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Interaction of toroidal swimmers in Stokes flow

Jianjun Huang*

Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA

Lisa Fauci†

Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA
(Received 4 November 2016; published 5 April 2017)

A doughnut-shaped object supporting surface rotations was a hypothetical construct proposed by both Taylor
and Purcell as a swimmer that would be able to propel itself in a Stokesian fluid because of the irreversibility of
its stroke. Here we numerically examine the hydrodynamic interaction of pairs and trios of these free toroidal
swimmers. First, we study the axisymmetric case of two toroidal swimmers placed in tandem, and show that a
single torus of a corotating pair is more efficient than when it swims alone, but less efficient when paired with a
counterrotating partner. Using a regularized Stokeslet framework, we study the nonaxisymmetric case of toroidal
swimmers whose axes are initially parallel, but not collinear. These perturbed in tandem swimmers can exhibit
qualitatively different trajectories that may, for instance, repel the swimmers or have them settle into a periodic
state. We also illustrate interesting dynamics that occur for different initial configurations of three tori.
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I. INTRODUCTION

Interest in the fluid dynamics of motile microorganisms
has surged in recent years [1]. Microfluidic devices have
enabled researchers to precisely control physical and chemical
environments that can probe microbial processes at the mi-
croscale [2,3]. Harnessing the motility of bacteria or eukaryotic
microorganisms to transport microscale loads presents an
intriguing possibility for drug delivery [4,5]. In addition to
using nature’s own swimmers for targeted delivery, fabricated
helical micromachines that can move colloidal microparticles
by magnetic actuation have been engineered [6]. The under-
standing of the mechanics and energetics of microswimmers,
both natural or fabricated, is essential for the exploitation and
manipulation of their motility in biotechnology.

At the length scale of microorganisms, inertia is negligible
and viscous forces dominate. In this Stokes regime, swimming
progress can only occur with a stroke that is irreversible in time.
In his classic work that initiated the mathematical analysis
of the fluid dynamics of microorganisms, Taylor sketched
a hypothetical simple swimmer that was a cylinder bent so
that its axis forms a circle [7]. If the cross-sectional rings
of the torus rotate with a constant angular velocity, would this
toroidal animal propel itself in a viscous, incompressible fluid?
Purcell also considered the propulsion of such a hypothetical
animal, whose surface rotation is a simple example of a
stroke that breaks time-reversal symmetry [8]. Analysis has
demonstrated that the toroidal swimmer will, indeed, propel
itself in the direction opposite to the rotational direction of its
outer surface [9–11].

The construct of the toroidal swimmer, although idealized,
can shed light on some true biological systems. For instance,
a dinoflagellate swims due to the action of two flagella, a
transverse flagellum and a longitudinal flagellum [12–18]. The
longitudinal flagellum trails behind the cell body and prop-
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agates planar waves, much like a sperm flagellum. Wrapped
around the equator of the spherical cell body in a plane perpen-
dicular to the longitudinal flagellum, the transverse flagellum
propagates helical waves. The microbe is observed to swim
forward in the direction opposite the longitudinal flagellum,
and also to rotate about its longitudinal axis. The forward
progression had previously been attributed to the longitudinal
flagellum, with rotation being attributed to the transverse
flagellum [16]. However, recent analysis and computations
have shown that the transverse flagellum contributes to the
forward motion [17,18]. A torus propagating surface rotation
captures many features of the waving transverse flagellum of
the dinoflagellate [18]. In another context, the construction
of a toroidal swimmer out of DNA miniplasmids has been
proposed as a nanomachine whose surface rotations can be
driven by periodic temperature changes [19].

When a microswimmer is not isolated, but moving as
part of a collection, swimming trajectories and energetics
are altered due to hydrodynamic interactions [20–23]. Here
we study the fluid dynamics of the interaction of toroidal
swimmers in Stokes flow [24]. Using a regularized Stokeslet
framework [25], we examine the motility of pairs of toroidal
free swimmers whose axes are initially parallel, but not
necessarily collinear. We show that perturbed in-tandem
swimmers can follow qualitatively different trajectories that,
for instance, repel the swimmers or have them periodically
move towards and away from each other. In addition, we show
that three tori swimming in tandem can exhibit intriguing
dynamics due to their interaction. We offer these toroidal
swimmers as the three-dimensional (3D) Stokes counterparts
of the 2D finite-dipole inviscid swimmers presented by Tchieu
et al. [26].

II. MATHEMATICAL MODEL

Figure 1 shows a torus formed by the rotation of a small
circle of radius rh about an axis. The circular trajectory of
its center is referred to as the centerline of the torus, and its
radius is denoted by rc. On the surface of each torus a fixed
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FIG. 1. A schematic diagram of the rotating torus with radius of
the tube rh, radius of the centerline rc, normal direction n, and surface
tangential velocity u0. The dashed line is the centerline of the torus.

rotational velocity u0 about the centerline will be imposed.
The normal vector of the torus n points in the direction of
the axis perpendicular to the plane of the circular centerline.
We choose the normal vector direction to coincide with the
direction of the imposed velocity at the inner surface of the
torus.

The surface of the torus ∂D supports forces F that are
exerted on the viscous fluid in which it is immersed. These
forces are not preset, but will be determined so that the
prescribed surface velocity is achieved along with conservation
of momentum and angular momentum. Because the length and
velocity scales at the microscopic level are so small, the flow
is governed by the incompressible Stokes equations:

−∇p + μ�u + f(x,t) = 0

∇ · u = 0.
(1)

Here u is the fluid velocity, p is pressure, μ is the dynamic
viscosity and f is a force density that represents the force of
the toroidal swimmer on the fluid.

This force density is supported on the surface of the torus
and is given by:

f(x,t) =
∫

∂D

F(X(s,t),t) ψε(x − X(s,t))ds. (2)

Material points on the surface of the torus ∂D are denoted
by X(s,t), where s is a two-dimensional Lagrangian surface
parameter. Here ψε is a regularized three-dimensional Dirac δ

function that distributes the force in a small volume around a
material point of the toroidal surface [25]. We choose:

ψε(x) = 15ε4

8π (r2 + ε2)7/2
, (3)

where r = ||x||. For this choice of regularization, the velocity
u = (u1,u2,u3) due to a single regularized force f = f0ψε(x −
x0) applied at the point x0 is:

ui(x) = 1

8πμ
Sε

ij (x,x0)f0j ,

where the regularized Stokeslet is given by:

Sε
ij (x,x0) = δij

r2 + 2ε2

(r2 + ε2)3/2
+ (xi − x0,i)(xj − x0,j )

(r2 + ε2)3/2
. (4)

Here δij is the Kronecker delta, r = ||x − x0|| and x̃i =
xi − x0,i . The velocity is defined at all points x ∈ R3, even
at x = x0, due to the regularization. For ε = 0 the regular-
ized Stokeslet in Eq. (4) reduces to the classical singular
Stokeslet [28].

For a distribution of forces applied on the surface ∂D of the
torus:

ui(x,t) = 1

8πμ

∫
∂D

Sε
ij (x,X(s,t))Fj (X(s,t),t)ds. (5)

In practice, the surface of the torus is discretized by N material
points and the evaluation of Eq. (5) at these material points
results in a linear system relating the imposed velocities at
these surface points to the forces at those points:

LF = v. (6)

Here L is a 3N × 3N matrix,

F = (
F 1

1 ,F 1
2 ,F 1

3 , . . . ,FN
1 ,FN

2 ,FN
3

)T

and

v = (
u1

1,u
1
2,u

1
3, . . . ,u

N
1 ,uN

2 ,uN
3

)T
,

where F i
j and ui

j are the j th (j = 1,2,3) component of
the surface force and velocity, respectively, of the ith (i =
1,2, . . . ,N ) point. The matrix L depends only upon the
positions of the discrete points of the toroidal surface. Because
we are modeling a free toroidal swimmer, we require that
the total force and torque be zero. In order to satisfy these
constraints, the toroidal swimmer undergoes a rigid translation
and rotation. We denote the overall velocity of a toroidal
surface point as as u = u0 + U + � × (x − xc), where u0 is
the imposed tangential velocity, U is the induced translational
velocity, � is the induced rotational velocity and xc is the
center of the object. The rigid translation and rotation add
six unknowns to the system so that the six constraints due to
force-free and torque-free swimming can be met.

The equations (6) together with the six equations ensuring
conservation of linear and angular momentum can be presented
as:

AF̃ = ṽ. (7)

Here, A is a (3N + 6) × (3N + 6) symmetric matrix, and

F̃ = (
F 1

1 ,F 1
2 ,F 1

3 , . . . ,FN
1 ,FN

2 ,FN
3 ,U,�

)T

ṽ = (
u1

1,u
1
2,u

1
3, . . . ,u

N
1 ,uN

2 ,uN
3 ,0,0,0,0,0,0

)T
.

This system of equations allows us to compute the forces
that must be exerted at the material points of the toroidal
surface to achieve the imposed surface velocity u0, along
with the resulting translation and rotation of the swimmer.
Moreover, the computed force distribution F̃ allows us to
evaluate the fluid velocity at any point inR3 using a discretized
version of Eq. (5).

III. SINGLE TORUS

We nondimensionalize the Stokes equations (1) by choos-
ing a length scale L, a velocity scale U , a time scale T = L/U ,
a pressure scale P = μU/L, and a force scale F = μU/L2. In

043102-2



INTERACTION OF TOROIDAL SWIMMERS IN STOKES FLOW PHYSICAL REVIEW E 95, 043102 (2017)

FIG. 2. Streamlines and flow directions in the plane y = 0 around
a force-free torus with aspect ratio s0 = 5. The solid lines are the
streamlines of the flow around the toroidal swimmer. The arrows
indicate the direction of the flow.

this nondimensional setting, we consider a single torus of unit
diameter (i.e., radius rc = 0.5) and tube radius rh = 0.1, so that
its aspect ratio s0 = rc/rh = 5. A uniform surface tangential
speed of u0 = 100 is imposed. The center and the normal
of the torus are assumed to be xc = (0,0,0) and n = (0,0,1),
respectively. Figure 2 shows instantaneous streamlines and
flow directions around this free-swimming torus calculated
using the method of regularized Stokeslets where the surface of
the torus was discretized with Mh = 12 points on each cross-
sectional circle and Mc = 60 cross-sectional circles around
the centerline, for a total of N = 720 nodes. Neighboring
nodes both around the circular cross sections and between
cross sections were nearly equally spaced with grid distance
�s ≈ 0.05. As in previous regularized Stokeslet models that
relate surface velocities to surface forces [18,25,29,30], the
regularization parameter ε was chosen to be a multiple of �s.
Here we chose ε ≈ 0.35�s.

By considering a distribution of rotlets along the torus
centerline, Kulic et al. [19] showed that in the limit of large
aspect ratio s0, the free-swimming torus powered by surface
rotation of speed u0 would translate at the velocity:

U = u0

2s0

(
log(8s0) − 1

2

)
(8)

in the direction of its inner surface motion. Later, Leshansky
and Kenneth [11] used toroidal coordinates to calculate the
free-swimming speed of the toroidal swimmer without the
same large aspect ratio assumption. Given the parameters of
the torus described above, the asymptotic translational velocity
from Eq. (8) is U = 31.89. Even for this moderate value of
aspect ratio s0 = 5, the regularized Stokeslet calculation shows
excellent agreement with a computed value of U = 31.34.
Note that symmetry restricts the translational velocity of the
torus to be only in the z direction, as well as the angular
velocity � = 0.
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FIG. 3. Ratio of propulsive velocity to surface velocity (U/u0)
versus aspect ratio s0 = rc

rh
. The solid curve uses the asymptotic

solution in Eq. (8) and the crosses indicate regularized Stokeslet
(RS) computations.

Figure 3 shows the ratio of propulsive velocity to surface
velocity U/u0 computed for a series of aspect ratios using the
method of regularized Stokeslets. The tube radius of the tori
was held fixed, but the radius of the centerline increased to
achieve the larger aspect ratios. More cross-sectional circles
were added as the centerline radius increased, keeping the
distance between nodes �s unchanged. The solid curve in
Fig. 3 indicates the asymptotic value of the ratio, whereas
the crosses indicate the values computed using the numerical
method. Along with convergence studies that varied the surface
discretization and blob size, this comparison with theory
allowed us to calibrate the numerical parameters so that the
calculations are sufficiently resolved [24].

IV. INTERACTION OF MULTIPLE TORI

The coupled torus-Stokes system for a single torus pre-
sented above is easily extended to study the interaction of
multiple free-swimming tori in a Stokesian fluid by summing
over the contribution of each torus surface to the force density
in the Stokes equations (1):

f(x,t) =
Nt∑

k=1

∫
∂Dk

Fk(Xk(s,t),t) ψε(x − Xk(s,t))ds. (9)

Here Nt is the number of tori, and the material points on the
surface of the kth torus ∂Dk are denoted by Xk(s,t). The total
force and torque on each of the Nt tori, separately, is zero. The
resulting translational and rotational velocities, Uk and �k , are
computed for k = 1,2, . . . ,Nt .

A. Two tori placed in tandem

We first examine two identical tori rotating with the same
surface velocity, placed in tandem so that their normal vectors
are collinear. We assume the normal vectors n1 = n2 = (0,0,1)
are aligned with the z axis. A pair of corotating tori are shown
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(b) Counterrotating(a) Corotating

FIG. 4. (a) Streamlines around two corotating tori. This pair translates upwards at a constant speed with no rotation, and the distance
between their centers remains fixed. (b) Streamlines around two counterrotating tori. Each torus in this pair will be moving away from the other
at the same speed, and this speed will depend upon the distance between their centers. Arrows indicate the direction of flow.

in Fig. 4(a). Symmetry considerations and the reversibility of
Stokes flow dictate that the translational velocities U1 = U2 =
(0,0,U ) and that the rotational velocities �1 = �2 = 0. In
this case, the two tori translate upwards as a pair, maintaining
a constant distance between their centers. Their velocities
remain unchanged as they translate. Similarly, we examine
two identical tori rotating with opposite surface velocities, also
placed in tandem but with n1 = −n2. A pair of counterrotating
tori along with the extensional flow they create are shown in
Fig. 4(b). In this case, symmetry considerations and Stokes
reversibility give U1 = (0,0,U ) = −U2 and �1 = �2 = 0.
Depending upon the direction of the surface rotations, the
counterrotating tori either move towards each other or away
from each other [as in Fig. 4(b)].

The velocities of both the corotating or counterrotating
pair of free-swimming, in-tandem, tori were computed by
Thaokar [31] using asymptotics for slender tori in the far-
field limit, as well as using boundary integral methods for
nonslender tori with separation distance on the order of the
toroidal radius. In these calculations, the axisymmetry of the
in-tandem arrangement of the toroidal pairs was exploited [31].
It was shown that corotating tori enjoy a boost in speed
compared to the speed of a single swimmer. In addition, it
was shown that as counterrotating tori move towards each
other, their velocity decreases.

We consider in-tandem pairs of both corotating and counter-
rotating tori of unit diameter (i.e., radius rc = 0.5), aspect ratio
s0 = 5 and surface tangential speed u0 = 100, and vary their
vertical distance. Figure 5 shows the swimming speeds of both
the corotating pair and the counterrotating pair normalized
by the speed of an identical isolated torus. Note that the
velocities of each torus in the corotating pair are identical,
but the velocities of each torus in the counterrotating pair are
negative of each other. We see that the corotating pair placed
at a distance of d = 1 apart realizes a six percent increase
in swimming speed when compared to the isolated torus. In
addition, we see that counterrotating tori impede each other’s

speed when they are close together. When the vertical distance
between the tori is more than about six toroidal diameters
apart, their speed is nearly that of an isolated torus. We also
compare our computations of the speeds of both pairs with the
far-field limit reported by Thaokar [31]:

U = uo

2s0

(
log 8s0 − 1

2

)
± πuo

s0

(
11 + 2d̃2

2(4 + d̃2)5/2

)
. (10)

The agreement was within three percent (see Fig. 5). Here, d̃

is the normalized distance between the centers of two tori by
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FIG. 5. Swimming speeds of in-tandem corotating (solid line
with circles) and counterrotating (dashed line with crosses) torus
normalized by the swimming speed of an identical isolated torus as
a function of vertical distance. The solid and dashed lines are plotted
from formula (10) normalized by the speed of an isolated torus. Here
each torus in the pair was of unit diameter and aspect ratio s0 = 5.
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FIG. 6. (a) The swimming speed of an individual torus in an
in-tandem corotating pair normalized by the swimming speed of an
identical isolated torus as a function of aspect ratio. (b) The power
expenditure of an individual torus in an in-tandem corotating pair
normalized by the power expenditure of an identical isolated torus
as a function of aspect ratio. (c) The efficiency of an individual torus
in an in-tandem corotating pair normalized by the efficiency of an
identical isolated torus as a function of aspect ratio. The normalized
values of speed, power, and efficiency are shown for four different
vertical distances between the centers of the tori.

the radius of centerline, i.e., d̃ = d+2rh

rc
, where d is the distance

between two tori.
An individual in a pair of corotating tori enhances the

swimming speed of its partner. We can also ask how swimming
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FIG. 7. (a) The swimming speed of an individual torus in an
in-tandem counterrotating pair normalized by the swimming speed of
an identical isolated torus as a function of aspect ratio. (b) The power
expenditure of an individual torus in an in-tandem counterrotating pair
normalized by the power expenditure of an identical isolated torus as
a function of aspect ratio. (c) The efficiency of an individual torus in
an in-tandem counterrotating pair normalized by the efficiency of an
identical isolated torus as a function of aspect ratio. The normalized
values of speed, power, and efficiency are shown for four different
vertical distances between the centers of the tori.

in tandem changes the power expenditure of each individual
in the pair in order to achieve the same surface rotational
velocity. Is it more efficient for a torus to swim alone, or find a
corotating partner? What about a counterrotating partner? We
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(a) t = 0.00000 (b) t = 0.005000 (c) t = 0.010000 (d) t = 0.015000

FIG. 8. Two counterrotating tori are initially placed in a perturbed in-tandem configuration so that their normal vectors are parallel but not
collinear. The direction of surface rotations causes them to move towards each other. The surrounding streamlines are shown, and the velocity
directions are indicated by arrows.

compute the power expended by the kth free-swimming torus
undergoing surface rotations as:

Pk =
∫

∂Dk

Fk · u0ds,

where u0 is the surface tangential velocity. The swimming
efficiency of that torus is then Ek = U 2

k /Pk .
Figure 6(a) shows the swimming speed of an individual

torus in an in-tandem, corotating pair normalized by the
swimming speed of an identical isolated torus. Values of this
normalized speed as a function of aspect ratio are denoted for
four different vertical distances between the tori. Although the
absolute swimming speed of a torus decreases as the aspect
ratio increases, we see that the boost in normalized swimming
speed increases with aspect ratio, and is more pronounced
when the tori are closest together. Figure 6(b) shows the power
expenditure of an individual torus in an in-tandem, corotating
pair normalized by the power expenditure of an identical
isolated torus. We see that the normalized power does not
change much with aspect ratio. However, the relative power
expenditure for a single torus in the pair is increased by about
ten percent for the closest pair (d = 0.1). Figure 6(c) shows
that, indeed, it is more efficient for a torus to swim as part of
an in-tandem, corotating pair rather than alone. This boost in
efficiency increases with aspect ratio.

Figure 7(a) shows the swimming speed of an individual
torus in an in-tandem, counterrotating pair normalized by the

swimming speed of an identical isolated torus. Values of this
normalized speed as a function of aspect ratio are denoted
for four different vertical distances between the tori. We see
that in all cases the counterrotating tori inhibit each other’s
speed, especially those placed closest together. This decrease
in normalized speed increases with aspect ratio. Note that
these values reported are instantaneous for the given vertical
distance between tori. This distance would evolve as the pair
either approached each other or moved apart, depending upon
the directions of surface rotation. Figure 7(b) shows that the
relative power expenditure of an individual torus in an in-
tandem, counterrotating pair increases with increasing aspect
ratio before leveling off for the closest pair of counterrotating
tori. Figure 7(c) shows that it is never more efficient for a
torus to swim as part of an in-tandem, counterrotating pair
rather than alone. For each fixed vertical distance, the relative
efficiency decreases with aspect ratio.

B. Two tori: Perturbed in-tandem placement

Two perfectly in-tandem corotating or counterrotating tori,
where the normal vectors are collinear, are axisymmetric
systems. Here we consider a perturbation of this in-tandem
configuration, where the normal vectors of the tori are parallel,
but not collinear. Axisymmetry is lost. We assume that the
plane determined by the line connecting the tori centers and
the parallel normal vectors emanating from their centers is
y = 0. This two-tori system is then perfectly symmetric about

(a) t = 0.00000 (b) t = 0.005000 (c) t = 0.010000 (d) t = 0.015000

FIG. 9. Two counterrotating tori are initially placed in a perturbed in-tandem configuration so that their normal vectors are parallel but
not collinear. The direction of surface rotations are opposite to those in Fig. 8 so that these tori move away from each other. The surrounding
streamlines are shown, and the velocity directions are indicated by arrows.
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FIG. 10. (a) The rotational velocity of the counterrotating pair of tori in Fig. 8 and Fig. 9. The dashed part of the curve corresponds to
running time backwards in Fig. 9. (b) The distance between the parallel normals of the tori.

y = 0, and because of this symmetry we can assert that (i) the
resulting translational velocity of each tori U1 and U2 must be
zero in the y direction and (ii) the resulting rotation of the pair
can only be about the y axis, so the rotational velocity �1 and
�2 only have a nonzero in the second component.

Before presenting results of computational simulations
that will illustrate the dynamics of such toroidal pairs, we
first consider other symmetries of the toroidal placement.
A pair of counterrotating tori perturbed from in-tandem
placement is shown in Fig. 8(a). Suppose the bottom left
torus has instantaneous translational and rotational velocities
of U1 = (u1,0,v1) and �1 = (0,ω1,0) and the top right torus
has instantaneous translational and rotational velocities of
U2 = (u2,0,v2) and �2 = (0,ω2,0). If we rotate the reference
frame about the y axis clockwise by π (when viewing the
figure), the angular velocities in the new frame �∗

1 and �∗
2

do not change (�∗
1 = �1 and �∗

2 = �2), but the translational
velocities U∗

1 and U∗
2 switch by a minus sign (U∗

1 = −U1 and
U∗

2 = −U2). However, this rotated system is now precisely the
original system with the positions of the two tori interchanged.
We then conclude that �1 = �2 and U1 = −U2. The tori
have the same angular velocity and rotate as a pair, but their
velocities are opposing.

Figure 8 shows a sequence of snapshots of such a pair
of counterrotating tori of aspect ratio s0 = 5. Because of the
direction of surface rotations, each tori in the pair moves closer

to the other at the same speed, and the pair rotates clockwise
about the y axis. This speed decreases as they approach each
other. Figure 9 shows a sequence of snapshots of the same pair
of counterrotating tori, but with surface velocities reversed
so that they move away from each other. Because of the
reversibility of Stokes flow, we may consider the sequence
in Fig. 9 as an extension of the dynamics shown in Fig. 8 with
time moving backwards. Using this perspective, we plot the
rotational velocity of the pair as a function of time in Fig. 10(a).
We see that as the tori approach each other the rotation rate
increases. In addition, we do observe a tendency of the tori
to align as they approach each other. Figure 10(b) shows the
distance between the parallel normals of two tori. As the two
tori approach, the flow created by their surface rotations is very
nearly an extensional flow. The dynamics of the rotating pair
of tori is very much like the dynamics of a pair of microscale
rotors that are formed by micron-scale gold and platinum rods
that induce an extensional flow due to chemical reactions on
their surface [32].

Next we consider the dynamics of a pair of a corotating tori
perturbed from in-tandem placement as shown in Fig. 11(a).
Suppose the bottom left torus has instantaneous translational
and rotational velocities of U1 = (u1,0,v1) and �1 = (0,ω1,0)
and the top right torus has instantaneous translational and
rotational velocities of U2 = (u2,0,v2) and �2 = (0,ω2,0). As
in the counterrotating case, if we rotate the reference frame

(a) t = 0.00000 (b) t = 0.05000 (c) t = 0.10000 (d) t = 0.15000

FIG. 11. Two corotating tori of unit diameter are placed so that the offset between their centers in the vertical direction is h1 = 1, and the
offset between their centers in the x direction is h2 = 0.5.
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(a) t = 0.00000 (b) t = 0.05000 (c) t = 0.10000 (d) t = 0.12000

(e) t = 0.13000 (f) t = 0.15000 (g) t = 0.17000 (h) t = 0.22000

FIG. 12. Two corotating tori of unit diameter are placed so that the offset between their centers in the vertical direction is h1 = 0.2, and the
offset between their centers in the x direction is h2 = 1.6. The frame view is moving upwards at a speed of 30. Here the toroidal pair continues
on with a periodic trajectory relative to each other as they move upwards.

about the y axis clockwise by π (when viewing the figure), the
angular velocities in the new frame �∗

1 and �∗
2 do not change

(�∗
1 = �1 and �∗

2 = �2), but the translational velocities U∗
1

and U∗
2 switch by a minus sign (U∗

1 = −U1 and U∗
2 = −U2).

This rotated system is nearly the original system with the
positions of the two tori interchanged, except that the surface
rotations are in the opposite direction. Because of the time
reversibility of Stokes flow, reversing the direction of spin
would change both the translational and rotational velocities by
a minus sign. This sequence of rotation and reversing surface
spin returns us to the original system, and we can conclude
that �1 = −�2 and U1 = U2. Therefore, instantaneously, the
tori have the same translational velocity but rotate in opposite
directions. However, this need not be maintained as their
dynamics evolves. We will see that depending upon their initial
relative placements, the corotating pair can exhibit a rich array
of dynamics.

Figure 11 shows a sequence of snapshots of corotating
tori of unit diameter, aspect ratio s0 = 5, rotational speed
u0 = 100, initially placed with a vertical offset between their
centers of h1 = 1, and a horizontal offset in the x direction
of h2 = 0.5. Although their translational velocities are equal,
their rotational velocities are opposite. The individuals in
this pair eventually move away from each other. Figure 12
shows a sequence of snapshots of the same corotating tori, but
initially placed with a vertical offset between their centers of
h1 = 0.2, and a horizontal offset in the x direction of h2 = 1.6.
Because the pair is moving upwards, the frame of view is also
moving upwards at a speed of 30. Examining the final frame
[Fig. 12(h)], we see that this pair regains its original relative
placement, and will continue on in a periodic orbit.

Tchieu et al. [26] studied the interaction of pairs of finite
dipoles in two-dimensional inviscid flow. A finite dipole is a
pair of equal and opposite strength vortices that are constrained
to remain at a constant separation distance. The flow field

FIG. 13. Classification of all trajectories of centers of two
corotating tori of unit diameter, aspect ratio s0 = 5, and surface
velocity u0 = 100 for different vertical (h1) offsets and horizontal
offsets (h2) in initial placement. In each case the normals of the
tori were initially parallel, but not necessarily collinear. The inset at
the left shows the trajectories of the centers of pairs of corotating
toroidal swimmers for six initial offsets. (a) h1 = 1,h2 = 0 with
final time t = 0.2. (b) h1 = 1,h2 = 0.5 with final time t = 0.25.
(c) h1 = 0.4,h2 = 1 with final time t = 0.6. (d) h1 = 0.3,h2 = 1.138
with final time t = 0.199. (e) h1 = 0.2,h2 = 1.6 with final time
t = 0.4, and (f) h1 = 0,h2 = 1.6 with final time t = 0.083. The
regions in (h1,h2) phase space that correspond to the six qualitatively
different trajectories (a)–(f) shown in the inset are labeled accordingly.
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(a) t = 0.00000 (b) t = 0.005000 (c) t = 0.010000 (d) t = 0.015000

FIG. 14. Two tori with normals pointing upwards placed abreast.

generated by a single finite dipole in two dimensions around
the dipole is much like the flow generated by a toroidal
swimmer projected onto a plane of rotational symmetry about
the toroidal normal. We find that trajectories of pairs of toroidal
swimmers in three-dimensional Stokes flow are analogous to

the trajectories of finite dipoles in two-dimensional inviscid
flow. The inset at the left of Fig. 13 shows the trajectories
of the centers of pairs of corotating toroidal swimmers for
six initial offsets. In all cases, the normals of the tori were
parallel, but not necessarily collinear. Trajectory (a) shows
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(a) t = 0.00 (b) t = 0.60
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FIG. 15. (a) Three corotating tori placed in tandem with all normals pointing upward. (b) Positions of the three tori at time 0.60 with frame
of view lowered by 24 units in z direction. (c) The trajectories of the z coordinates of the centers of the three tori. (d) The translational velocities
of the three tori, normalized by that of an identical, isolated torus.
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FIG. 16. Three tori placed in tandem. The surfaces of the bottom and middle tori rotate in the same direction, with normals pointing
upwards. The top torus rotates counter to the others, with normal pointing downwards. (a) t = 0.000, (b) t = 0.029. (c) The trajectories of the
z coordinates of the centers of the three tori. (d) The translational velocities of the three tori, normalized by the speed of an identical, isolated
torus.

the perfectly in-tandem case from Fig. 4, where the tori swim
upwards with the same velocity and do not rotate. Trajectory
(b) shows an initial placement of tori whose paths eventually
diverge. Trajectories (c) and (e) depict periodic trajectories, as
in Fig. 12 discussed above. (Note that we have included movies
of sample periodic orbits in the Supplemental Material [27].)
Trajectory (d), like trajectory (a), is an equilibrium state where
two tori translate with the same velocity and do not rotate.
Finally, trajectory (f) shows a pair of corotating tori that
were initially placed abreast. Using symmetry arguments, we
note that two tori originally placed abreast and symmetric
about the y = 0 plane as in Fig. 14(a) will rotate in opposite
directions (�1 = −�2) and their translational velocities will
satisfy U1 = (u1,0,v1) and U2 = (−u1,0,v1). The tori move
upwards, but also turn in to face each other and the distance
between their centers decreases.

In order to shed light upon the rich dynamics exhibited
by the corotating pairs, we performed simulations where the

initial horizontal displacement h2 and the vertical displacement
h1 between their centers were systematically varied. Figure 13
presents a phase diagram in (h2,h1) space that indicate when
the different trajectories occur. First, we note that because of
the nonzero toroidal radii, there is a hatched rectangular region,
which must be excluded. The state (a) on the y axis (h2 = 0)
represents the perfectly in-tandem tori that move upwards as
a pair. The state (f) on the x axis (h1 = 0) depicts tori that
move towards each other with mirror symmetry, and eventually
collide. The states (c) and (e) represent periodic trajectories
where the tori initially move away from each other (c) or
move initially towards each other (e). These periodic states are
separated in phase space by the curve (d), where the two exhibit
no rotations. The offsets in region (b) lead to trajectories where
the toroidal pair move away from each other—at least for the
duration of the simulations. We see from this phase diagram
that the in-tandem configuration is unstable: a slight horizontal
offset will cause the pair to diverge.
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(a) t = 0.00 (b) t = 0.05

(c) t = 0.00 (d) t = 0.087

FIG. 17. (a) Three identical tori are placed with their centers collinear in the x-y plane. At t = 0 their normals point upwards. (b) The trio
at t = 0.05. (c) Three identical tori are placed with their centers at vertices of an equilateral triangle in the x-y plane. At t = 0 their normals
are pointing upwards. (d) The trio at t = 0.087, with frame of view decreased in z direction by two units.

C. Interaction of three tori

In the previous section we noted that when two identical
corotating tori are placed in tandem, they experience no
rotational velocity, but translate at the same velocity, keeping
the distance between their centers fixed. This steady motion
does not occur when three identical corotating tori are
placed in tandem, even if they are initially equally spaced
vertically. Symmetry arguments tell us that each will have
zero rotational velocity, and the top and bottom tori will have
the same translational velocity. However, the middle torus
will experience a translational velocity bigger than the other
two. Thus, equidistant spacing is lost. Figure 15(a) shows a
snapshot of three identical corotating tori of unit diameter,
aspect ratio s0 = 5, u0 = 100 (normals pointing upwards),
initially placed so that the middle torus is closer to its bottom
neighbor. Figure 15(b) shows the trio at a later time, where the
frame of view in the z direction has been increased by 24 units.
Figure 15(c) shows the progression of the z coordinate of the

centers of the three tori, and Fig. 15(d) shows their translational
velocities normalized by that of an identical, isolated torus. We
see that the velocity of the middle torus initially gets the largest
boost from its neighbors, with the bottom torus lagging behind.
Eventually, the top two move as a pair, and the bottom slows
down nearly to the speed of an isolated torus.

Next we examine the interesting dynamics of three tori
placed in tandem that are identical to the tori in Fig. 15 except
for their directions of rotation [see Fig. 16(a)]. In this case,
the surfaces of the bottom and middle tori are rotating in
the same direction, with normals pointing upwards, but the
surface of the top torus is rotating in the opposite direction
(normal pointing downwards) at the same speed. The top torus,
wanting to move downwards, has its progression inhibited by
the top and middle torus, both wanting to move upwards.
Figure 16(b) shows the relative configuration of the tori at
a later time. Figure 16(c) shows the progression of the z

coordinate of the centers of the tori and Fig. 16(d) shows their
translational velocities normalized by the speed of an identical,
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isolated torus. We see that while the top torus initially has a
negative velocity, its velocity increases to the point where it
moves upwards with the other two. Because each torus has
a radius of rh = 0.1, the distance between the centers of the
middle and top tori can never be less than 0.2. In fact, we do
terminate this simulation right before the collision of these
tori occurs. We remark that this model enforces a prescribed
surface velocity on each torus that does not change due to the
state of the system. Because of this and the finite extent of
the toroidal radii, interacting tori may collide in finite time.
Future models could include feedback from the other tori
that would adjust surface velocities, perhaps based upon a
prescribed power input. In addition, repulsive forces could be
included to eliminate collisions.

We conclude by visualizing the interaction of three tori
placed abreast. Figure 17(a) shows an initial configuration
where the centers of the tori are collinear. Symmetry arguments
show that the middle torus will not rotate, but the outer two
will rotate in opposite directions. Figure 17(b) shows the trio
at a later time. Figure 17(c) shows an initial configuration of
three tori whose centers are placed at vertices of an equilateral
triangle. They each have the same rotational velocities and
translational speeds. Figure 17(d) shows their configuration at
a later time. Each torus rotates in the direction of the angle

bisector of the triangle, and they move towards each other like
a flower folding its petals.

V. CONCLUSION

In this work we have considered the fluid dynamic
interactions of classical toroidal swimmers that can propel
themselves in a Stokesian fluid, not by shape changes, but
by surface rotations. While these swimmers were proposed as
hypothetical constructs [7,8] to provide insight into microor-
ganism swimming, the propulsion of these tiny doughnuts is
related to dinoflagellate motility [18] and has the potential to be
used to design motile nanomachines [19]. Here we have used
symmetry arguments and a regularized Stokeslet framework
to examine the interactions of pairs and trios of free toroidal
swimmers. In all of the simulations presented above, the
rotational velocities of the surfaces of the toroidal swimmers
were prescribed. This could lead to collision of nearby tori or
very large power expenditures by a torus so that its imposed
surface velocity is realized. It would be interesting to expand
the model presented here by setting up a controlled system
whereby the surface velocities of the tori are not prescribed,
but evolve based upon the state of the system.
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