About Me

Hi! I am a professor of practice at Tulane University. I graduated with my PhD in applied math from Arizona State University.

Research Interest

My research is in mathematical biology. During my postdoctoral work at the FDA, I employed mathematical modeling to gain insights into cancer biology and its treatment.

For my PhD, I studied cancer using mathematical models with a focus on temporal and spatial dynamics that arises from time delay and stochasticity. As part of the group of Prof Yang Kuang and Prof Eric Kostelich, I have worked on extracting digital markers from MRI data to infer patient-specific parameters for a partial differential equation model.

Under the advise of Prof John Fricks, I have developed a computationally efficient method to get asymptotic velocity and diffusivity of a group of motors.

Publications

  1. Han, L., & Fricks, J. (2024). A Semi-Markov Approach to Study a Group of Kinesin Motors. Bulletin of mathematical biology, 86(2), 15.
  2. Han, L., Yogurtcu, O. N., Rodriguez Messan, M., Valega-Mackenzie, W., Nukala, U., & Yang, H. (2024). Dosage optimization for reducing tumor burden using a phenotype-structured population model with a drug-resistance continuum. Mathematical Medicine and Biology: A Journal of the IMA, 41(1), 35-52.
  3. He, C., Han, L., Harris, D. C., Bayakhmetov, S., Wang, X., & Kuang, Y. (2023). Reaction–Diffusion Modeling of E. coli Colony Growth Based on Nutrient Distribution and Agar Dehydration. Bulletin of mathematical biology, 85(7), 61.
  4. Han, L., Messan, M. R., Yogurtcu, O. N., Nukala, U., & Yang, H. (2023). Analysis of tumor-immune functional responses in a mathematical model of neoantigen cancer vaccines. Mathematical Biosciences, 356, 108966.
  5. Han, L., He, C., Dinh, H., Fricks, J., & Kuang, Y. (2022). Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes. Bulletin of mathematical biology, 84(7), 1-20.
  6. Goeschl, J. D., & Han, L. (2020). A Proposed Drought Response Equation Added to the Münch-Horwitz Theory of Phloem Transport. Frontiers in Plant Science, 11.
  7. Han, L., He, C., & Kuang, Y. (2020). Dynamics of a model of tumor-immune interaction with time delay and noise. Discrete & Continuous Dynamical Systems-S, 13(9), 2347.
  8. Han, L., Eikenberry, S., He, C., Johnson, L., Preul, M. C., Kostelich, E. J., & Kuang, Y. (2019). Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates. Mathematical Biosciences and Engineering.
  9. Ohashi, K. G., Han, L. , Mentley, B., Wang, J., Fricks, J., & Hancock, W. O. (2019). Load-dependent detachment kinetics play a key role in bidirectional cargo transport by kinesin and dynein. Traffic (Copenhagen, Denmark).