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Abstract.

We present a fluid-mechanical model of an individual cilium or flagellum, which in-
corporates discrete representations of the dynein arms, and the passive elastic structure
of the axoneme including the microtubules and nexin links. This model, based upon Pe-
skin’s immersed boundary method, couples the internal force generation of the molecular
motors through the passive elastic structure with the external fluid mechanics governed
by the Navier-Stokes equations. The flagellar and ciliary beats are not preset, but are
an emergent property of the interacting components of the coupled fluid-axoneme system.
The ciliary and flagellar waveforms are controlled by curvature-control mechanisms. We
present numerical simulations of a ciliary beat and spermatozoa swimming.

Keywords. immersed boundary method, fluid-structure interaction, axoneme, dynein,
cilia, flagella
AMS (MOS) subject classification: 92, 65, 76

1 Introduction

The eukaryotic flagella and cilia are cellular organelles that propel cells
through an aqueous environment or cause fluid or mucous flow over cells.
They are chemomechanical in that they convert the chemical energy of ATP
into movement. They do this by the activity of dynein ATPases that produce
shear forces along microtubules that form the cylindrical structures of cilia
and flagella. These microtubule structures are called axonemes. The typical
9+2 arrangement, as shown in Figure 1, is a cylinder comprised of 9 dou-
blet microtubules surrounding a pair of singlet microtubules. The doublet
microtubules anchor one end of dynein, the structural attachment, while the
other end of the dynein complex interacts cyclically with adjacent doublet
microtubules to produce shear or sliding force. In addition to the dyneins,
radial spokes attach to the peripheral doublet microtubules and span the
space toward the central pair of microtubules. The radial spokes and central
tubule complex are involved in the regulation of activity necessary in pro-
ducing effective motion [12]. The capacity for bend propagation might rely
on the effect of curvature on active sliding. Self-oscillatory behavior is an
intrinsic property of the axoneme. Axonemes detached from the cell beat in
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Figure 1: Diagram of the “9 + 2” axoneme.

a normal manner given appropriate ionic conditions and ATP. The typical
9+2 axoneme is found in a wide variety of protozoa, fungi, animals and lower
plants. The axonemes from these divergent organisms share ultrastructural,
genetic, and biochemical properties.

The bending of the axoneme is caused by sliding between pairs of outer
doublets, and resistance to that sliding. Active sliding is due to the unidirec-
tional ATP-induced force generation of the dynein power stroke. Backward,
passive sliding is due to the active sliding of other pairs of doublets within the
axoneme. The precise nature of the spatial and temporal control mechanisms
regulating the various flagellar and ciliary beats is still unknown.

The analysis of axonemal motion began as early as the first electron mi-
crographs showed the basic 942 cross-sectional images of axonemes. Gray
proposed that propagation of bending waves involved the passing of active
processes along the axoneme [13]. Machin used analysis of the waveform to
show that the movement must arise from active elements along the whole



Mathematical Modeling of Axoneme Mechanics 3

length of the flagellum rather than a passive elastic element driven active
process at the base [24]. By recognizing that the active force is that of shear
or sliding, Brokaw proposed a sliding filament model in which the curvature
controls the shear force [2]. Modeling by Brokaw and by Hines and Blum
in the 1970’s based on balance between active, viscous and elastic moments
showed that bend propagation can be explained by curvature control [3, 19].
That is, once a bend is formed, it propagates using only local curvature con-
trol. Furthermore, the curvature-control mechanism in the model can be
represented as a linear function or as a simple on/off control mechanism.
Both mechanisms produced waveforms observed in nature. Linear control
produced a waveform resembling a sine curve, while on/off control produced
a waveform resembling circular arcs connected by straight lines.

The coupled system of a viscous, incompressible fluid and a single, force-
generating organism is difficult to analyze. In the past decades, the efforts to
describe quantitatively the fluid dynamics of spermatozoa and ciliary propul-
sion have been very successful. Since the Reynolds number is quite small
and inertial effects can be neglected, the linear Stokes flow assumption has
been used to investigate the hydrodynamic consequences of flagellar undula-
tions [1]. These investigations have been both analytical and computational.
Resistive-force theory, initially developed by Gray and Hancock [13], makes
use of the linear Stokes flow assumption, and constructs the flow field by
means of distributions of fundamental singularities. Models for ciliary and
flagellar motion based on a generalized resistive force theory have been de-
veloped and explored by several researchers (for example, see [3, 4, 19, 20]).
A comprehensive review of this class of mathematical models is presented
in [25]. Lighthill improved this theory by incorporating slender body ap-
proximations [21], since the diameter of a flagellum is much smaller than its
length. More detailed hydrodynamic analysis, such as refined slender body
theory and boundary element methods, have produced excellent simulations
of both two- and three-dimensional flagellar propulsion in an infinite fluid
domain or in a domain with a fixed wall [17, 18, 16, 31]. In all of these
fluid dynamical models, the shape of the ciliary or flagellar beat was taken
as given.

A model of ciliary beating that does include both internal bend-generating
mechanics and accurate fluid dynamics has been developed in [14]. In this
work, digitized data from the beat pattern of a cilium of a Paramecium has
been used to calculate the parameters of an internal engine that depends only
upon the geometry of the cilium. This engine is used to generate force and
is coupled to a hydrodynamic model. Realistic beat patterns emerge, and
metachronism is exhibited in arrays of cilia [15]. In this model, the cilium
is treated as a slender body, and there is no attempt to track the individual
protein structures of the axoneme.

Another model of axonemal mechanics is Lindemann’s geometric clutch
hypothesis [22, 23]. This model treats the axoneme as dynamic elastic link-
ages exerting force between longitudinal arrays of microtubules. The hypoth-
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esis contends that the transverse force that develops in the plane of bending
changes the spacing between doublet microtubules and, in turn, affects the
likelihood of dynein bridges forming to pull the microtubules even closer to-
gether. The computer simulations based upon this hypothesis have produced
both ciliary and flagellar waveforms. However, only a rudimentary account
of the hydrodynamics is included.

In this paper we present a two-dimensional model of the fluid-axoneme
system which incorporates discrete representations of the dynein arms, the
passive elastic structure of the axoneme including the microtubules and nexin
links. This model, based upon the immersed boundary method [27], couples
the internal force generation of the molecular motors through the passive elas-
tic structure with the external fluid mechanics. This model is an extension of
our model for a single cilium which is described in [5] hereafter referred to as
(I). Detailed geometric information is available, such as the spacing and shear
between the microtubules, the local curvature of individual microtubules and
the stretching of the nexin links. In addition, the explicit representation of
the dynein motors allows us the flexibility to incorporate a variety of acti-
vation theories. Here, we choose a simple activation mechanism so that the
ciliary or flagellar beat is not preset, but is an emergent property of the inter-
acting components of the coupled fluid-axoneme system. The mathematical
framework is presented in Section 2, and an outline of the numerical imple-
mentation is presented in Section 3. In Section 4, we present computational
results for a curvature controlled ciliary beat, and a swimming spermatozoa
with dynein kinetics governed by a curvature-control mechanism with time
delay.

2 Mathematical Model

The formulation of our model is based on the immersed boundary method,
first introduced by Peskin [27, 30] to model blood flow in the heart. This
method treats neutrally-buoyant elastic boundaries immersed in a fluid as
regions of fluid in which additional forces are applied. The immersed bound-
ary method has been used in a variety of biological applications including
the study of sperm motility in the reproductive tract [10], platelet aggrega-
tion [11], biofilm processes [6, 8], three-dimensional blood flow in the heart
[28, 29], limb development [7], and large deformation of red blood cells [9].
The structure of the two-dimensional model axoneme consists of two mi-
crotubules (see Figure 2). Each microtubule is modeled as a pair of filaments
with diagonal cross-links. The filaments are highly resistant to stretching and
compression but offer no resistance to bending. Resistance to bending of the
microtubules is governed by the elastic properties of the diagonal cross-links.
Adjacent pairs of microtubules are interconnected by linear elastic springs
representing the nexin and/or radial links of the axoneme. Dynein motors
are represented as dynamic diagonal elastic links between adjacent pairs of
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Figure 2: Schematic of model cilia in LR configuration. Each of the model ax-
oneme’s two microtubules consists of two filaments with diagonal crosslinks.
The microtubules are interconnected with horizontal links representing nexins
and/or radial links. The dyneins are represented as diagonal links connecting
the two microtubules.

microtubules.

In cilia and flagella, the active sliding between adjacent pairs of micro-
tubules can occur in only one direction. Thus, dyneins on different pairs
of microtubules must be activated in order to produce a ciliary or flagellar
beat. We accomplish this in our model by allowing two families of dyneins to
act between the two microtubules.. The left to right dynein family is shown
in the schematic, designated LR family. These dyneins are permanently at-
tached to fixed nodes on the left microtubule. Dynein attachment on the
opposite microtubule attachment sites can be transitory. Contraction of the
dynein generates sliding between the two microtubules with the right hand
microtubule moving upwards relative to the left. In the right to left family
of dyneins ( designated RL family), the dyneins are permanently attached
to fixed nodes on the right hand microtubule and extend downward toward
transitory attachment sites on the left hand microtubule. In either configu-
ration, one end of a dynein can attach, detach, and reattach to attachment
sites on the microtubule.

Each family of dyneins shares the space between microtubules. However,
in a ciliary beat, only one family is activated during the power stroke, and the
other during a recovery stroke. In a flagellar beat, the LR and RL families
of dyneins are activated alternately along the length of the flagellum. The
rules for activation in both the ciliary and flagellar model are discussed below.
Additional immersed boundaries representing a cell wall or an entire cell body
can be included. The entire structure is embedded in a viscous incompressible
fluid.
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2.1 Mathematical Framework

We assume that the fluid flow is governed by the Navier-Stokes equations

p[%—?—ku-Vu] = —Vp+pAu+F(x,t) 1)

V-u = 0 (2)

which describe the balance of momentum and conservation of mass in a
viscous incompressible fluid. Here p is the fluid density, u is the fluid viscosity,
u = (u,v) is the fluid velocity, p denotes the pressure, and F is the force
density (force per unit area in two dimensions) which is exerted on the fluid
by the axoneme and cell wall.

The force density F in eqn (1)

F=Fy+Fn+Fp+Fs+Fr (3)

includes contributions arising from the deformation of the elastic structure of
the microtubules F s, elongation of the nexin/radial links F y, contraction of
the dynein links Fp, forces that represent the cell wall (in the case of ciliary
motion) or cell body (in the case of flagellar motion) F¢, and tethering forces
that attach the axoneme to a cell wall or a cell body.

Each of the microtubules, in this two-dimensional model, is represented
at time t as a pair of one-dimensional filaments, X*(s, ), indexed by a La-
grangian parameters s (arclength in an unstressed configuration). The force
per unit length £*(s,t)

fF =8 45 4+ £k 4 £k (4)

along the k** filament includes contributions from elastic structure of the
microtubules f 1’{,[, nexin/radial links, f; 1’%, dynein links f' 1’5, and tethering forces
that attach the base of the axoneme to a cell wall or cell body f%. The force
densities Fx, X = M, N, D, T in eqn (3) are obtained via integration

Fx(xt) =Y / £ (5, £)0(x — X* (s, £))ds. (5)
k

Here, the integrations are over the filaments, and ¢ is the two-dimensional
Dirac delta function.

In addition, we impose the condition that the velocity of the microtubules
and cell wall or body must be equal to the local fluid velocity at each point.

0X K (s,t)

5t =u(Xk(s,¢t),t) = /u(x, 1)d(x — X*(s,1))dx (6)

A detailed description of the discretized model is shown in (I). The micro-
tubule filaments X* (s, t) are discretized and represented as immersed bound-
ary points or nodes X¥(t) with i = 1,... N,. Similarly, the microtubule forces
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£k (s,t) are represented as discrete forces ff(,i(t) at the immersed boundary
points. The filaments themselves are composed of individual elastic links.
The diagonal cross-links and filament links attach at the immersed boundary
points. A schematic of the discrete model is shown in Figure 2.

Dyneins are represented in the model as elastic links between the two
microtubules.

e LR family

The active dyneins are oriented diagonally downwards from the left
microtubule to the right microtubule. As these dyneins contract, the
right microtubule slides distally relative to the left microtubule. If the
microtubules are tethered to a fixed cell wall, as in ciliary beating, the
structure bends toward the right.

e RL family

The active dyneins are oriented diagonally downwards from the right
microtubule to the left microtubule. As these dyneins contract, the
left microtubule slides distally relative to the right microtubule. It the
microtubules are tethered to a fixed cell wall, as in ciliary beating, the
structure bends toward the left.

For each family, dynein connectivity is reassessed at each time step of a
numerical simulation. As the microtubules slide, the endpoint of a dynein
link may ‘ratchet’ from one node of the microtubule to another. Nexin links
and or radial spokes are also represented in this model. The dynein forces
and nexin/link forces in this model can also be viewed as a single mechanism
describing a model dynein. The tangential forces of the diagonal links gener-
ate the shear forces and are responsible for sliding, whereas the nexin/radial
link forces resist changes in intermicrotubule spacing.

The forces due to all of the springs representing the filament links, diago-
nal cross-links, nexin/radial spoke links, and dyneins contribute to the force
density function at each of the nodes. A discrete version of eqn (3) is used
to spread this force density defined along microtubules to a force field on the
fluid domain. The microtubule point forces are distributed to the fluid by
the use of an approximate delta function of the form 5 (x) = d(z)d(y) where
h is mesh width of the finite difference fluid grid and

1 r
— {1 — 2
d(T)Z 4h ( + cos 2h) |’I“|< h (7)
0 | 7 |> 2h.

We refer the reader to [27] for details.

We can summarize the immersed boundary algorithm as follows: Suppose
that at the end of timestep n we have the fluid velocity field u™ on a grid, and
the configuration of the immersed boundary points comprising the filaments
of the microtubules (X*)™ and the cell wall or cell body (X.)”. Then to
advance the system by one timestep we:
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1. Reassess the connectivity structure of dynein motors and nexin /radial
spoke links;

2. Determine the activation state of dyneins based upon the configuration
of the filaments of the microtubules (X*)";

3. Calculate the force densities f* from the microtubule boundary config-
uration, dyneins, nexins links and axonemal tethers;

4. Calculate the force densities f. from the cell wall or body configuration
(Xe)™;

5. Spread the force densities to the grid to determine the forces F on the
fluid;

6. Solve the Navier-Stokes equations for the fluid velocities u™*1;

7. Interpolate the fluid velocity field to each immersed boundary point
(X*¥)" and (X.)™ and move the point at this local fluid velocity.

It is in step (2) that we may implement different dynein activation strate-
gies. The kinetics of individual dynein activation may depend upon the
geometry of the structure, such as local curvature, shear and intermicro-
tubule spacing. In addition, the activation kinetics may be stochastic. For a
comprehensive discussion of the modeling of dynein activation, see [25].

The crucial feature of this fluid-structure interaction model is that the
axoneme is not the computational boundary in the Navier-Stokes solver. This
immersed boundary is the source of a dynamic force field which influences
the fluid motion through the force term in the fluid equations. Since the
computational domain is a fixed rectangle, we can use an efficient fluid solver
designed for a regular grid with simple boundary conditions.

3 Numerical Simulations

In this section we present numerical results from simulations that generate
a ciliary beat governed by a curvature controlled recovery mechanism, and
spermatozoa motility using a curvature control mechanism with time delay.
The computational parameters for the sperm simulations are similar to those
used in the cilia simulations as shown in (I).
Ciliary beat

We first show results of a simulation with an asymmetrical beat featuring
a power stroke in LR mode and a recovery stroke in the RL mode. We em-
ploy a geometric switch to determine when the cilium beat changes directions.
We monitor the shear between microtubules and change the direction of the
ciliary beat once the shear has exceeded a specified threshold. Once the re-
covery stroke is initiated, a traveling wave of dynein activation proceeds from
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base to tip. The traveling wave speed is not imposed during the simulation
but is controlled by a curvature-control algorithm. Throughout the recovery
stroke the dynein configuration is set to the RL mode. At time ¢ dyneins
in the RL mode with indices less than or equal to p™ are activated, dyneins
with indices greater than p™ are inactive. The algorithm for updating the
index p" is as follows. At the beginning of time step t", we

1. approximate the curvature k;, i = 1,..N,, at the location of i** dynein
from the configuration of the filament to which the dyneins are perma-
nently attached;

2. determine pp, 4z, the index of greatest axonemal curvature where py,qq
satisfies kp,,,. = max; (K;);

3. set p" = pmaz + k, where k is typically 3.

At the beginning of the recovery stroke, we set p™ = maz(Pmin,Pmaz)- In
the simulation shown here, we set pyin, = Np/4.

We remark that in this mechanism, the dynein activation wave front is
just ahead of the point of maximum axonemal curvature. Note that the wave
front does not advance unless the point of maximum curvature advances. In
this mechanism, the parameter p™ marking the leading edge of the dynein
activation cannot decrease. Although dynein activation extends from the
cilium base to a point just beyond the point of maximum curvature, activation
cannot advance until the point of maximum curvature has moved at least one
node distally. The increases of p™ do not occur at regular time intervals. In
fact, these time intervals are highly irregular.

In Figure 3, we show snapshots from one complete ciliary beat.

~ s ~ C:

Figure 3: Snapshots from a simulation with curvature-controlled recovery
stroke showing one complete beat.

Sperm motility

In this section we show numerical results from simulations of the sperm
model. In these, the axonemal structure is identical to that used in the
cilia simulations with the addition of a cell body attached at the base of the
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axoneme. The cell body itself consists of a ring of immersed boundary points
interconnected with linear elastic spring elements. These springs connect
each immersed boundary point on the cell wall with the nearest and next
nearest neighbors.

The flagellar waveform is governed by a simple curvature control algo-
rithm in which individual dyneins are selected from the LR or RL families at
each time step according to the local curvature at the site of the dynein at
a time 7 in the past. The choice of modes depends on the sign of the lagged
local curvature. The initial shape of the axoneme has a pair of bends. Once
the simulation begins, the resulting bend propagation depends only on this
curvature control mechanism.

In Figures 4 and 5 we show the results of three simulations. These il-
lustrate the effect of changing the lag time and fluid viscosity parameters.
In Figure 4 we show several snapshots of the swimming sperm. As seen in
panels (a) and (b), the beat frequency and swimming speeds are strongly
correlated with the lag time 7. A longer lag time results in a slower beat
and decreased swimming speed. The swimming speed in panel (c) is greatly
reduced. This is due to the increased lag time and fluid viscosity increased
10 fold.

(a) (b) (c)
Figure 4: Simulations of sperm motility. Panel (a) v = 1ep, 7 = 2 millisec-
onds, beat frequency: 115 HZ, swimming speed: 500 p/s. Panel (b) v = lcp,
7 = 4 milliseconds, beat frequency: 70 HZ, swimming speed: 250 p/s. Panal

(¢) v = 10¢p, 7 = 8 milliseconds, beat frequency: 30 HZ, swimming speed:
30 u/s.

In Figure 5, we show shear plots from each of the three simulations. The
shear angle is the angle formed between the horizontal axis and the tangent
line to the flagellum. Although the wavelength of the flagellar waveforms are
similar in each simulation, there are significant differences in the shear angle
profiles.
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Figure 5: Flagellar shear plots. Length in microns z axis with shear angle in
radians on the y axis.

4 Discussion

We have presented a new model based on the immersed boundary method for
studying ciliary and flagellar motion. The numerical results demonstrate the
feasibility of this fluid-structure interaction model to simulate both ciliary
and flagellar beats. This model is robust in the sense that the axonemal
structure shows no signs of degradation over many beats and gives reasonable
results over a range of fluid viscosities.

Curvature-control mechanisms govern the generation of the recovery wave-
form in the cilium and of the flagellar beat for the sperm. There are significant
differences in the description of the control mechanisms for the two types of
beats. However, there is an interesting parallel between the two. Although
the choice dynein type (RL or LR) in the flagellar beat at time ¢ was deter-
mined by the local curvature at time ¢t — 7, changes along the axoneme from
one dynein configuration to the other are found near points of maximum cur-
vature at time ¢. Thus, it may be possible to obtain a ciliary recovery stroke
via a lagged curvature-control mechanism as well. This will be explored in
future work.

In the future, we will consider two general areas of development for the
ciliary /flagellar motion model. The first is the obvious extension to three
dimensions and we will initially present a simplified three-dimensional model
with two microtubules similar to the one shown here. We plan to investigate a
variety of phenomena initially with the two-dimensional model. In particular,
we are constructing alternative mechanisms for controlling dynein activation
that include explicit representation of geometry-dependent chemical kinet-
ics and will consider in detail how well the various mechanisms reproduce
experimental results associated with changing viscosity and ATP concentra-
tions. There are good estimates for the various rate parameters governing
the dynein enzyme kinetics for several of the multistate models (see [26] for
example). The lag times used in our sperm simulations are on the order of
a few milliseconds and are consistent with the characteristic time scales of
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dynein kinetics. We expect that the substitution of a more realistic kinetic
model for the activation of individual dyneins will lead to results similar to
those shown here.
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