clearly
to say T is symmetric is the same as saying that BT is self-adjoint. Thus for T symmetric, its u−spatial
principal directions are those of BT , its u−spatial eigenvalues are those of BT and its u−isotropic eigenvalue
is that of BT . It is customary to call the u−isotropic eigenvalue of T the isotropic pressure for the observer
with velocity u in case T is an energy momentum stress tensor and L = TmM, and we will denote this by
pu, in this case. Thus for this situation we have, by (2.1) and (2.2),

(2.3) c(T ) = trace(BT ) = −T (u, u) + npu.

Also, in this situation, T (u, u) is always designated as the energy density observed by the observer with
velocity u.

For v ∈ TmM, we denote by ∇v the covariant differentiation operator along v at m. We have then the
Riemann curvature operator, R, given by

(2.4) R(u, v) = [∇u,∇v] −∇[u,v],

where u and v are any tangent vector fields on an open subset U of M. We note that R(u, v) actually defines
a vector bundle map of the tangent bundle TM |U to itself covering the identity map of U, and it as well
then determines the Riemann curvature tensor, Riemann, of fourth rank, which means that R is itself an
alternating second rank tensor field on M which at each point m ∈ M gives a linear transformation valued
tensor on TmM. In particular, this means that R(u, v) is defined, giving a linear transformation of TmM for
any pair of tangent vectors u, v ∈ TmM. One of our main concerns is the certain contraction of Riemann
known as the Ricci tensor, Ric. In fact in any frame at m ∈ M with basis (eα) for TmM and dual basis
(ωα), we have, using the summation convention,

(2.5) Ric(u, v) = ωα(R(eα, u)v), u, v ∈ TmM.

Our notation is chosen to emphasize we are not restricting ourselves to coordinate frames nor to orthonormal
frames unless explicitly stated. Thus, we will refrain from using the abstract index notation, as it is too
often restricted to imply coordinate framing. In particular, for any pair of tangent vectors v, w ∈ TmM, the
curvature operator defines another linear transformation K(v, w) of TmM defined by

(2.6) K(v, w)z = R(z, v)w, z ∈ TmM.

Then, among the many basic symmetries of the curvature tensor, one is immediately equivalent to
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(2.7) K(v, w)∗ = K(w, v), v, w ∈ TmM,

and as

(2.8) Ric(v, w) = trace[K(v, w)],

the symmetry of Ric then follows immediately from (2.7). Moreover, if u is any tangent vector, then K(u, u)
is self-adjoint or symmetric, clearly vanishes on the line through u, and therefore has u⊥ as an invariant
subspace. Thus K(u, u) really ”lives” on u⊥, the orthogonal complement of u in TmM. We shall denote by

A
(geo)
u the restriction of −K(u, u) to u⊥, so A

(geo)
u : u⊥ −→ u⊥ is a self-adjoint linear transformation of the

Euclidean space u⊥, in the case that u is a time-like unit vector. Thus for this case that u is a time-like unit
vector, the metric tensor is positive definite on this orthogonal complement, and it follows that Ric(u, u)
is simply the sum of the eigenvalues of −Au or of K(u, u). In general, if (u, e1, e2, ..., en) is an orthonormal
frame with u a time-like unit vector, then we note that

(2.9) g(ek,R(ek, u)u) = g(ek,K(u, u)ek)

is the negative of the Riemann sectional curvature of the span of u and ek, in TmM, because g(u, u) = −1.

Thus, the eigenvalues of A
(geo)
u are the principal Riemann sectional curvatures through u. We can now

symmetrize and define

(2.10) S(v, w) = Sym(K(v, w) =
1

2
[K(v, w) + K(w, v)], v, w ∈ TmM.

We see immediately from (2.7) that S is a symmetric linear transformation valued tensor whose values are
themselves self-adjoint transformations of TmM. Moreover, we also have S(v, v) = K(v, v) for each v ∈ TmM,
whereas, Ric(v, w) = trace S(v, w), for any v, w ∈ TmM.

Now, mathematically, TmM is a Lorentz vector space of dimension n+1, so as above, taking any time-like
unit vector, say u, and defining gu(v, w) = 2g(u, v)g(u, w)+g(v, w) gives a Euclidean metric on TmM making
it in particular into a Banach space of finite dimension. Thus, TmM is an example of a Banachable space-a
topological vector space whose topology can be defined by a norm. This topology is actually independent of
the choice of u in case of finite dimensions. Differential geometry can be easily based on such spaces, and
for some examples in infinite dimension, the interested reader can see [26], [5], [14] and [15]. In particular,
the theory of analytic functions and power series all goes through for general Banachable spaces. We would
like to point out how this can be applied to the theory of Lorentz vector spaces. Suppose that E and F are
Banachable spaces and S is a continuous symmetric multilinear map (tensor) on E with values in F, of rank
r. We can define the monomial function fS : E −→ F by the rule fS(x) = S(x, x, x, ..., x) = Sx(r), and then
fS is an analytic function. In fact, if x1, x2, x3, ..., xr ∈ E, then differentiating, using proposition 3.3 and
repeated application of propositions 3.5 and 3.8 of [27], page 10, we find

(2.11) Dx1
Dx2

Dx3
...Dxr

fS(a) = (n!)S(x1, x2, x3, ..., xr), a ∈ E.

From (2.11), we see very generally that if U is any open subset of E on which fS is constant, then in
fact, S = 0, since we can choose a ∈ U. Indeed, if a ∈ U, since fS is constant on U, it follows that the
derivative on the left side of the equation (2.11) is 0, and hence also the right side, for every possible choice
of vectors x1, x2, x3, ...xr ∈ E. But notice that a does not appear on the right hand side of (2.11), only
S(x1, x2, x3, ...xr), and the vectors x1, x2, x3, ...xr can be chosen arbitrarily. Thus, S = 0 follows. This is
just a very special case of the principle of analytic continuation. We have therefore proven the following
mathematical theorem.
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Theorem 2.1. ANALYTIC CONTINUATION. If A and B are both symmetric tensors of the same
rank, r, on E with values in F and if Av(r) = Bv(r) for all v in the nonempty open subset U of E, then
A = B.

We have labelled this as analytic continuation, as it is a well known special case of the uniqueness of
general power series (there is only one term here). For a purely algebraic proof in the case r = 2, which is
the case of most importance here, we refer the interested reader to [12]. See also page 72 of [47] for a proof
using differentiation for the case r = 2 which is similar in form to that given here next.

Corollary 2.1. OBSERVER PRINCIPLE. If A and B are both symmetric tensors of rank r on TmM
with values in F, and if Au(r) = Bu(r) for every time-like unit vector in TmM, then A = B.

Proof. Since fA and fB are homogeneous functions of degree r, it follows that the hypothesis guarantees
Av(r) = Bv(r) for all v in the light cone of TmM which is an open subset of TmM. �

Of course, if we define U(TmM) to be the set of time-like unit vectors in TmM, then this set has a topology
called the relative topology as a subset of TmM and we have a retraction function given by normalization
which retracts the light cone onto U(TmM). It follows immediately that if W is any (relatively) open subset of
U(TmM), then the hypothesis of the observer principle can be weakened to merely require Au(r) = Bu(r) for
each u ∈ W. In particular, if we choose a time orientation on TmM, then we can merely require Au(r) = Bu(r)

for each future time-like unit vector in TmM. This is in a sense, the essence of the Principle of Relativity,
for instance, as applied to second rank symmetric tensors-a law (at m), say A = B, should be true for all
observers (at m) and conversely, if true for all observers (at m), that is if A(u, u) = B(u, u) for all (future)
time-like unit vectors u ∈ TmM, then it should be a law (at m) that A = B.

We have stated the observer principle as corollary to the special case of the mathematical principle
of analytic continuation to emphasize the fact to the casual reader that it is really a theorem in pure
mathematics, and as such, its proof is completely rigorous. We call it the observer principle merely to
emphasize how it will be used in what follows.

Notice that the observer principle can be applied to S of (2.10) as well as to Ric, as tensors on TmM. Thus,
the observer principle says in a sense that these symmetric tensors are observable, in the sense that they are
completely determined at a given event by knowing how all observers at the event see their monomial forms.

At this point we want to remark that if E is any vector space with a positive definite inner product, g,
and if A : E −→ E is any linear transformation of E, then A can be viewed as a vector field on E, say vA

where vA(x) = A(x) for x ∈ E, and as well it defines the dual 1-form λA on the Riemannian manifold E
defined by λA(x)(w) = g(A(x), w). We record the following result as a proposition for future use. Its proof
is an easy exercise.

Proposition 2.1. For the linear transformation A : E −→ E of the Euclidean space E, we have

(2.12) divEvA(0) = (divEA)(0) = trace(A),

where divE denotes the ordinary divergence operator on vector fields defined on E. Moreover, λA is a closed
1-form (meaning dλA = 0) if and only if A is self-adjoint as a linear transformation of E.

For M a Lorentz manifold, m ∈ M, and u ∈ TmM a time-like unit vector, we will call u an observer
at m. We set E(u, m) = u⊥ ⊂ TmM and call E(u, m) the observer’s Euclidean space (at m). Choose an
open subset W of TmM, with 0 ∈ W and make the choice small enough that the exponential map carries W
diffeomorphically onto a geodesically convex ([25], page 131) open subset WL of M containing m. Denote
the image of WE = W ∩ E(u, m) under this exponential diffeomorphism by WR. We shall call WR the
observer’s Riemannian space (at m), whereas we refer to WE as the observer’s Euclidean neighborhood.
Thus, we should intuitively think of WE as the Euclidean space an observer thinks he is in if he is unaware of
curvature, whereas WR is the space the sophisticated observer thinks he is in when he is aware of curvature.

Any linear transformation, A of E(u, m), and in particular, A
(geo)
u , can be viewed by the observer as a vector

field w on his Euclidean space, and by (2.12), the divergence, divEw(0) is simply the trace of A, where
E = E(u, m).
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3. THE RICCI TENSOR AND SPATIAL DIVERGENCE

In order to see how the Ricci tensor enters into the theory of gravity, we should recall the equation
of geodesic deviation. If [−a, a] and [−b, b] is a pair of intervals in R, then a Jacobi field is a smooth
map J : [−a, a] × [−b, b] −→ M such that for each fixed σ ∈ [−b, b] the map Jσ; [−a, a] −→ M, given
by Jσ(τ) = J(τ, σ), is a unit speed geodesic in M. We can then form local vector fields u, s on an open
neighborhood of the image of J in M, denoted Im J, so that

(3.1) u(J(τ, σ)) = ∂τJ(τ, σ), s(J(τ, σ)) = ∂σJ(τ, σ).

Thus we must have [s, u] = 0 and ∇uu = 0, on Im J, so we find

(3.2) R(s, u)u = −∇u∇su.

We will call s in this situation a tangent Jacobi field along J0, and at each point it gives the infinitesimal
separation vector. In fact, given m a point on J0 and any unit vector sm ∈ Tm which is orthogonal to u(m),
we can arrange that s(m) = sm.

Since our connection is assumed to be the unique torsion free metric connection, we have

[s, u] = ∇su −∇us,

so the condition that [s, u] = 0 gives ∇su = ∇us in our present case. In view of (3.2), we then find the
equation of geodesic deviation on Im J,

(3.3) K(u, u)s + ∇u∇us = R(s, u)u + ∇u∇us = 0.

In other words, ∇2
u ”is” the quadratic form of −K or −S applied to u, so through −K(u(m), u(m)) we see

A
(ge0)
u(m) is the linear transformation of E(u, m) giving the infinitesimal tidal acceleration field, au(m) = A

(geo)
u(m)

at m, a vector field on E(u, m) defined by au(m)(s) = A
(geo)
u(m)s, for any separation vector s ∈ E(u, m).

Of interest to operator theorists here (see [11] for spectral theory and functional calculus of operator fields)

could be the observation that in some sense we have found a relationship between ∇u(m) and (A
(geo)
u(m))

1/2.

Now, we simply combine the little proposition (2.1) together with (2.8), and find at m, with 0m denoting
the zero vector of TmM,

(3.4) Ric(u(m), u(m)) = trace(K(u(m), u(m)) = −trace(A
(geo)
u(m)) = −divE(u,m)A

(geo)
u(m)(0m).

We are interpreting this result as relating to the observer’s flat Euclidean space divergence of his flat

Euclidean space infinitesimal tidal acceleration field. Moreover, by (2.7) A
(geo)
u(m) is a self-adjoint linear trans-

formation of the Euclidean space E(u, m).
For comparison, we point out that our discussion above for (3.4) is also the content of results in [38],

pages 225-219 and 8.9, page 219, as well as [47], 4.2.2, page 114. We can notice here that by the observer

principle, knowledge of au(m) = A
(geo)
u(m) for every possible (even just future pointing) time-like unit vector

u ∈ TmM would, by (3.3) and (2.9), determine S = Sym(K) at m and thus all Riemann sectional curvatures
which, as is well known in differential geometry (see for instance [38], page 79), in turn determines the entire
Riemann curvature tensor at m, that is both the Ricci curvature and the contraction free part known as the
Weyl curvature (see [49] or [22] for its definition), as pointed out in [49], pages 41-53.

Because the Weyl curvature is contraction free (all its contractions are zero), this means the result (3.4)
will only depend on the Ricci tensor and not the Weyl curvature. Thus, even though the actual tidal
acceleration field as a vector field on WR would have derivatives in general depending on the Weyl curvature,
the particular combination of derivatives we form, the observer’s flat Euclidean space divergence of the
infinitesimal tidal acceleration, will necessarily be independent of the Weyl curvature. Of course, if the
divergence of the vector field ∇2

us defined on WR, the observer’s Riemannian space, is calculated, then
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the full Riemann tensor enters in and there seems to be no simple symmetric second rank tensor whose
monomial form will give the Riemannian divergence of the tidal acceleration field on WR, and moreover, the
Weyl tensor will enter into the result. Worse yet, as a function of the separation vector at the given event
m ∈ M, the tidal acceleration in WR and its divergence would be a complicated function which would not
have the tensor property as it depends on how the separation vector is extended to be a vector field in the
neighborhood of the event m.

At this point, one might object that the observer could be rotating which would introduce fictional
acceleration into au(m), and that is correct. A more sophisticated analysis here could deal with this purely
mathematically (see for instance [19], [31], or [47]), but let us allow that the observer can feel if he is
rotating and just say he restricts to cases where he is not rotating in order to carry out his measurements.
Continuing then, for a non-rotating observer, the separation or tidal acceleration field in a geometric theory
of gravity is the essence of the gravitational field. That is, if an observer at event m ∈ M has velocity u, with
g(u, u) = −1, then according to (3.3) and (3.4) we should interpret R(u, u) as the negative flat Euclidean
space divergence of the infinitesimal gravitational tidal acceleration field as seen by that observer at m ∈ M
who thinks his space is flat Euclidean. In any case, we shall henceforth simply refer to these facts as meaning
that Ric(u, u) is the Euclidean (space) negative divergence of the observer’s infinitesimal tidal acceleration
field when his velocity is u ∈ TmM. Next, we consider how this relates to Newton’s Law of gravity.

4. NEWTON’S LAW OF INFINITESIMAL

TIDAL ACCELERATION

Let us briefly review how Newton’s Law of gravity is formulated and how it can be recast in terms of the
infinitesimal tidal acceleration field. Here we have a Euclidean space, E, of dimension n and a smooth time
dependent gravitational vector field f defined on an open subset U of E, where U is just E with possibly a
finite set of points removed which represent point masses. Thus the energy density ρ is a smooth function
on U and, in case n = 3, Newton’s Law says that divEf = −4πGρ and f = ∇Φ. Now this last condition
is easily equivalent to curlf = 0, since U is simply connected. On the other hand, keeping in mind that
f represents an acceleration field (or force per unit mass), if s ∈ TmE = E is a separation vector, then
Dsf(m) is the infinitesimal gravitational tidal acceleration with separation vector s as in [31], pages 272-
273 (see also [39], pages 38-42). This means that the infinitesimal gravitational tidal acceleration field is

just A
(grv)
m = Tmf viewed as a vector field on E. From (2.1) concerning (2.12) and the curl, we see that

Newton’s Law for gravity in terms of the infinitesimal gravitational tidal acceleration field A
(grv)
m at m says

simply trace(A
(grv)
m ) = −knρ(m) and A

(grv)
m is self-adjoint. Of course, this also makes sense for any spatial

dimension n, as in (2.1). Here, kn is a constant which only depends on the spatial dimension n. Since A
(geo)
u

is self-adjoint (2.7), the obvious way to geometrize gravity is simply to identify A(geo) with A(grv).
Thus on any Lorentz manifold M, we say that the Newton-Einstein Law for infinitesimal tidal acceleration

holds at m for the observer u ∈ TmM provided that trace(A
(geo)
u ) = −knρu(m), where we now view A

(geo)
u as

the observer’s infinitesimal gravitational tidal acceleration and where ρu(m) is the energy density of matter
and fields other than gravity u observes at the event m. Now, one relativistic problem with Newton’s Law for
gravity is the fact that it amounts to instantaneous action at a distance which conflicts with relativity. We
will assume that this problem is surmounted by only requiring the equation to hold at the observer’s event
m. He can say nothing about events other than his location event as far as the law of gravity is concerned.
This means henceforth, by definition, and in view of (3.4) that the Newton-Einstein Law of infinitesimal
tidal acceleration at m ∈ M for the time-like unit vector u ∈ TmM simply states

(4.1) Ric(u, u) = trace(K(u, u)) = −trace(A(geo)
u ) = knρu(m),

which for short we refer to simply as NEIL at m for observer u ∈ TmM.
We say that NEIL holds at m ∈ M provided that it holds for each observer u ∈ TmM. In this way, we

overcome the relativists claim that there should be no preferred observer. We say that NEIL holds on M
provided that NEIL holds at each point of M. In this way we make the NEIL into a relativistic universal law
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of gravity, which we think of as the Newton-Einstein Law of gravity. Notice that each observer only claims
(4.1) to hold at his own event.

We have in fact almost arrived at the correct law, but relativists could claim we have failed to include
all the source energy on the right hand side of the equation. That is to say, NEIL should be corrected by
requiring that the gravitational field energy density observed by each observer is also included in the source
term energy density. We could call this the corrected NEIL or the CNEIL, but instead we shall call it
the Einstein-Hilbert-Newton Law of infinitesimal tidal acceleration or EHNIL. Anticipating the ability of

observer u at m to find the energy density of the gravitational field, ρ
(grv)
u (m), we say that the EHNIL holds

at m for observer u provided that

(4.2) Ric(u, u) = kn[ρu(m) + ρ(grv)
u (m)].

Naturally, we then say the EHNIL holds at m ∈ M provided it holds for each observer u ∈ TmM, and say
that the EHNIL holds for M provided that it holds at each event m ∈ M. This then is our universal law
of gravitation, the Einstein-Hilbert-Newton Infinitesimal Law of Gravity. Of course, this naturally leads to
the question as to the energy density of the gravitational field which an observer sees at his location event,
which we turn to next.

5. THE ENERGY DENSITY OF THE GRAVITATIONAL FIELD

In order to deal with the energy density of the gravitational field, we must first think in terms of the basic
assumption of the geometric notion of gravity which is that ”free test” particles must follow geodesics. To
partially paraphrase J. A. Wheeler, spacetime tells matter how to move. That is its job. But spacetime is
the physical manifestation of the gravitational field, so it is really the job of the gravitational field to tell
matter how to move. Thinking anthropomorphically, if this is the case, then from the point of view of the
gravitational field itself, it is happiest when all particles are following geodesics. In fact, we can imagine that
in a limiting sense, if ”all particles” follow geodesics, then the gravitational field is completely relaxed and
contains no energy. It is only when we try to push a particle off of its geodesic that we feel the reaction of
the gravitational field, and notice we feel it right at the location of the event of trying to push the particle
off of its geodesic, thinking in the case where n = 3.

Thus, relativistically, we should think of the manifestation of tension in the gravitational field is particles
not following geodesics. Now, if a particle is not following a geodesic, then it is because it is being acted on
by a force which is not part of the gravitational field itself. Because by definition, gravity acts only through
causing particles to follow geodesics, in the absence of ”outside” forces. When a force acts to move a particle
a certain amount off of its geodesic path, the force required to do so is proportional to the particles inertial
mass, by definition, but in essence, this says the gripping energy of the gravitational field at the point where
the particle is located is somehow related to the inertial mass of the particle. Accepting this, the density of
this tension energy in the gravitational field should be related to the force density as manifested in pressures
in various directions.

That is, the energy momentum stress tensor tells us the pressures as seen by any observer in various
directions, so from the energy momentum stress tensor itself, we should be able to find the energy density
of the gravitational field. For instance, the pressure you feel on your bottom when sitting in a chair is a
manifestation of the energy density of the gravitational field at those points on your chair. In a sense then,
we could say that if the surface of your chair were replaced by an infinitesimally thin slab sitting on top of
an infinitesimally lower chair, then the mass energy of the slab required to hold you in place divided by the
volume of the slab is a reflection of the energy density of the gravitational field there. What is the minimum
mass which can take care of this job?

In fact, the material the chair is made of in some sense is a reflection of the energy density of the
gravitational field right where your chair is located. Even primitive people have an intuitive idea of the
strength of material needed to make a chair, and thus have a working idea of the energy density of the
gravitational field. We should therefore think of the least mass energy of material required to make a chair
as a rough measure of the energy density of the gravitational field where the chair is to be used.
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More generally, imagine an observer located at m ∈ M, ghost-like inside a medium with energy momentum
stress tensor T and suppose that his velocity at m is u. Then exponentiating u⊥ ⊂ TmM, the orthogonal
complement of u in TmM, the pressures are given by the restriction of T to u⊥ × u⊥. This is a symmetric
tensor on a Euclidian space so can be diagonalized, as pointed out in the mathematical preliminaries. Notice
that this does not mean T itself is diagonalizable. Thus, there is an orthonormal frame (e1, e2, ..., en) for
u⊥ with the property that T (ea, eb) = paδa

b , for a, b ∈ {1, 2, ..., n}. It is customary to refer to these observed
spatial eigenvalues of T as the principal pressures observed, and their average is referred to as the observed
isotropic pressure, pu. Thus, npu is the sum of the principal pressures as seen by the observer with velocity u.
Imagine scooping out a tiny infinitesimal box in M at m whose edges are parallel to these u−spatial principal
axes of this spatial part of the energy momentum stress tensor. We can imagine putting infinitesimally thin
(n − 1)−dimensional reflecting mirrors for walls of the box and filling the box with laser beams reflecting
back and forth in directions parallel to the edges of the box with enough light pressure in each direction to
balance the force from outside on these reflecting walls.

In a sense, we have standardized a system to balance the pressures acting to disturb the gravitational
field, so we define the energy density of the gravitational field as seen by our observer to be the energy
density of the light in this little box. The fact that a photon has zero rest mass should mean that the
light energy constitutes a minimum amount of energy to accomplish this task of balancing the gravitational
energy. However, it is an elementary problem in physics to see that the energy density of the light along a
given axis is exactly the pressure in that principal direction.

Let us review this simple argument, in case n = 3. Assume the coordinates are (t, x, y, z) for simplicity and
the box edges are parallel to these axes with lengths δx, δy, δz, respectively. Assume that the laser beams
parallel to say the x−axis contain Nx photons, each having spatial momentum Px. In time δt, the photons
travel a distance of cδt and hence each such photon makes (cδt)/(δx) reflections for a change in momentum
of 2Px for each reflection.

Thus the total momentum transfer to the two end walls perpendicular to the x−axis for the laser beams
paralleling the x−axis is

(5.1)
2PxNxcδt

δx
.

This means that the force exerted on the two end walls is (2PxNxc)/(δx). But the total area of the two end
walls is 2δyδz, so the pressure on the end walls is

(5.2) px =
NxPxc

V
,

where V = δxδyδz is the volume of the box. But the relativistic energy of a photon with momentum Px is
Pxc. Therefore, the total energy density due to the x−axis beams is exactly the pressure in the x−direction
on the walls perpendicular to the x−axis.

If px is negative, a similar argument using opposite charge distributions on the opposite walls of the
box along the x−direction would have the opposite walls behaving like a capacitor and again, elementary
calculations (the freshman physics ”pillbox” argument using Gauss’ Law for electric flux) easily lead to the
conclusion that the energy density of the electric field of the capacitor has the same absolute value as the
negative stretching pressure of the medium, and here it seems that the energy due to this stretching pressure
(like the pressure in a stretched rubber band) should count as negative energy. Thus, when pressure is
negative, the pressure is serving to reduce the energy of the gravitational field as it is ”working with” the
gravitational field. That is, as we scoop out the matter to create the little box, if the pressure is negative in
the x−direction, we scoop so as to leave opposite charge distributions on the opposite faces in such a way
that the attraction of the opposite faces balances the negative pressure of the medium. We could imagine
for instance in case the capacitor is overcharged, that allowing this scooped out capacitor to ”snap shut”
then supplies the capacitor energy to the gravitational field and also lowers the energy of the gravitational
field. So in this case of negative pressure, it must be that the energy density should be negative just as is
the pressure.
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We can therefore take it to be the case that the principal pressure in the x−direction gives the energy
density contribution for that direction in any case. Likewise for the other two axes, consequently we see that
the total energy density in the box is the sum of the pressures that the beams and fields are balancing, that
is the trace of the observer’s spatial part of the energy-stress tensor, px + py + pz.

More generally, in light of the preceding heuristic arguments, for any n, we define the gravitational energy

density seen by the observer u ∈ TmM to be the sum of the principal pressures, ρ
(grv)
u (m) = npu. We now

state this as a formal postulate.

Postulate 5.1. GRAVITATIONAL ENERGY DENSITY POSTULATE. At each event m ∈ M,

each observer u ∈ TmM observes the energy density of the gravitational field as being ρ
(grv)
u (m) = npu, the

sum of the principal pressures of the source matter and fields other than gravity at event m.

At this point we can notice that we are already dealing with a physically intuitive description of the
gravitational field which implies the Cooperstock hypothesis which says the gravitational field has no energy
in the vacuum, because indeed, in the vacuum there is certainly no pressure. That is obviously postulate 5.1
implies the Cooperstock hypothesis.

Finally here, we should mention that our heuristic argument involving the laser light box could be replaced
by a similar argument where photons are replaced by any particle which travels at the speed of light as it
then has zero rest mass and therefore obeys the same energy momentum relation E = Pc as photons do.
For instance, if we think of the energy of the gravitational field as residing in particles called gravitons which
travel at the speed of light, and if we assume that gravitons are trying to maintain geodesic motion of all
other matter particles via pressure, then the same result seems to hold. Thus, maybe npu is the energy
density of gravitons as seen by the observer u, and thus gravitons would have no energy in the vacuum,
or more precisely, the vacuum contains no gravitons. Thus, maybe gravitons are the ultimate constituent
particles of matter and fields.

6. THE ENERGY MOMENTUM STRESS TENSOR

OF THE GRAVITATIONAL FIELD

In view of the results of the preceding section we can now prove our theorem on the energy density of the
gravitational field.

Theorem 6.1. If M is a Lorentz manifold and the covariant symmetric tensor T on M models the energy
momentum stress tensor on M due to all matter and fields other than gravity, then assuming the Gravitational
Energy Density Postulate 5.1 is equivalent to assuming the covariant symmetric tensor

(6.1) Tg = T − c(T )g

is the unique symmetric tensor giving the energy momentum stress tensor of the gravitational field.

For the proof, suppose that m ∈ M is any event and u ∈ TmM is an observer at m ∈ M. Suppose that
T is the second rank covariant energy momentum stress tensor for the matter and fields other than gravity.
Our task is to find the covariant second rank symmetric tensor Tg, which gives the energy momentum stress
of the gravitational field from our previous physical argument that every observer should see it as the sum of
the principal pressures. Thus, by the observer principle and the gravitational energy density postulate 5.1,
Tg is uniquely determined by the requirement that Tg(u, u) = npu for each time-like unit vector u ∈ TmM
no matter which m ∈ M.

Now, applying (2.3) to compute c(T ) we find that

c(T ) = −T (u, u) + npu,

and therefore,
npu = T (u, u) + c(T ) = T (u, u)− c(T )g(u, u),

which is to say finally that the second rank symmetric covariant tensor

Tg = T − c(T )g
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does indeed do the job.
We point out here, that in general, such uniqueness does not imply existence, but here we have existence of

the required tensor we seek from equation (6.1) itself. That is really the assumption that there is a covariant
symmetric tensor T giving the energy momentum stress tensor of all matter and fields other than gravity is
also giving the existence of the tensor Tg through equation (6.1).

In the reverse direction, by (2.3), if we assume that (6.1) is the energy momentum stress tensor for the
gravitational field, then the gravitational energy density postulate 5.1 is an immediate consequence. This
completes the proof of the theorem 6.1.

In view of (6.1) we define the total energy momentum stress tensor of all matter and fields including
gravity to be

(6.2) H = T + Tg = 2T − c(T )g = 2[T − (1/2)c(T )g].

Thus, by Theorem 6.1 and the observer principle, we know H must be the symmetric tensor which should
serve as the source term for the gravitation equation, since for every m ∈ M and observer u ∈ TmM we have

(6.3) H(u, u) = ρu(m) + ρ(grv)
u (m)

7. THE DERIVATION AND PROOF OF THE EINSTEIN EQUATION

We are now in a position to state and prove our theorem as regards the Einstein equation.

Theorem 7.1. If M is a Lorentz manifold and T is any covariant symmetric tensor field on M which models
the energy momentum stress tensor of all matter and fields other than gravity, then the EHNIL(4.2) together
with the Gravitational Energy Density Postulate 5.1 is equivalent to the assumption that the equations

(7.1) Ric = knH = kn[2T − c(T )g] = 2kn[T − (1/2)c(T )g]

hold on M with H = (1/kn)Ric being the total energy momentum stress tensor of gravity and all matter
and fields. In particular, if n = 3 so spacetime is four dimensional, then automatically div(T ) = 0 as a
consequence of these assumptions. If n is not 3, then these assumptions and the assumption that div(T ) = 0
imply that dR = 0, where R is the scalar curvature of M.

To prove the theorem 7.1 use theorem 6.1. Assuming the EHNIL(4.2) holds for all observers everywhere,
we now have by (6.3),

(7.2) Ric(u, u) = knH(u, u),

for every observer u ∈ TmM at m ∈ M, where kn is a universal constant depending only on n. As an aside,
beyond 6.1 and the EHNIL, the real reason behind everything here is the fact that Ric(u, u) is the negative
Euclidean divergence of the tidal acceleration (3.4), so in physical terms we are using the tracial identification
of the gravitational tidal acceleration with the geometric tidal acceleration. But let us return to the proof.
Thus, (7.2) merely says that any observer u at any m ∈ M sees the EHNIL to hold. Since (7.2) is true for u
being any time-like unit vector, by the observer principle (corollary 2.1), we must have (7.1) as an immediate
consequence.

For the reverse direction, if we assume that the equation (7.1) holds with H giving the total energy
momentum stress tensor of all gravity all matter and all fields, then as T is the energy momentum stress
tensor of all matter and fields other than gravity, and as H = 2T − c(T )g, we must have

Tg = H − T = T − c(T )g

which by Theorem 6.1 then implies the gravitational energy density postulate 5.1 and then (7.2) holds for
any observer u which now by (6.3) says the EHNIL(4.2) holds for all observers.

In case n + 1 = 4, it is customary to write k3 = 4πG, so then
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(7.3) Ric = 4πGH = 8πG[T − (1/2)c(T )g], n = 3,

which is a well-known form of Einstein’s equation. As c(g) = n + 1 and c(Ric) = R, where as usual, R
is the scalar curvature, we find that R = (1 − n)kn[c(T )], so the equation can be also written as Ric =
kn[2T ] + (1/(n − 1))Rg, and this results in

(7.4) Ric −
1

n − 1
Rg = 2knT.

The energy density tensor Tg = T − c(T )g can be expressed in terms of the Ricci tensor and scalar
curvature using (7.4) and the result is

(7.5) Tg = (
1

2kn
)[Ric + (

1

n − 1
)Rg].

As usual, we define the Einstein tensor by

Einstein = Ric− (1/2)Rg,

which has the property that

div(Einstein) = 0,

no matter the value of n. But in case n = 3, we find that the left hand side of (7.4) is the Einstein tensor.
In this case, with k3 = 4πG, we find the most familiar form of the Einstein equation

(7.6) Einstein = Ric − (1/2)Rg = 8πG T, n = 3.

Notice that we have not used local conservation of energy, div(T ) = 0. Since the left side of (7.6), the
Einstein tensor, Einstein, is divergence free, we find div(T ) = 0 as a consequence of our derivation, in the
case where n = 3. On the other hand, it appears that for n not equal to 3 we would have that div(T ) is in
general not zero. That is, it is only in spacetime dimension 4 that the energy momentum stress tensor of
matter and fields other than gravity can be infinitesimally conserved without automatically putting severe
restrictions on spacetime. Specifically, in case n + 1 is not equal to 4, we find immediately that div(T ) = 0
implies dR = 0, and hence the scalar curvature of spacetime must be constant if the energy stress tensor of
matter and fields other than gravity has zero divergence.

To see this, in more detail, a simple calculation shows that for any smooth scalar function f we have
div(fg) = df, since ∇g = 0. The Einstein tensor has vanishing divergence in any dimension (due to the second
Bianchi identity), and this is clearly equivalent to div(Ric) = (1/2)dR. Therefore, taking the divergence of
both sides of (7.4) gives

(
1

2
−

1

n − 1
)dR = 2kndiv(T ).

Thus, if we assume that div(T ) = 0, then either dR = 0 or n = 3, and on the other hand, if we assume
n = 3, then as the Einstein tensor has vanishing divergence, then so must T. This completes the proof of
our theorem 7.1.

Before proceeding further, we should remark that it is often thought that as the Weyl curvature need not
vanish in the vacuum, that it should enter into the expression for Tg. However, we have a physical expression
for the energy density of the field as seen by any observer, so that determines what the expression for Tg

will be. If the Weyl curvature is not part of the result, we must accept the fact that Weyl curvature cannot
generate gravitational energy, on this view.

Here, with (7.5), we see explicitly that the gravitational field energy momentum stress tensor does not
depend on the Weyl curvature. Rather, it only depends on the Ricci tensor. Thus, our Theorems 6.1 and
7.1, together with our gravitational energy density postulate 5.1 in particular guarantees that the Weyl
curvature does not generate gravity. The Einstein equation determines the Ricci tensor directly from the
matter energy momentum stress tensor.
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However, we should keep in mind that including appropriate boundary conditions, when n = 3, the
Einstein equation determines the full Riemann curvature tensor, therefore including the Weyl curvature
tensor. In particular, the reader should note equations (4.28) and (4.29) on page 85 of [22] for the Weyl
curvature tensor, which follow from the Bianchi identities and are similar in form to the Maxwell equations
for the electromagnetic field tensor. Thus, the Weyl curvature which gives the curvature in the vacuum,
as the Ricci curvature vanishes in the vacuum, is contained in the boundary conditions under the Einstein
equation.

We will until further notice now restrict to the case n+1 = 4, so we have ordinary spacetime, and therefore
div(T ) = 0.

In the case of n + 1 = 4, if the condition that div(T ) = 0 is dropped in the usual derivation where
one equates T to a linear combination of the metric tensor, the Ricci tensor and the product of the scalar
curvature with the metric tensor, and only requires the time components give Newtonian gravity in the
Newtonian limit, the result is a generalization of the Einstein equation with a new free parameter which
when equal to 1 gives the usual Einstein equation. This has been investigated as to its ramifications for
cosmology [1]. But, this does mean that the assumption div(T ) = 0 is necessary for this type of derivation
of the Einstein equation, since without it the free parameter may be other than unity.

From (7.5) we now have

(7.7) Tg = (1/8πG)[Ric + (1/2)Rg] = (1/8πG)(Einstein + Rg).

From the last expression on the right, we see, as T and the Einstein tensor, Einstein = Ric− (1/2)Rg both
have zero divergence, that

(7.8) div(H) = div(Tg) = (1/8πG)div(Rg) = (1/8πG)dR = −d[c(T )].

So even though the total energy and gravitational energy are not infinitesimally conserved, the divergence
is simply proportional to the exterior derivative of the scalar curvature. Of course, div(Tg) = −d[c(T )] is
obvious from the definition, (6.1), once we accept div(T ) = 0. In particular, as d2 = 0, this means that

(7.9) d[div(H)] = d[div(Tg)] = 0,

but (7.8) is even better as it shows div(Tg) is an exact 1-form on M.
On the other hand, the equation (7.8), when written

(7.10) div(Tg) + d[c(T )] = 0

has another interpretation. In classical continuum mechanics written in four dimensional form of space plus
time, the divergence of the energy stress tensor equals the density of external forces. Of course in relativity,
the energy momentum stress tensor T contains everything and there are no external forces, as gravity is not
a force. But, we can view (7.10) as saying that from the point of view of the gravitational field, the matter
and fields represented by T are acting on the gravitational field as an external force density of −d[c(T )]. In
classical continuum mechanics, the external force density has zero time component, but relativistically such
is not the case, the force only has zero time component in the instantaneous rest frame of the object acted
on. We can therefore view (7.10) as saying that the divergence of the the gravitational field’s energy stress
tensor is being balanced by the rate of increase of −c(T ). If px, py, pz are the principal pressures in the frame
of an observer with velocity u, where g(u, u) = −1, then ρu = T (u, u) is the energy density observed, and
div(Tg)(u) is then the power loss density of the gravitational field.

Now c(T ) = −ρu + px + py + pz = −ρu + 3pu, where pu is the isotropic pressure, so (7.10) becomes

(7.11) div(Tg)(u) = Duρ − 3Dupu.
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Thus, the observer sees the divergence of energy of the gravitational field is exactly the rate of increase of
energy density of the matter and fields less the rate of increase of principal pressures. In particular, in any
dust model of the universe (pressure zero), the gravitational energy dissipation is exactly balanced by the
rate of increase of energy density of the matter and fields. If T is purely the electromagnetic stress tensor
in a region where there are only electromagnetic fields, then c(T ) = 0, and the gravitational energy-stress
tensor has zero divergence, so is then infinitesimally conserved.

To compare our energy momentum stress tensor of the gravitational field with the various gravitational
energy pseudo-tensors, keep in mind that all examples of such gravitational energy pseudo-tensors can be
made to vanish by appropriate choice of coordinates and therefore cannot represent real energy of any
kind in relativity. Such pseudo-tensors generally obey coordinate conservation laws in appropriately chosen
coordinates making them useful in certain calculations, but they cannot represent real energy as in relativity,
real energy cannot just be transformed away by some choice of coordinates. By contrast, our Tg is fully
covariant and represents localizable gravitating energy density as seen by each observer, but in general is not
conserved, as div(Tg) may not vanish in general. The exact calculation of the difference between the various
pseudo-tensors and Tg in various examples should be an interesting problem for future research.

Looking back at the derivation, one can now see that if there is a distinction between active gravitational
mass and inertial gravitational mass, then in equation (4.2), the first of the two terms is the energy density
due to active gravitational mass and the second of the two terms being the sum of principal pressures is
therefore an inertial mass, as it is inertial mass not following geodesic motion which creates pressure. This
would mean that in the equation Ric = 4πG[T + Tg] the second term on the right is the tensor which has
the inertial mass whereas the first term is the term with the active gravitational mass. But, this would
seem to lead to a violation of the principle of relativity, as the pressures would be different in different
reference frames leading to conversion between active gravitational and inertial masses depending on the
observer. Thus, this derivation seems to indicate the equality of active gravitational mass with inertial
mass, a point which is not addressed in the usual derivations of Einstein’s equation. Possibly an improved
version of this derivation might derive the equality of inertial and active gravitational mass. Of course, the
geodesic hypothesis itself makes the passive gravitational mass equal to the inertial mass, which seems to
be the reason why the problem of equality of active gravitational and inertial mass is often overlooked in
elementary treatments of general relativity.

Finally here, we should point out that Einstein’s original Equivalence Principle is often misconstrued to
say that gravitational fields can be transformed away by choice of coordinates, and this is certainly not the
case, as Frank Tipler has stated on many occasions. This is well known to experts in general relativity.
Gravity in general relativity is curvature of spacetime, and curvature cannot be transformed away. If we
view connection coefficients as ”gravitational forces”, then using normal coordinates at a point makes them
disappear, but this merely reflects the fact that gravitational forces do not exist in general relativity, virtually
by definition. Einstein used the example of an accelerating coordinate system to effectively transform away
a uniform gravitational field in which there is no actual curvature of spacetime and therefore no real gravity.
At each event, given a specified limit in level of measurement accuracy, there is a neighborhood in which
curvature effects cannot then be measured, and in such neighborhoods of an event, the equivalence principle
may be used effectively. One must be careful of subtle pitfalls. For instance, when Einstein used the elevator
thought experiment to reason that light would bend in a gravitational field, he was using the fact that in the
accelerated reference frame the null geodesics appear curved and then generalizing to arbitrary gravitational
fields.

In fact, the elevator thought experiment merely gives the result for the bending of light that Newtonian
gravity in flat Euclidean space would give under the assumption that photons have inertial mass. It takes the
full Schwarzschild solution to arrive at the correct answer for the bending of light, which Einstein fortunately
realized before the experimental measurements were made.

Another way to look at this light bending problem would be that in NEIL we have out in the near
vacuum of space that for the light beam the law of gravity is Ric = 4πGTEM where TEM denotes the
energy momentum stress tensor of the electromagnetic field. But, as c(TEM ) = 0, we have (Tg)EM = TEM ,
so Einstein’s equation, EHNIL, becomes Ric = 4πG[TEM + TEM ] = 4πG[2TEM ] which means that the



16 MAURICE J. DUPRÉ

photon’s electromagnetic field gives twice the curvature of the spacetime at points along its track as would
be the case in NEIL, which should reasonably lead to the doubling of the bending angle. Of course this
is a nonsense argument, since the light bending has to do with tracks of null geodesics in the gravitational
field of a large gravitating object and not the gravitational field of an electromagnetic wave itself. But, if we
think of a photon passing a planet, theoretically, we are allowed to think of the planet as following a path in
the gravitational field of the photon, and the preceding analysis says the planet’s path should be bent twice
as much in Einstein’s theory as in Newton’s theory, so reciprocally, the photon’s track should be bent twice
as much. Maybe the argument is not so specious, and should be examined further. On the other hand, this
does tell us that the effective gravitational mass of pure electromagnetic radiation or laser light is double
its inertial mass, which possibly could be detected using powerful lasers in an inertial confinement fusion
laboratory, thus leading to another test of Einstein’s theory. Tolman ([46], Chapter VIII) has noticed the
prevalence of this doubling effect for electromagnetic radiation in many examples, all calculated using the
weak field approximation. But, now using Theorems 6.1 and 7.1, we see that the EHNIL is telling us the
effective gravitational mass-energy of electromagnetic fields is very generally double the inertial mass-energy.

More generally, our conclusion here is that ρu + 3pu is the effective gravitational mass-energy density
observed by an observer with velocity u. For that is what is dictated by Einstein’s equation, since it is
equivalent to the EHNIL and the gravitational energy density postulate, by Theorem 7.1.

8. THE GRAVITATION CONSTANT G

So far, we have not said anything about the determination of the gravitation constant G. To evaluate
this, we merely need to check the results of experiments with attractive ”forces” between masses. But it
is much simpler to just use Newtonian gravity in an easy example where the results should be obviously
approximately the same. Consider an observer situated at the center of a spherical dust cloud of uniform
density ρ, and calculate the tidal or separation acceleration field using Newton’s law of gravitation. We
can observe here that the energy momentum stress tensor satisfies T (v, w) = ρg(v, u)g(v, w) where u is the
velocity field of the dust cloud. Thus we calculate easily that Tg(u, u) = 0 meaning that a co-moving observer
sees the gravitational field as having energy density zero. In this case, the NEIL and EHNIL coincide for u
and thus as it seems reasonable that the NEIL should have the Newton gravitation constant as its constant,
then that means G = GN .

It is easy to give a more elementary argument here. At distance r from the center, but inside the cloud,
the mass acting on test particles at radial distance r is simply the mass inside that radius, M(r), by spherical
symmetry, as is well-known in Newtonian gravitation. Here, we have M(r) = (4/3)πr3ρ.

But Newton’s Law says the acceleration of a test mass near the center of the dust cloud is radially inward,
and if r is the distance from the center, then the radial component of acceleration is given by

(8.1) ar(r) = −GN
M(r)

r2
= −GN

4πρr

3
.

Here, GN is the Newtonian gravitation constant.
On the other hand, considering an angular separation of θ, the spatial separation is s = rθ, so the relative

acceleration of nearby test particles in the s− direction perpendicular to the radial direction is therefore

(8.2) as(r) = θar(r) = −GN
4πρrθ

3
= −GN

4πρs

3
.

Thus the rate of change of separation acceleration of nearby radially separated test particles in the radial
direction at given r is by (8.2),

(8.3)
dar

dr
= −GN

4πρ

3
,

whereas in the s direction we have the rate of change of separation acceleration is
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(8.4)
das

ds
= −GN

4πρ

3
,

the same result again. But there are two orthogonal directions perpendicular to the radial, so now we see
that if au denotes the spatial or tidal acceleration field around our observer at the center of the dust cloud,
then

(8.5) divu(au) = −GN4πρ.

As we are dealing with dust, the pressures are zero, so there is no gravitational energy density, and thus
ρ is now the total energy density seen by our observer. Thus, we have by (3.4), that Ric(u, u) = GN4πρ =
4πGN H(u, u). But now comparing this result with (7.2), with k3 = 4πG, we see that we must have G = GN .

Notice that in our development, we have used the observer principle as a form of the principle of general
relativity to reduce everything to working with the time component in an arbitrary frame for the tangent
space. The trick is to be able to work completely generally so that conclusions apply to T00 and Ric00 no
matter the frame, even in a non-coordinate frame, which seems best expressed by using T (u, u) and Ric(u, u),
to remind us that we are dealing with an arbitrary time-like unit vector. It is only now at the end once we
have Einstein’s equation that we allow a calculation in a special frame in order to evaluate the gravitation
constant.

Consider for a moment the derivation of Einstein’s equation given in [19]. In effect, the derivation of the
Einstein equation given in [19] uses the analysis (adapted from arguments of Tolman [46]) of the special case
of a static arrangement of mass for a gravitating fluid drop and adds the Newtonian gravitational energy
density of the fluid drop as expressed in terms of pressure through the requirement that its surface pressure
be zero to get the time component of the Einstein equation. Since the setup is a special arrangement of
mass, one cannot assert the observer principle, because the only observer for which the equation works is
the special observer moving with the drop. However, one can appeal to the general covariance desire of
relativity that equations should be tensor equations valid in all frames, from which one surmises that if you
have found an equation relating the time components in a special frame, then the other components in that
special frame should also be equal. Once you accept the full tensor equation in any frame, then it is valid in
all frames and you next surmise that if it works for the liquid drop, then it must work in general. But, in our
present situation, we have the full equation, in complete generality, and can simply go backwards through
the development in [19] to see that the time component of the equation in the liquid drop case is Newton’s
law, and therefore again conclude that our G in (7.6) is identical to the Newtonian gravitational constant.
For a treatment of linearized Einstein gravity and its Newtonian approximation in general, one can consult
[31] or [49].

At this point, we can simply choose units such that G = 1 and we henceforth drop this factor from the
equation for simplicity.

9. THE EINSTEIN DERIVATION

It is interesting that Einstein realized fairly early in his search for the gravitation equation that the vacuum
equation should be Ric = 0. This lead him to try the equation Ric = 4πG T, as the general gravitation
equation when matter is present. In fact, this equation obviously results from the observer principle if we
assume spacetime satisfies NEIL instead of EHNIL, that is if our observers neglect the energy density of the
gravitational field. He soon rejected this as not being compatible with reality, partly due to the fact that it
would require that div Ric = 0.

He also knew that the energy density of the gravitational field should be included in the source, so if he
had found the expression we have for the energy stress tensor of the gravitational field, he would have surely
arrived at the final equation at this time.

As it was, in summary, he finally [17] took the already accepted vacuum equation Ric = 0 and for special
coordinate frames, he was able to rewrite the vacuum equation in the form s = k(t − (1/2)c(t)g) where t
is his pseudo-tensor whose coordinate divergence is zero, and where s itself is a coordinate divergence of a
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third rank pseudo-tensor. Let us call a coordinate system isotropic provided that in these coordinates we
have det(gαβ) = −1. Thus Einstein found it useful to restrict to isotropic coordinates.

In fact, he found Ric = s− k(t− (1/2)c(t)g), to be true in any isotropic coordinate system. He therefore
interpreted t as the energy density of the vacuum gravitational field and interpreted the new form of the
vacuum equation as making t the source. He then merely guesses that in the presence of matter with energy
momentum stress tensor T the source should be t + T instead of merely t. Thus, when t is replaced by t + T
in the new form of the vacuum equation we have s = k[(T + t) − (1/2)c(T + t)g] as the candidate for the
general non-vacuum equation. We then see that moving the terms involving the pseudo tensor back to the
left side of the equation results in Ric = k[T − (1/2)c(T )g], true in any isotropic coordinates. But this last
equation is a fully a covariant equation.

In a sense, his derivation begins with and is based on the pseudo tensor for the energy density of the
gravitational field. Technically his equation was −Ric = k[T − (1/2)c(T )g], because he used a metric with
signature (+ −−−). Of course, our summary has left out the Hamiltonian method he used to arrive at his
pseudo tensor and the considerable technical calculations required to arrive at the vacuum equation in terms
of the pseudo tensor. But, in outline, it is really quite a nice derivation, and in many ways superior to most
of the modern derivations.

The fact that the coordinate divergence of the pseudo tensor vanishes means that the general Stokes’
theorem (sometimes in this particular setting called the divergence theorem or Gauss’ theorem) can be
applied to give macroscopic conservation of gravitational energy. On the other hand, once the source t is
replaced by t+T, it is no longer the case that this latter gravitational pseudo tensor has vanishing coordinate
divergence, so the gravitational pseudo tensor loses its conservation law in the presence of matter. It is rather
Einstein’s total energy stress pseudo tensor, T + t, material and gravitational, whose coordinate divergence
vanishes. It seems this lead Einstein to question the need and even the validity for general covariance in his
formulation, since the vanishing of the covariant divergence could not be integrated to give any macroscopic
conservation law.

In our opinion, the real major weakness in the argument is the reliance on a variational argument using a
Hamiltonian to obtain the pseudo tensor, since there is no apparent way to justify this, other than picking
something that seems simple out of thin air. Specifically, he chose the integrand to be gµνΓα

µβΓβ
να for his

variational integral, where here we can take Γα
βγ = ωα(∇eγ

eβ), with (eα) the coordinate frame basis and

with (ωα) the corresponding dual frame basis.
For instance, in the Hilbert argument using the scalar curvature as the integrand, it is certainly simple to

write down and after the fact, it does give the correct equation. But, what is the physical basis for choosing
the scalar curvature for the variational argument? Without any physical justification, we have to admit it is
just a lucky guess based on trying the simplest thing, which, of course, is always a good idea when you have
nothing else to go on. Just because you try something simple and it happens to work does not mean you
understand why it works. After nearly a century of general relativity, we are quite confident of the results
of action principles in general relativity, but for deriving the equation, it is unsatisfactory. For instance,
the Einstein derivation evolved out of Einstein’s consideration of various physical problems and possibilities
and he happened to arrive at the result at almost the same time as Hilbert. Now if Hilbert had proposed
his action method two years earlier, would Einstein have believed the equation was the correct equation?
Maybe and maybe not. It is putting the cart before the horse. In fact, setting Einstein = E, if we simply
want a simple derivation, as E(u, u) is half the scalar curvature of WR, the exponential Riemannian space
orthogonal to u, for any time-like unit vector u, the simplest derivation is just to guess each observer sees his
spatial curvature proportional to his observed mass density with a universal constant of proportionality. This
immediately gives E(u, u) = 2k3T (u, u), for each time-like unit vector u from which we conclude E = 2k3T,
for some constant k3, by the observer principle. Instant derivation of the Einstein equation. But why should
we have spatial curvature proportional to energy density? If you are aware of the observer principle, it is
the obvious guess, but you have no way to know you are correct, since there is no physics in the argument-it
is just mathematics.

We are not claiming that the Einstein Hilbert Lagrangian method has no value. It surely has value for
certain calculations, especially since the Lagrangian terms for many fields are known and can be added
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in to the calculations. We are simply pointing out, that if you did not know the equation before such a
derivation, you still might not be convinced. The derivation we have presented here seems to have the
convincing property that it is the only way to very generally and naturally ”push” Newton’s Law of gravity
into a general relativistic framework which includes the energy density of the gravitational field as seen by
all observers. For instance, any mathematician familiar with Newton’s Law of Gravity and basic differential
geometry would be convinced by it if he accepts that each observer with velocity u should see 3pu as the
energy density of the gravitational field. It would seem to us that the fact that div(T ) = 0 is an immediate
consequence of this derivation makes it all the more attractive and convincing.

10. THE COSMOLOGICAL CONSTANT

If we include the cosmological constant Λ in the Einstein equation, it becomes

(10.1) Ric − (1/2)Rg + Λg = 8πT,

which is of course the same as

(10.2) Ric − (1/2)Rg = 8π[T − (1/8π)Λg],

which means we view the equation here as having a modified energy momentum stress tensor

(10.3) TΛ = T − (1/8π)Λg.

We then have c(TΛ) = c(T )−(1/2π)Λ, so the effective energy momentum stress tensor of the gravitational
field is

(10.4) (TΛ)g = T − c(T )g + (3/8π)Λg = Tg + (3/8π)Λg,

and the effective total energy momentum stress tensor serving as source is

(10.5) HΛ = 2T − c(T )g + (1/4π)Λg = H + (1/4π)Λg.

In any case, as div g = 0, it follows that our conclusions about the energy-momentum flow of the gravitational
field from (7.10) and (7.11) remain valid, even in the presence of a cosmological constant. Equations (10.4)
and (10.5) are corrections of equations (8.4) and (8.5) of [12] where the numerical coefficients of the Λg terms
were incorrectly given as 1/2π, in both cases.

11. QUASI LOCAL MASS

The problem of defining the energy contained in a space-like hyper-surface has led to many different
definitions of the mass enclosed by a closed space-like surface contained in an arbitrary spacetime manifold,
and these go by the general name quasi-local mass. Typically, they are defined by some kind of surface
integral and give an indication of the mass enclosed by the space-like surface. One of the oldest is known
as the Tolman integral and is advocated by Fred Cooperstock [7], [46] (see also [28], equation (100.19), as
well as [32], [33]). For an extensive survey of these we refer the interested reader to [48]. In particular, the
results of [44] on the Penrose quasi-local mass show that the results can be interesting when the space-like
surface is not the boundary of a space-like hyper-surface.

A list of desirable properties of any definition of quasi-local mass is given in [30], where in particular it
is shown that for their definition, the quasi-local mass enclosed by a space-like surface S is non-negative
provided that the dominant energy condition holds and the surface S is the boundary of a hyper-surface,
Ω. It is further assumed that the boundary surface S has positive Gauss curvature and space-like mean
curvature vector, and consists of finitely many connected components. The local energy condition assumed
(equivalent to the dominant energy condition) is framed in terms of the second fundamental form of the
hyper-surface, and in particular, we can see that for a geodesic hyper-surface it reduces to the condition that
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the scalar curvature of the hyper-surface, Ω, is non-negative, since in that case the second fundamental form
vanishes (extrinsic curvature zero). But, in this case, the scalar curvature of the space-like hyper-surface Ω is
2Einstein(u, u) = 16πT (u, u), where u is a time-like future pointing unit normal field on Ω. So if the energy
momentum stress tensor satisfies the weak energy condition in this case, then the energy density as seen by
observers riding the hyper-surface is non-negative, and we would simply integrate (1/8π)Einstein(u, u) over
the hyper-surface to find the energy inside, which is clearly non-negative.

The amazing result in [30] is that the quasi-local mass defined there, which is defined in terms of integrals
over the boundary S, is non-negative under the dominant energy condition. For instance, their results show
if the energy inside any one component of S vanishes, then S is connected and Ω is flat ([30], Theorem 1,
page 183), and thus the result shows that the energy in Ω is in some sense determined by the geometry of
the boundary and its mean curvature vector under the assumptions stated above.

The small scale and large scale asymptotic properties are analyzed in [53], and in particular, in the vacuum
the result is that to fifth order the quasi-local mass for small spheres is asymptotic to the Bel-Robinson tensor
whereas in general to third order it is asymptotic to the energy momentum stress tensor of matter times
volume. Unfortunately, there are drawbacks to this definition of quasi-local mass, as pointed out in [36], and
it seems the situation is improved with the later treatments of Wang and Yau, in [50], [51], [52].

Let us use our total energy momentum stress tensor to formulate an invariant approach to quasi-local
energy. If we have an open subset U of M and a time-like unit vector field u defined on U, we can think of the
integral curves of u as being the histories of a field of observers. We can then form H(u, u) as a function on
U and assuming orientability of U we can choose a normalized volume form µU so that µU (u, e1, e2, e3) = 1,
for (u, e1, e2, e3) any local positively oriented orthonormal frame. The natural way to proceed here seems to
be to form a type of action integral which we can call the mass action integral:

(11.1) A(u, U) =

∫

U

H(u, u)µU =
1

8πG

∫

U

Ric(u, u)µU .

The strong energy condition says Ric(v, v) ≥ 0 for any time-like vector v, and thus if this condition is
satisfied, then clearly the only way that the action integral can vanish is for R(u, u) to vanish on U. But,
this does not seem to obviously allow us to conclude that Ric = 0 on U. However, on physical grounds, it
should allow us to conclude Ric = 0 on U. That is, if we fill spacetime with observers everywhere, then if
nobody observes any gravitating energy, there should be none. So this becomes then a natural mathematical
conjecture. In any case, it would seem that this mass action should be the invariant means for constructing
quasi-local mass.

In order to make use of the total energy-stress tensor, H, in a setting similar to that of Liu and Yau, [30]
or Wang and Yau [50],[51], one would assume an appropriate energy condition, and then for a space-like
hyper-surface K with future time-like unit normal field u, it is natural to consider H(u, u)µK where µK

is the volume form due to the Riemannian metric induced on K. The integral of H(u, u)µK over all of K
should be the total energy inside K.

More generally, if we assume that H is dominantly non-negative, that is, it satisfies the analogue of the
dominant energy condition for T, then given another reference future pointing time-like vector field k, one
might then integrate H(u, k)µK over K. If a 2-form α can be found on K satisfying dα = H(u, k)µK , and if
K is a 3-submanifold with boundary B, then by Stokes’ theorem, the total energy inside K is related to the
integral of α over the boundary B of K.

In particular, we say that K is instantaneously static if there is an open set U ⊂ M containing K and a
vector field k on U which is future pointing and orthogonal to K and which satisfies Killing’s equation, at
each point of K. If ω = k∗ is the dual 1-form to k, so ω(v) = g(k, v) for all vectors v, then this is equivalent
to requiring Sym(∇ω)|K = 0 or equivalently that (dω)|K = 2∇ω|K, which to be perfectly clear means that
the difference dω − 2∇ω as calculated on U in fact is zero at each point of K. Then as in the Komar [24]
integral (see [40], [49], pages 287-289 or [41], pages 149-151) it follows that

(11.2) (−1/8π)d ∗ dω = (1/4π)Ric(u, k)µK = H(u, k)µK .
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Here, ∗ denotes the Hodge star operator on M. Thus, (−1/8π) ∗ dω is a potential for the total energy on K.
For any closed 2-submanifold S of K we define the quasi-local total energy H(S, k) by

(11.3) H(S, k) = −
1

8π

∫

S

∗d(k∗).

Thus, if K0 ⊂ K is a submanifold with boundary S = ∂K0, then by Stokes’ Theorem, (11.3) becomes

(11.4) H(S, k) = −
1

8π

∫

K0

d ∗ d(k∗) =

∫

K0

H(u, k)µK ,

which is then non-negative if the strong energy condition holds. Thus, if H(S, k) = 0, with S = ∂K0, then by
(11.4), under the assumption that the strong energy condition holds, we would conclude that Ric(u, k) = 0
on K0. But, this means that Ric(u, u) = 0 on K0, which means that none of the observers in the field detect
any energy.

Notice that if we have an asymptotically flat spacetime with a global time-like Killing vector field or-
thogonal to a spacelike slice, normalized to be a unit vector at spatial infinity, then our definition of the
quasi-local total energy would be exactly the Komar mass which is well known in the literature [48]. Thus
in the expression H(S, k), the normalization for k is determined by requiring that it be of unit length at the
event at which the observer is located. If the observer is located so that S is in the observer’s causal past,
then it would seem we must assume that the domain of k contains this past light cone.

In general, if k is a Killing field on all of the open set U, then being orthogonal to K means ([49],
page 119, (6.1.1)) that also ω ∧ dω = 0, where ω = k∗. Then (see [49], page 443, (C.3.12)) we find, using
f = ln(|g(k, k)|),

(11.5) dω = −ω ∧ df,

and using the fact that here ∗[ω ∧ df ] = −(ef/2Dnf)µS , where n is the outward unit normal to S = ∂K0,
and µS = dA is the area 2-form on S, we obtain finally,

(11.6) H(S, k) = −
1

8π

∫

S

ef/2DnfdA.

In particular, for the vacuum Schwarzschild solution with mass parameter M, taking the Killing field k = ∂t,
we see easily that the mass calculated using the integral (11.6) gives the value M for the mass enclosed by
any sphere centered at the ”origin” when we normalize the Killing field to be a unit vector at infinity. On
the other hand, if we calculate that value of the integral by normalizing to make the Killing vector a unit at
radial coordinate r0, as H(S, k) is homogeneous in k, the normalizing constant comes out resulting in

(11.7) Mr0
=

M

[1 − 2M
r0

]1/2
.

Keeping in mind this is now the total energy, gravitational and massive, this indicates a problem develops as
r0 → 2M, even though we know it is not a real problem for the spacetime. The problem is probably due to
the normalization involving the Schwarzschild radial coordinate which obviously breaks down at r0 = 2M.
After all, what we are integrating is equivalent by Stokes’ Theorem to integrating H(u, k)µK , when S = ∂K0,
and we really want to be integrating H(u, u)µK . We do not have the actual potential. On the other hand,
this does seem to reflect correctly the fact that as one approaches the horizon of a black hole it takes infinite
force to keep from falling in.

Let us now use these results to compute the mass action integral (11.1). To do this, let us assume that U
is foliated by spacelike submanifolds determined by the Killing parameter t on U, so the leaves are the level
manifolds of t, and that u is orthogonal to each leaf of this foliation. We assume that k = hu is the Killing
vector field on all of U, where h is the redshift factor. Assume now that K is a compact 4-submanifold of U
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with boundary ∂K and that the intersection of K with the leaf at time t is Kt with boundary ∂Kt which is
the intersection of ∂K with the leaf at time t, for t1 ≤ t ≤ t2. Then k∗ = hu∗ and we see the volume form
on K can be expressed as µK = µKt

hdt. This means that the action integral can be expressed as

(11.8) A(u, K) =

∫ t2

t1

∫

Kt

H(u, u)hµKt
dt =

∫ t2

t1

∫

Kt

H(u, k)µKt
dt =

∫ t2

t1

H(Kt, k)dt.

In the particular case of the Schwarzschild solution, this leads immediately to

(11.9) A(u, K) = M∆t,

with the Killing vector normalized so the redshift factor is 1 at infinity.
We can now see that the real problem is the fact that in integrating over a spatial slice, the proper time

is elapsing at different rates at different parts of space, so that in general, the quasi-local mass definitions
have to contend with this problem whether they like it or not [32], [33]. Thus, in general, if we have no
Killing vector field, if t is an arbitrary ”time” function on U, and if K(t1, t2) is the submanifold of U given
by t1 ≤ t ≤ t2, then we should simply think of A(u, K(t1, t2)) = Mav∆t, where now Mav is the average
quasi-local mass over the given time interval. This naturally leads to taking

(11.10) M(t) =
d

dt
A(u, K(t1, t)),

as the mass at time t. Thus for the Schwarzschild solution we now find that the mass is M, the mass
parameter, which indicates that the mass parameter is the total mass including that due to gravitational
energy.

Another approach to an invariant treatment of mass in general relativity might be based upon the negative
of S from (2.10), and the fact that its restriction Ageo

u as a linear transformation of u⊥ ⊂ TmM has as its
eigenvalues the negatives of the principal sectional curvatures which are then the principal tidal accelerations.
The eigenvector of the maximum eigenvalue for an observer at m ∈ M with velocity u then picks out a
spatial tangential direction in u⊥ which should be either towards or away from any larger than average
matter concentration at locations other than m. For instance in the Schwarzschild solution, it picks out the
radial direction, and the maximum time-sectional curvature is 2M/r3. Integrated around a central sphere
of radial coordinate r gives therefore 8πM/r, which is obviously related to the Newtonian potential of the
observer located at radial coordinate r in the Schwarzschild gravitational field. This seems to indicate that
there might be a way to obtain a generalization of a Newtonian type of potential from the curvature tensor
in the form of −S.

12. GRAVITATIONAL RADIATION

Frank Tipler has pointed out that due to the definition of the energy momentum stress tensor of the
gravitational field in terms of equation (6.1), it follows that the speed of sound in the gravitational field
equals the speed of light, for a vacuum electromagnetic field. More specifically, he points out that the
gravitational field energy density tensor equals the electromagnetic energy density tensor exactly, according
to (6.1) as the contraction of the latter is zero. Thus the speed of sound in the gravitational field due to
a vacuum electromagnetic field is equal to the speed of sound in a vacuum electromagnetic field, which is
of course the speed of light. This certainly seems reasonable given our way of viewing the gravitational
energy density in terms of electromagnetic fields. On the other hand, in the vacuum there is no energy of the
gravitational field, and consequently from this point of view, a gravitational wave carries no gravitational
field energy through the vacuum.

This point of view has been elaborated previously [7], in what has become known in the literature as the
Cooperstock hypothesis, purely on mathematical and somewhat philosophical grounds that the equations
for the various pseudo tensors have no content in the vacuum, and as well, on the basis of his detailed
computation [7] involving an example of a capacitor in a gravitational wave. On the other hand, the energy
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density tensor of the gravitational field is not divergence free which means it can dissipate in one place and
appear in another. That is, the time varying matter tensor causes gravitational energy to disappear into
the vacuum and then reappear elsewhere where there is matter. This of course is a difficulty for analyzing
gravitational radiation, and it means that using a coordinate conserved pseudo-tensor or any other device
which is conserved in some useful sense is certainly justified if it aids in calculation.

For instance, Hayward [23], in analyzing gravitational radiation in a quasi-spherical approximation defines
an energy density tensor for the gravitational radiation which carries positive energy and in the second
approximation reacts on the solution when included in the source of the truncated Einstein equation. This
means that one can in special circumstances use special definitions in a way that can be usefully interpreted
physically, even if it is technically a fiction. On the other hand, to quote [4], ”At the present time there
are many solutions of the gravitational wave problem, but none of them are satisfactory...another difficulty:
there is no general covariant d’Alembertian, which being in its clear form, could be included into the Einstein
equations.”

We must keep in mind here, that our view of the energy density of the gravitational field is in complete
agreement with the Einstein equation, so it cannot contradict any of its results and likewise, no result of
solving the Einstein equation can possibly contradict our view of the energy density of the gravitational field.
In particular, both Carl Brans and Frank Tipler (in personal communication) have expressed concerns about
how the view expressed here on the gravitational energy momentum stress tensor relates to the analysis
of the energy dissipation from binary pulsars, an issue also addressed in [7] in relation to the Cooperstock
hypothesis. Particularly relevant here are the calculations in [8] and [9] of the gravitational radiation due to a
rotating rod, showing the general relativistic calculation to be consistent with the Cooperstock Hypothesis.
The idea that gravitational radiation carries energy away may be a useful idea for keeping track of the
various ”energies”, or conserved quantities, in the system, but the calculations always involve a choice of
reference background metric which produces the apparent ”energy”. Alternately, it seems that there is no
mathematical vacuum in realistic models of the universe, because of background radiation and possibly dark
energy, so there is background matter to carry the gravitational energy. Since the gravitational energy is
really 3pu/c2 in ordinary units, it is so small, that it should be easily carried by the background matter
energy in realistic models involving ordinary pressures.

13. BLACK HOLES

Since the vacuum has no energy density, it follows that the assignment of mass to black holes or to
cosmological solutions is heavily influenced by boundary conditions assumed for the solution to the Einstein
field equations (see e.g. [37]). For instance, in the case of a Schwarzschild black hole, if we try to integrate
over a region enclosed by a sphere, we find that it is not the boundary of any compact spacelike slice. The
preceding analysis leading to (11.7) would have to be modified to include also an inner boundary as a cutoff
so that the region bounded is compact. On the other hand, as it stands, for the Schwarzschild case, the mass
is M no matter what matter resides in the interior as long as the matter is not all inside the Schwarzschild
radius, which indicates that it is reasonable to assign the artificial mass M to the Schwarzschild black hole
with mass parameter M, as a reflection of a boundary condition, the boundary being the black hole horizon.
Thus, in the general black hole case, one of the various definitions of quasi-local mass must be adopted. As
far as we can see, the actual energy momentum stress tensor of the gravitational field cannot help here.

14. COSMOLOGICAL MODELS

Because the total energy density is simply (1/4πG)Ric, in any cosmological model where we have a
universal time function it is often straight forward to calculate the total energy density which thus includes
that of the gravitational field. If the model is specified by a fluid where ρ is the density and p is isotropic
pressure (the average of the principal pressures) observed by the universal observer, then ρ + 3p is then
the total energy density including that of gravity as seen by the universal observer. Integrating this over
the spatial slice at time t, if it is compact, gives the total mass of the model including that due to the
gravitational field itself. In fact, it has long been realized that ρ + 3p is the actual source of gravity in
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general relativity in many special cases and in particular, in [18], we find ρ + 3p referred to as the ”active
gravitational mass” of any cosmological fluid model. This seems to have been clear right from nearly the
beginning of general relativity [46], so it is rather strange that the energy density tensor of the gravitational
field was not realized right from the Einstein equation itself, as soon as the equation was accepted. That
is, if gravitational energy has itself effective gravitational mass, then it must be what is accounting for the
extra effective gravitational mass over and above the ordinary mass.

15. GENERALIZATIONS

Our treatment of the Einstein equation depends only on assuming that there is a Lorentz manifold of
dimension n + 1 which describes the spacetime model of the universe and that there is a symmetric tensor
field on the spacetime which describes all matter and fields other than gravity together with the EHNIL
at each point of the spacetime manifold. However, in our calculations, we assumed in addition that the
constant kn was a universal constant, not depending on the particular event m ∈ M. We can note that
this assumption, though natural, is not implied by the principle of relativity, so our arguments without
this assumption immediately give the more general equation Ric − (1/(n − 1))Rg = 2knfT, where f is a
smooth function on M. This is because we can still appeal to the principle of relativity to guarantee that
all observers at a particular m ∈ M would see the same gravitation constant, which could then depend on
m. The observer principle still applies here, as it applies at each point of M. Using a modification of the
Einstein-Hilbert Lagrangian gives the Einstein equation together with an equation for the scalar function f.
In spacetime dimension 4, this is usually called Jordan-Brans-Dickie scalar tensor theory [31]. We will keep
the constant kn by giving f the value 1 at our location. We see that this amounts to replacing the source T
by a new source fT.

More generally, Moffat [34] has advocated a scalar vector tensor theory (SCVT) in order to solve the dark
matter problem. The view in [34] is that SCVT is a new theory of gravity which solves the dark matter
problem (he views the dark energy problem as solvable with inhomogeneity [35]). But in fact, a Lagrangian
method is used to determine field equations which can be written in the form Einstein = 8πT, where T is
the total energy momentum stress tensor of all ordinary matter and fields as well as that due to the scalar
field and that due to the vector field and an additional symmetric tensor. All these extra structures are
required to satisfy equations developed by Lagrangian methods, and the free parameters can be chosen to
match the dark matter galaxy rotation curves.

However, we can also view these results as being a specific model for the dark matter within Einstein’s
theory of gravitation. Thus, the equations in [34] for the extra scalar and vector fields of SCVT can be viewed
as the beginning of the theory of dark matter instead of a way of doing away with dark matter. On the other
hand, Frank Tipler [45] has argued that such extreme measures are not needed and that standard physics
may be used to account for the dark matter and energy, as well as several other problems in cosmology.
In any case, it is certainly of interest that SCVT explains the galaxy rotation curves, explains the galactic
lensing data, explains the bullet cluster data as well as globular clusters within galaxies, explains oscillations
in the matter power spectrum, all without any additional dark matter, but fails to explain the pioneer
deceleration data as these two spacecraft are reaching the outer parts of our solar system. In addition, in
SCVT, apparently black holes and singularities do not exist as there are solutions without event horizons.
Here, the big bang is replaced by the universe spontaneously arising from Minkowski space.

In higher dimensions, the usual mathematical method of looking for the form of the equation of gravity fails
to give a unique result, but rather introduces many free parameters giving a family of gravitation theories
known as Lovelock gravity theories [29], [42]. A reading of [29] shows that the theories were discovered
without the aid of Lagrangian methods, but subsequently a Lagrangian was found. This shows that without
some physics, neither general mathematics nor Lagrangian methods are capable of arriving at a definitive
equation. In addition to these theories of gravity, we now have brane-world theories [43], [20], [21], and
f(R) gravity theories [2]. Again, these fall into the general scheme of Einstein = knS, and can therefore
be rewritten in the form Ric − (1/(n − 1))Rg = 2knT, with T a simple linear combination of S and its
contraction (in case of f(R) we can expand f in power series and the linear terms inside the Lagrangian give
Einstein’s equation when the other resulting terms are moved to the source side of the equation).
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Of course, there are additional fields in these theories which are required to satisfy additional equations
derived by Lagrangian methods, and which can be thought of as generating new forms of matter. In the
case of brane-world models for our universe, the universe we live in is modeled as a Lorentz 4-submanifold
of a higher dimensional Lorentz manifold. In the end, usually effective equations for the 4-submanifold are
found which means again we can view the result as Einstein’s equation with new forms of matter, as well as
a higher dimensional Einstein equation for the bulk.

Thus, in view of Theorem 7.1, our equation for gravity can be viewed as being much more general than in
the usual view. That is, almost all classical gravity theories are really systems of equations of which Einstein’s
equation in form is the the most important part of the system. Thus we are inclined toward the view that for
any Lorentz manifold model of a universe, (7.5) should be viewed as the energy momentum stress tensor of
the gravitational field, (1/2kn)Ric the total energy momentum stress tensor, and (1/2kn)[Ric−(1/(n−1))Rg]
should be viewed as the geometrically effective total energy momentum stress tensor of matter and fields
other than gravity.

We can also note here that the Einstein-Hilbert Lagrangian method gives the Einstein tensor as the
geometric side of the equation in any dimension of spacetime, whereas it is only in spacetime dimension
4 that the Einstein tensor coincides with our geometrical tensor (1/2kn)[Ric − (1/(n − 1))Rg]. Thus, the
Einstein tensor results from the Lagrangian method in all dimensions because the coefficient 1/2 in the term

(1/2)Rg results from the derivative of
√

( − det(g)) with respect to det(g) which must be carried out in the
variation of the Einstein-Hilbert term of the Lagrangian, no matter the dimension of spacetime. Moreover,
the fact that conservation of energy makes scalar curvature constant in higher dimensions indicates that
we may be seeing spacetime as 4 dimensional because that is where everything of interest is happening,
even in higher dimensional theories. As Norbert Reidel has suggested, maybe the only interesting spacetime
dimensions are 4 and infinity.

16. CONCLUSION

The idea that the gravitational field energy can be localized is not in contradiction of Einstein’s equation
for gravity, but rather in fact is a consequence of it. As soon as we observe the mathematical fact that the
Ricci tensor is giving the negative flat Euclidean spatial divergence of each observer’s spatial infinitesimal
tidal acceleration field, it follows that (1/4πG)Ric is the total energy momentum stress tensor of matter fields
and gravity, and consequently T − c(T )g must be the energy momentum stress tensor of the gravitational
field. That is, the Einstein equation is really an infinitesimal law of gravity governing tidal acceleration
which is only a slight correction to the geometric form of Newton’s law for tidal acceleration. We say merely
a slight correction since the correction is only three times the isotropic pressure, 3pu which in terms of mass
density in terrestrial terms is 3pu/c2. But these corrections lead directly and purely mathematically to the
Einstein equation for gravity and the vanishing of the covariant divergence of the energy momentum stress
tensor of all fields other than gravity.

What this means is that the energy momentum stress tensor of the gravitational field cannot have zero
divergence unless spacetime has constant scalar curvature. This also means that the gravitational field gets
its energy from ordinary matter and fields other than gravity, confirming the Cooperstock hypothesis [7]. In
fact, we are going further than the Cooperstock hypothesis in that we claim the gravitational field energy
density would even vanish in pressureless dust, for any observer moving with the dust. This view seems to
be dictated by the Einstein equation itself. Moreover, if this view is used on already solved problems and
elementary examples and problems, it should lead to new perspectives.

Additionally, viewed in terms of infinitesimal tidal acceleration, it seems that each observer sees the
effective gravitational mass density as the inertial mass density plus three times the isotropic pressure, a
possibly testable result. In particular, for pure electromagnetic radiation, the effective gravitational mass
density is twice the inertial mass density, which could possibly be tested in an inertial confinement fusion
laboratory.

Finally, our developments are so general as to be able to include many theories of gravity within the
Einstein equation, including higher dimensional theories. This leads naturally to the point of view that
these theories are really theories involving new forms of matter within Einstein’s theory of gravity. As well,
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in case of higher dimensions, it appears the assumption of the vanishing divergence of the energy momentum
stress tensor for all non gravitational fields implies that the scalar curvature of spacetime must be constant.

We can view spacetime itself as the gravitational field, so the matter is a disturbance of spacetime causing
the gravitational field to have energy momentum stress tensor Tg = T − c(T )g. This equation is equivalent
to T = Tg − (1/3)c(Tg)g. Might not there be a dual concept of matter field such that the failure of spacetime
to curve so as to be Ricci flat gives the gravitational energy stress tensor Tg which in turn causes the matter
field to have energy momentum stress tensor T = Tg − (1/3)c(Tg)g? Thus, above we have attempted to give
a physically intuitive way to see how the energy of the gravitational field arises from ordinary energy. Is
there, dually, a physically intuitive way to view ordinary energy as arising from gravitational energy?
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18. APPENDIX: SYMMETRIES OF THE RIEMANN CURVATURE TENSOR

We have in (2.6) made the definition

K(v, w)z = R(z, v)w

so as to define the linear transformation K(v, w) for any tangent vectors v, w ∈ TmM, and which in particular
gives us the geometric infinitesimal tidal acceleration. We claimed above in (2.7) that

K(v, w)∗ = K(w, v).

Here m is a fixed event in M. Now the basic symmetries of the curvature tensor [38] give us

(18.1) R(v, w) = −R(w, v),

(18.2) g(R(v, w)x, y) = g(R(x, y)v, w),

and

(18.3) g(R(v, w)x, y) = −g(R(v, w)y, x).

Obviously, we can see that (18.3) is not really fundamental, as it is an immediate consequence of (18.1)
and (18.2).

So now, using (18.1), (18.2), and (18.3), we have for any v, w, x, y ∈ TmM,

g(K(v, w)∗x, y) = g(x,K(v, w)y) = g(x,R(y, v)w) =

g(R(y, v)w, x) = g(R(v, y)x, w) = g(R(x, w)v, y) = g(K(w, v)x, y).

Thus we have shown for any given vectors v, w ∈ TmM we have for all vectors x, y ∈ TmM that

g(K(v, w)∗x, y) = g(K(w, v)x, y).
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Therefore (2.7) holds:

K(v, w)∗ = K(w, v)

for all vectors v, w ∈ TmM.
It is because of (2.7) that we immediately find K(u, u) is self-adjoint with respect to g, the metric tensor.

We thus seem to be able then to easily make the connection between the geometric infinitesimal tidal
acceleration at m ∈ M given through the equation of geodesic deviation and the Newtonian tidal acceleration
given by the derivative of the Newtonian gravitational force per unit mass vector field at the point 0 ∈ TmM.

19. APPENDIX: GENERAL PRINCIPLE OF ANALYTIC CONTINUATION

Suppose that E1, E2, ...En, and F are all vector spaces (possibly infinite dimensional). The function or
mapping

A : E1 × E2 × ... × En −→ F

is a mutilinear map provided that it is linear in each variable when all others are held fixed. In this case, we
say that A is a multilinear map of rank n. A useful notation here is just to use juxtaposition for evaluation
of multilinear maps, so we write

A(v1, v2, ..., vn) = Av1v2...vn

whenever vk ∈ Ek for 1 ≤ k ≤ n. Thus, we simply treat the multilinear map A as a sort of generalized
coefficient which allows us to multiply vectors, and the multilinear condition simply becomes the distributive
law of multiplication.

In case that Ek = E for all k, there is really a single vector space providing the input vectors, and
A : En −→ F. We say that A is a multilinear map of rank n on E in this case, even though in reality, the
domain of A is the set En. Here it is useful to write v(k) for the k−fold juxtaposition of v’s. Thus we have

A(v, v, ..., v) = Av(n).

More generally, then for any positive integer m and vectors v1, v2, ..., vm ∈ E and non-negative integers
k1, k2, ..., km satisfying k1 + k2 + ... + km = n, we have the equation

Av(k1)v(k2)...v(km) = A(v1, ...v1, v2, ..., v2, ..., vm, ...vm)

where each vector is repeated the appropriate number of times, v1 being repeated k1 times, v2 repeated k2

times and so on. Of course, if ki = 0 then that merely means that vi is actually left out, so v(0) = 1 in effect.
We say that A : En −→ F is symmetric if Av1v2...vn is independent of the ordering of the n input

vectors. Thus when dealing with algebraic expressions involving symmetric multilinear maps as coefficients,
the commutative law is in effect.

Given any multilinear map A of rank n from E to F we can define a function fA : E −→ F by the rule

fA(v) = Av(n).

If we also assume that A is symmetric, then have for any v0, v1, ...vm ∈ E,

(19.1) fA(v0 + v1 + ... + vm) = Σ[k0+k1+...km=n]C(n; k0, k1, ..., km)Av
(k0)
0 v

(k1)
1 ...v(km)

m .

Here C(n; k0, k1, ...km) is the multinomial coefficient:

(19.2) C(n; k0, k1, ..., km) =
n!

k0!k1!...km!
.

First suppose that the rank n symmetric multilinear map A has the property that fA : E −→ F is
constant as a function on E. Let v0, v1, ..., vn ∈ E. Notice we are here dealing with the case that m = n.
There are possibly n + 1 different vectors here. Notice that the term on the right-hand side of (19.1) with

k0 = n is simply Av
(n)
0 = fA(v0). Also notice that the term k0 = 0 must have k1 = k2 = ... = kn = 1, which



28 MAURICE J. DUPRÉ

gives n!Av1...vn. Let w = v0 + v1 + ... + vn. Since we assume that fA is constant on all of E, it follows that
fA(w) = fA(v0) and therefore by (19.1), for all vectors v0, v1, ..., vn ∈ E, we have

(19.3) n!Av1v2...vn + Σ[k0+k1+...km=n,0<k0<n]C(n; k0, k1, ..., km)Av
(k0)
0 v

(k1)
1 ...v(km)

m = 0.

Notice that v0 can now be taken equal to 0 in equation (19.3) and the result is n!Av1v2...vn = 0, for any
vectors v1, v2, ..., vn ∈ E. This means that A = 0. We have therefor proven

Proposition 19.1. If A is a symmetric multilinear map on a vector space E with values in the vector space
F and if the function fA : E −→ F is constant on E, then A = 0.

Suppose now that E is a topological vector space and that U is a non-empty open subset of E on which fA

is constant. Let v0 ∈ U and let w1, w2, ..., wn ∈ E be arbitrary. Because U is open in E and the operations of
vector addition and scalar multiplication are continuous mappings, it follows that there is a positive number
ǫ so that if t1, t2, ..., tn are any numbers with |ti| ≤ ǫ, 1 ≤ i ≤ n, then

v0 + t1w1 + t2w2 + ...tnwn ∈ U.

If we now take vi = tiwi for 1 ≤ i ≤ n in our previous calculation (19.3), we find that if |ti| ≤ ǫ, 1 ≤ i ≤ n,
then

(19.4)

n!(t1t2...tn)Av1v2...vn + Σ[k0+k1+...km=n,0<k0<n](t
(k1)
1 ...t(kn)

n )C(n; k0, k1, ..., km)Av
(k0)
0 w

(k1)
1 ...w(km)

m = 0.

In particular, this means that

(19.5) n!ǫnAv1v2...vn + Σ[k0+k1+...km=n,0<k0<n]ǫ
nC(n; k0, k1, ..., km)Av

(k0)
0 w

(k1)
1 ...w(km)

m = 0.

and therefore

(19.6) n!Av1v2...vn + Σ[k0+k1+...km=n,0<k0<n]C(n; k0, k1, ..., km)Av
(k0)
0 w

(k1)
1 ...w(km)

m = 0.

But then, by (19.1) and (19.6), we have fA(v0) = fA(v0 +w1 +w2 + ...+wn) no matter the choice of vectors
w1, ..., wn ∈ E. This means that fA is constant on E and by Proposition 19.1 we now conclude that A = 0.
We have now proven

Proposition 19.2. suppose E is any topological vector space and F is any vector space. Suppose that
A : En −→ F is any symmetric multilinear map of rank n. If there is a non-empty open subset of E on
which fA : E −→ F is constant, then A = 0.

By convention, a multilinear map from E to F of rank zero is just a vector in F. If Ak is a symmetric
multilinear map of E to F of rank k, for 0 ≤ k ≤ n, then the function

f = Σn
k=0fAk

is a polynomial function of degree n. If F is also a topological vector space, then we can take limits in the sum
and consider power series. The general principle of analytic continuation relies on the uniqueness of power
series expressions. In general, for Banach spaces, if two power series agree locally as functions, then all their
coefficients are the same-that is, they are the same power series. The proof is easy using differentiation, just
use the same method used in freshman calculus, but for Banach space valued functions. We have basically
proven this fact in case there is only one term in the power series, but without using differentiation and
without even having topology on the range vector space.

The Observer Principle as we have formulated it here is just this special case of the principle of analytic
continuation given in Proposition 19.2. In a sense, it is the essence of the Principle of Relativity. Because it
says that in order for two rank r symmetric tensors A and B on TmM to agree, A = B, it merely suffices
that Au(r) = Bu(r) for every observer u ∈ TmM. A law in general relativity at event m ∈ M expressed as
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an equation of symmetric tensors is true if and only if each observer sees the two tensors as equal. We can
think of observer u ∈ TmM observing the rank r tensor A on TmM by actually finding the value of Au(r).
For further discussion of this topic, see the Appendix of [12].

20. APPENDIX: COMMENTS OF ENERGY DENSITY OF GRAVITY

We must keep in mind here that our ”scooping out” in either the positive pressure case or the negative
pressure case is really just a thought experiment in the sense of one of Einstein’s ”gedanken” experiments.
We are just imagining that for an infinitesimal amount of time δt as seen by observer u, that as if by magic,
a small part of physical reality were replaced by either laser beams or capacitor as the case may be. Thus,
in the negative energy case, we are not asking the observer to sort the charges along the cut line, we are
merely asking the reader to imagine what the observer would see ”energy-density-wise”, if for a certain
infinitesimal duration δt his physical reality was magically modified with electromagnetic fields so as to
balance the pressures. Notice, that for the laser beam argument, we must assume that the duration is large
enough that statistically many photons strike the opposite faces for the creation of photon pressure. This
means that cδt should be large in comparison to δx, δy, δz, but as we are dealing with infinitesimals in the
macroscopic sense of physics, this is not a problem.

For more detail in the ”pillbox” argument, we must assume that the charge surfaces behave like conductors
so that there is no field outside the scooped out region nor parallel to the scooped regions opposite pair of faces
which we are considering. This, of course, is somewhat of a stretch. We must assume that the capacitor’s
electric field makes no change to the region outside. Suppose E is the electric field vector inside the scooped
spatial region and that σ is the surface charge density. By Gauss’ Law for electric flux, we then have the
electric field flux |E|A = Aσ, where A is the surface area of one of the faces of the scooped out region across
which we have the negative pressure, say A = δyδz, and the separation of two charged surfaces is δx. Thus,

|E| = σ.

The energy of two such separated charged surfaces is therefore |F|δx where F is the force exerted by one
face on the other. But then F = AσE so the energy is

|F|δx = σ|E|Aδx = Aσ2δx = σ2V,

where V = Aδx is the volume. Thus the energy density equals the square of the surface charge density. On
the other hand, the pressure in the x−direction here in absolute value satisfies

A|px| = |F| = Aσ|E| = Aσ2.

Therefore, the absolute value of the pressure also equals the square of the surface charge density. Thus, we
conclude that the energy density of an electric field inside the scooped region caused by charges on opposite
faces attracting each other is exactly the pressure in absolute value.

There are clearly problems with the capacitor argument as far as actually physically putting it into effect
is concerned. For instance, the edge effect of a finite parallel plate capacitor which causes electric field lines
to ”bulge out” is certainly undesirable, and the argument would be ruined by the electric fields created
outside the scooped out region. Somehow, the fact that the energy density equals the pressure in both the
positive and negative pressure cases here, however, seems to be too much of a coincidence to ignore. This
seems to indicate that there must be some very strong connection between gravity and electromagnetism.
For instance, one might imagine that a whole space-like slice of spacetime is chopped up into such tiny
infinitesimal bits and everything replaced with such infinitesimal electromagnetic field systems. How would
the observers know? All the pressures they feel would be the same everywhere. I would love to hear comments
from physicists on this.
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