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Mixing and pumping by pairs of helices in a viscous fluid
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Here, we study the fluid dynamics of a pair of rigid helices rotating at a constant velocity, tethered at their bases,
in a viscous fluid. Our computations use a regularized Stokeslet framework, both with and without a bounding
plane, so we are able to discern precisely what flow features are unaccounted for in studies that ignore the surface
from which the helices emanate. We examine how the spacing and phase difference between identical rotating
helices affects their pumping ability, axial thrust, and power requirements. We also find that optimal mixing of
the fluid around two helices is achieved when they rotate in opposite phase, and that the mixing is enhanced as
the distance between the helices decreases.
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I. INTRODUCTION

Rotating helical flagella attached to a cell body are the
propellers responsible for the locomotion of most bacteria.
Driven by molecular motors at their base, the helices rotate,
leading to hydrodynamic forces that propel the cell [1]. If the
cell body was tethered, the rotating helices would act to stir
and pump the nearby viscous fluid. Harnessing the action of
these naturally actuated filaments within a microfluidic device
was put forth as an intriguing possibility for fluid transport
and mixing by bacterial carpets [2]. Flagellar rotation could
be maintained for quite some time without the need for an
external power source [3]. Alternatively, fabricated helical
micromachines that are actuated by an imposed magnetic field
could also serve as microscale mixers [4]. In either case, in
order to control or quantify fluid transport and mixing, the flow
features around the rotating helices should be understood.

In the past decades, there has been considerable analysis
of propulsion by helical flagella. Because viscous forces
dominate inertial forces at the microscale, the hydrodynamics
of bacterial locomotion in a Newtonian fluid is well described
using the Stokes equations. The linearity of these equations and
the slenderness of the helical filament allow for the use of meth-
ods such as resistive force theory [5], slender body theory [6],
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or regularized Stokeslets [7]. Rodenborn et al. [8] performed
coordinated physical experiments and computations that mea-
sured the axial thrust and torque on rotating rigid helices of
different geometries. They showed that slender body theory
and regularized Stokeslets calculations agreed with laboratory
measurements within experimental uncertainty, while resistive
force calculations showed significant differences for helices
with small pitch relative to the radius. In addition to models
of free swimming due to the prescribed kinematics of a rigid
helix and a counter-rotating cell body, other studies examine
the elastohydrodynamic coupling between shape deformation
of the helix and the fluid [1,9]. Moreover, both physical
and computational experiments have shown that bundling of
nearby helical flagella occurs due to hydrodynamic forces
[10–15].

The presence of nearby surfaces has an effect on microor-
ganism motility. A free swimmer driven by a helical flagellum
and a counter-rotating cell body will swim in circular rather
than straight trajectories near a planar surface [16]. Naturally,
it is to be expected that the flow structures around rotating
helices emanating from a planar wall will be affected by the
wall’s no-slip boundary condition. Recent advances in particle
imaging velocimetry (PIV) have allowed the visualization of
flow fields around a single rotating helix at low Reynolds
number [17]. Slender body theory was used to compute flows
around a pair of helices rotating in free space [18]. Following
our computational model of bacterial carpets [19], here we use
a regularized Stokeslet framework to examine the fluid flow
around a pair of identical rotating helices emanating from a
planar wall. The helices are rigid, their axes are perpendicular
to the wall, and their rotational velocities are specified. We ask
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the following simple questions: How does the spacing between
the helices and their relative phase difference influence their
pumping ability? How does the spacing between the helices
and their relative phase difference influence the mixing of the
nearby fluid? How does the presence of the planar wall affect
axial thrust and flow features? We expect that the answers to
these simple questions will provide insight into flows driven
by helices and the design of microfluidic mixing devices.

II. METHODS

A. Fluid

The motion of an incompressible Newtonian fluid, when
inertial forces are negligible, is described by the Stokes
equations

−∇p + μ�u + F = 0, (1)

∇ · u = 0, (2)

where p is fluid pressure, u is fluid velocity, μ is fluid viscosity,
and F(x) is a force density representing the force of the helices
on the fluid.

Following our previous model of a fluid-helix system [19],
we choose a regularized Stokeslet formulation [7] where forces
are distributed along the centerline of the helices [20]. Rather
than assuming that these are point forces, the force density
concentrated at a point xk is assumed to be

Fk(x) = fkφε(||x − xk||), (3)

where fk is a vector coefficient and φε is a smooth approxima-
tion of a Dirac delta function (also known as a blob function).
Here, we use the following functional form,

φε(r) = 15ε4

8π (r2 + ε2)7/2
.

We interpret the regularization parameter ε as a physical
parameter that represents the radius of the filament that is
wound into a helix [21].

For a single point force density of strength f0 located at x0,
the induced velocity u at any point x can be written in terms
of the regularized Stokeslet, Sε(x,x0), such that

u(x) = 1

8πμ
Sε(x,x0)f0(x0).

Using the definitions for the regularized solutions to the
biharmonic and Laplace equation in three dimensions [7]

�2Bε(r) = �Gε(r) = φε(r),

where r = ||x − x0||, it follows that

Sε(x,x0) = (−�I + ∇∇)Bε(r),

= H1(r)I + H2(r)(x − x0)(x − x0),

where H1(r) and H2(r) are

H1(r) = −B ′
ε(r)

r
− B ′′

ε (r), H2(r) = rB ′′
ε (r) − B ′

ε(r)

r3
.

Thus, by linearity of the Stokes equations and using our
regularized delta function, the velocity u at any point x due

to a set of forces fk located at positions xk is

u(x) =
2M∑
k=1

[
fk

(
r2
k + 2ε2

) + [fk · (x − xk)](x − xk)

8πμ
(
r2
k + ε2

)3/2

]
, (4)

where rk = ‖x − xk‖ and M is the number of forces along each
of the two helical centerlines.

Note that this velocity resulting from 2M concentrated
forces is defined everywhere, is an exact solution of the Stokes
equations in three dimensions, and is exactly incompressible.
In particular, if we evaluate Eq. (4) at the 2M points xk , we
have a 6M × 6M linear system that relates the forces fk applied
at the points of each helix to the velocities uk at those points.
Because in this work we specify the kinematics of the helices,
the velocities are known, and we solve this linear system for
the forces that must be exerted along the helices to achieve
these kinematics. Once these forces are known, Eq. (4) may be
used to evaluate the fluid velocity at any point in space.

For flows bounded by a plane, the boundary condition u = 0
at the plane must be enforced. Within the context of regularized
forces, this is done by placing a regularized Stokeslet, doublet,
dipole, and rotlet at the image point. The details of the
regularized image system are described in Ref. [22]. The
regularized Stokeslet method has been used to simulate flows
at the microscale in applications including hyperactivated
sperm motility [21], nodal cilia flow in embryology [23],
optimal cilia design [24], and synchronization of waving elastic
filaments [25]. The validation of this method using theory as
well as a comparison of results with those of other numerical
methods or experiments has also been addressed, for example,
in Refs. [7,20,26].

B. Helical flagella

Figure 1 shows the configuration of two upright helices
whose axes (of length L) are parallel, placed a distance d apart.
The helices are identical, rotate in the same direction, but could
have a fixed phase difference. Figure 1 also depicts zoomed-in
circular projections of each of the helices onto the z = 0 plane
that indicate the helical radius α and the phase difference φ.

The centerline of a helical flagellum xc = (xc,yc,zc) is
parametrized by s, where 0 � s � L,

xc(s) = α tanh (τs) cos

(
2πs

λ
+ φ

)
,

yc(s) = α tanh (τs) sin

(
2πs

λ
+ φ

)
, (5)

zc(s) = s.

Here, λ is the helical pitch, τ is a tapering parameter that allows
the radius of the helix to approach zero at its base, φ is the
phase angle, and α is the radius of the helix. The pitch angle β

is related to the helical pitch by

tan β = 2π

λ
α. (6)

The time-dependent position of the centerline of an upright
helix rotating with a specified angular velocity ω is

x(t) = Rωxc, (7)

023101-2



MIXING AND PUMPING BY PAIRS OF HELICES IN A … PHYSICAL REVIEW E 97, 023101 (2018)

FIG. 1. Sketch of two upright helices. Each helix has length L and
radius α and they are spaced a distance d apart. Both helices rotate
counterclockwise from the top view, but with a phase difference φ.

where

Rω =
⎡
⎣cos(ωt) − sin(ωt) 0

sin(ωt) cos(ωt) 0
0 0 1

⎤
⎦.

Following the physical experiments of Zhong et al. [17],
we fix the geometry of the helices to be left handed and to
have a radius to axial length ratio close to the typical values
for Escherichia coli bacteria. In particular, in nondimensional
units, we choose μ = 1, the radius of the filament to be
ε = 0.01, the axial length of the helix to be L = 2.2, and the
radius of the helix to be α = 0.085. In most of the studies
presented below, we choose a pitch angle of β = π/4 rad and
a tapering parameter of τ = 1000. In addition, we vary the
distance between the centerline of the helices d (see Fig. 1)
from 0.25 to 2.5, which represents a range of approximately
three helix radii (3α) to 30 helix radii (30α).

III. RESULTS

A. A single helix

An untethered helix, externally actuated to rotate about
its axis, would translate in a viscous fluid. The direction of
translation would depend upon the handedness of the helix
and the direction of rotation. If the forward motion of such
a helix was disallowed by tethering it at its base, it would
produce thrust in the axial direction. Moreover, in addition to
causing the nearby fluid to rotate as it rotates around its axis,
the helix acts as a pump, generating a net flow away from its
base [19]. In recent physical experiments, Zhong et al. [17]
examined the flow field around a single rotating helix at low
Reynolds number using particle image velocimetry. The PIV
measurements were taken on a plane that contained the axis of
the helix, and phase-averaged velocity data were projected in
this plane. Choosing the same helical geometry as in Ref. [17]

FIG. 2. (a) Velocity field around a portion of a helix projected
onto a bisecting plane, (b) transverse velocity contours, (c) axial
velocity contours, and (d) vorticity contours. These computational
results should be compared with the experimental results shown in
Fig. 2 of Ref. [17].

and stated above, Fig. 2 shows the velocity field, contours
of the transverse velocities (positive indicates pointing to the
right), contours of the axial velocities, and contours of vorticity
in a bisecting plane of the helix using regularized Stokeslets
with images due to a wall. In particular, each helical centerline
was discretized using M = 158 equally spaced points, and we
evaluated the velocity field on a uniform 50 × 50 grid in the
plane using Eq. (4). In Fig. 2, we choose the same conventions
as the corresponding PIV figures in Ref. [17], noting that the
left-handed helix is rotated counterclockwise when viewed
from above. As in Ref. [17], we see that transverse velocity
alternates sign as the three-dimensional segments of the helix
move in or out of the plane as it rotates [Fig. 2(b)], the
axial velocity is always downward [Fig. 2(c)], and vorticity
concentrates at the peaks of the projection of the helix onto the
plane. The transverse and axial velocities were normalized by
αω.

Zhong et al. [17] investigated the thrust production of
the rotating helices as a function of the pitch angle. The
total axial length of the helix L and the radius α were kept
fixed, but the pitch angle in Eq. (6) was varied. As the pitch
angle gets larger, the helix becomes more tightly wound and
more turns about the axis comprise the helix. In a series of
experiments of helices with pitch angles varying from 15◦ to
nearly 70◦ rotated at eight different frequencies, Zhong et al.
[17] reported the normalized thrust T/(μωαL). The helix was
mounted vertically, and was immersed in the rectangular tank
attached to the shaft of a microgear motor, and the thrust
was recorded using a force sensor. The physical experiments
indicated that the maximum thrust was achieved near the pitch
angle β = 45◦. Resistive force calculations to measure thrust
were performed using the coefficients proposed by Gray and
Hancock [5], Cox [27], and Lighthill [6]. Resistive force theory
(RFT) is a local theory that considers the slender filament to
be made up of individual cylindrical elements, and relates the
velocity and force on the elements by resistance coefficients.
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FIG. 3. Normalized thrust as a function of pitch angle. Experi-
mental data adapted from Fig. 8 of Ref. [17] (squares), theoretical
calculations using approximations by Gray and Hancock [5] (gray
solid line), Cox [27] (gray dashed line), and Lighthill [6] (gray dotted
line), and our regularized Stokeslet calculations in the presence (black
solid line) and absence (black dashed-dotted line) of a no-slip wall.
The RFT calculations do not account for a bounding plane. Our
simulations in the presence of a wall show very good agreement with
the experimental data.

The interaction between local elements through the fluid is
ignored. Figure 3 shows the experimental data and resistive
force calculations adapted from Fig. 8 of Ref. [17] along
with the regularized Stokeslet calculations, both in free space
(dotted black curve) and with a wall (solid black curve). We
see that for small pitch angles, the resistive force theories and
experiments show agreement. However, these approximations
do not capture the experimental results as the pitch angle
increases. In contrast, the regularized Stokeslet calculations
demonstrate that maximum axial thrust is achieved near β =
45◦. We also see that the thrust for all pitch angles is greater
when the helix is emanating from a wall, and that the inclusion
of the wall more closely matches the experimental data, where
the helix is emanating from a motor apparatus [17].

B. Two helices

1. Flow induced by two rotating helices

We begin with simulations of flow around two rotating
helices that are in free space (Fig. 4) or tethered to a wall
(Fig. 5). In both cases, the helices are upright and self-rotating
with a frequency 1 Hz. Figures 4 and 5 show snapshots of
passive tracer particles in the flow, initialized on the horizontal
plane z = 0.5. The tracer colors indicate height; from dark blue
to red is low to high. Figure 4 shows that in the absence of a
wall tracer particles are pushed up and outward, away from the
helices. In contrast, the presence of the wall (Fig. 5) leads to
dramatically different flows where the tracers are first drawn in
horizontally toward the helices, then swirl around the helices
while moving upward and staying close to the helices; it is not
until the tracers are above the helices that they begin to expand
in the outward direction. Comparing the colors (heights) of the

FIG. 4. Snapshots of fluid particles in the flow generated by two
rotating helices in free space. (a)–(d) Side views and (e)–(h) top views
at t = 0, 20, 40, and 70. Geometries are the same as in the single helix
case from Zhong et al. [17], with pitch angle β = 45◦. The bases of
the helices are located at (−2α,0,0) and (2α,0,0), the phase difference
is π , and colors indicated height. (See Supplemental Material [28] for
movies.)

tracers in Figs. 4 and 5 we see that the tracers have reached
greater heights in the absence of the wall after the same amount
of time.

To see how the phase difference between the helices affects
the flow field, we computed the vertical and transverse velocity
profiles as well as the vorticity for two helices in free space
(not shown) and tethered to a wall (see Fig. 6) for three
phase differences. In all of these simulations, the distance
between the helices is fixed at 3α and the rotational frequency
is fixed at 1 Hz. For the computations in free space, the
transverse and vertical velocities for two helices rotating in
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FIG. 5. Snapshots of fluid particles in the flow generated by two
rotating helices tethered to a wall. (a)–(d) Side views and (e)–(h) top
views at t = 0, 20, 40, and 70. Geometries are the same as in the
single helix case from Zhong et al. [17], with pitch angle β = 45◦.
The bases of the helices are located at (−2α,0,0) and (2α,0,0), the
phase difference is π , and colors indicated height. The blue plane is
the location of the no-slip wall at z = 0. (See Supplemental Material
[28] for movies.)

phase compare well qualitatively to the experimental and
computational results reported by Kim and Powers [29].

For simulations of two helices tethered to a wall, the
columns of Fig. 6 show instances where the helices are in phase
(left), out of phase by π/2 (middle), and π (right). In all panels,
we show the velocity components in a vertical plane through
the middle of the helices. Figures 6(g)–6(i) show that as helices
vary from being in phase to being out of phase by π , the vertical
component of the velocities between the helices increases. In
contrast, the transverse velocities in Figs. 6(d)–6(f) decrease
with a larger phase difference. In addition, the sign of the

vorticity in a horizontal slice through the helices switches
from being the same sign when the helices are in phase
[Fig. 6(j)] to the opposite sign when the helices are out of phase
[Fig. 6(l)].

2. Thrust, power, and flux

Two characteristic quantities of interest are the thrust
generated by the helices and the power required to attain their
prescribed motion. Each of these quantities is computed for a
single helix in the presence of the other helix, averaged over one
single rotation, and normalized by the same quantity computed
for a single helix in isolation. We examine how both thrust and
power depend upon phase and separation distance when the
tethered helices rotate in free space or in the presence of a
planar wall.

The total thrust is the integral of the z component of the
force along the centerline of the helix of interest. For an isolated
helix with geometric parameters as above, the average thrust it
generates over one period tethered to a wall is enhanced by 46%
compared to the thrust generated in free space (data not shown).
This enhancement is in accord with the results shown Fig 3
for the case when β = 45◦, comparing the thrust computed in
free space (dashed-dotted black line) to that with a wall (solid
black line). When a second helix (call it h2) is placed in the
same fluid domain as the first helix (call it h1), we compute
the thrust generated by h1 in the presence of h2, averaged over
one rotation, and normalize it by the thrust generated by h1 in
the absence of h2.

Figures 7(a) and 7(b) show the thrust generated by helices
tethered to a wall, as a function of phase difference and
separation distance, respectively. In Fig. 7(a) we see that it is
only when the helices are very close that the phase difference
has an effect on thrust. In particular, when d = 0.25, the
maximum thrust results when φ = π and they are completely
out of phase. For any fixed phase difference, however, the thrust
increases to the value in isolation, as the helices become farther
apart, as seen in Fig. 7(b).

Figures 7(c) and 7(d) show the thrust generated by helices
in free space, as a function of phase difference and separation
distance, respectively. Again we see that the thrust generated
by a helix in isolation is greater than the thrust generated by
either of two helices together. This behavior compares well
with axial force measurements on two rotating helices in free
space using slender body theory [18]. Whether rotating in free
space or tethered to a wall, the thrust generated by a single
helix of a pair will approach the thrust it would generate in
isolation as the distance between the helices increases. Note
that in free space the interaction between helices is O(R−1),
where R is the distance between them. However, the addition of
Stokeslet images in the case of a planar wall results in a O(R−2)
interaction [30]. Comparing Figs. 7(b) and 7(d) demonstrates
this—as the separation distance increases between two helices
in free space [Fig. 7(d)], the normalized thrust approaches
one much more slowly than when they are tethered to a wall
[Fig. 7(b)].

The power required for a single helix to achieve its pre-
scribed motion is the integral of f · u along its centerline. For
our model (isolated) helix, the required power for it to rotate in
free space is about 3% less than that required if it was tethered
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FIG. 6. (a)–(c) Instantaneous velocity field, (d)–(f) transverse and (g)–(i) vertical velocities, and (j)–(l) vorticity for two helices tethered to
a wall. The separation distance is 3α, they are rotating at 1 Hz, and they are either in phase (left column), out of phase by π/2 (middle column),
or out of phase by π (right column).

to a wall (data not shown). This slight deviation is mainly due
to a difference in the x and y components of the force near
the location of the base of the helix (closest to the wall). The z

component of force, used to compute thrust above, does differ
considerably when the wall is present, but does not factor into
the power calculations because material points of the helix
rotate parallel to the wall (the z component of velocity is zero).

Similar to the calculation for thrust, we compute the power
expended by h1 in the presence of h2, averaged over one
rotation, and normalized by the power expended by h1 in the
absence of h2. Figure 8 shows the normalized power expended
by one single helix in the presence of another as a function of
phase difference and separation distance, in free space and with
a wall. The first observation is that as the separation distance
increases, the power expended by one helix in the pair quickly
approaches that of an identical helix in isolation, both in free
space [Fig. 8(d)] and with a wall [Fig. 8(b)]. However, when

the helices are close (d = 0.25), we can see that more power is
required when they are completely out of phase (≈6%, φ = π )
and less power required when completely in phase (≈4%,
φ = 0) when compared to the single helix in isolation.

This reduction in the power requirement for helices rotating
in phase is related to the dynamic synchronization of bacterial
flagella and the subsequent formation of bacterial flagellar
bundles. In the simulations presented here, the phase of rotation
of each helix is prescribed as is its rigid geometry. However,
in previous models that examine flagellar synchronization, the
torque applied at the base of each helix is prescribed, rather
than its phase [13–15]. Even if there was a nonzero initial phase
difference between these helices, the hydrodynamic coupling
results in synchronization, minimizing power required. The
speed of synchronization depends upon the distance between
helices, the torque strength, and the bending rigidity of the he-
lices [14]. The synchronization of neighboring helices occurs
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FIG. 7. Normalized thrust generated by two helices (a), (b) in the presence of a wall and (c), (d) in free space. Thrust is shown as a function
of (a), (c) phase difference and (b), (d) separation distance between the two helices.

on a faster time scale than the formation of the flagellar bundle
[15].

Finally, recognizing that a tethered, rotating helix serves to
pump fluid upward away from its base, we examine the flux of
fluid that is pushed through a flow meter placed just above it.

The flow meter is the square patch, [−5,5] × [−5,5] at a height
z = 2.5, which is parallel to the xy plane and perpendicular to
the axis of the helix whose base is at the origin. The patch
is discretized into a regular lattice with spacing �x = 0.05,
�y = 0.05, and Eq. (4) is used to evaluate the z velocity at

FIG. 8. Normalized power from two helices (a), (b) in the presence of a wall and (c), (d) in free space. Power is shown as a function of (a),
(c) phase difference and (b), (d) separation distance between the two helices.
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FIG. 9. Normalized flux of fluid passing through a flow meter
[−5,5] × [−5,5] at height z = 2.5 for two pairs of helices at distances
d = 0.25 and d = 0.5 when either emanating from a wall or rotating
in free space as a function of phase difference. The normalized flux
is one half of the mass of fluid pumped across the flow meter by the
two helices during one rotation divided by the mass of fluid pumped
across the flow meter by an identical isolated helix.

these lattice points. With this surface discretization, we are
able to compute the total mass of fluid that passes up through
this flow meter in a single rotation of the helix. We now ask
the question, do two helices pump twice as much fluid as one?
Whether or not these helices are emanating from a wall, the
fluid domain is unbounded, and we are calculating the flux
past a finite-sized flow meter. For this reason, we examine
the mass flux through this flow meter for two helices that
are placed sufficiently close together so they still remain well
under the square patch. In particular, we choose two pairs of
helices with distances d = 0.25 and d = 0.5 so that their bases
are at (−0.125,0,0),(0.125,0,0) and (−0.25,0,0),(0.25,0,0),
respectively.

We define the normalized flux shown in Fig. 9 as one half
of the mass of fluid pumped across the flow meter by the
two helices during one rotation divided by the mass of fluid
pumped across the flow meter by an identical isolated helix.
If this normalized flux was equal to one, we would assert
that two helices pump twice as much fluid as one. Figure 9
shows that, indeed, this is not the case. Whether or not the
helices are tethered to a wall, this normalized flux is less than
one independent of the phase difference between them. The
neighboring helices are, in effect, competing for the same
available fluid to transport up across the flow meter. In fact,
the normalized flux for a helix in the closer pair (d = 0.25) is
considerably less than that for a helix in the pair placed farther
apart (d = 0.5), where there is less competition for their nearby
fluid. We also note, as the thrust, that the normalized flux is
maximized when the helices rotate completely out of phase
(φ = π ) and is greater in the presence of the wall.

3. Mixing

A pair of rotating helices causes the nearby fluid particles
to swirl and translate. Here, we examine how fluid particles
get mixed by the action of these helices, and how this mixing
depends upon distance and phase differences between the

helices. For instance, Figs 10(a) and 10(b) show snapshots at
time t = 0 of a pair of helices in the same phase tethered to a
wall surrounded by a collection of particles of two different
colors. Figures 10(c) and 10(d) show these particles after
20 rotations of the helix. In order to quantify the mixing of
these magenta and green particles, we use a mixing measure
0 � M̂ � 1 proposed by Robinson et al. to evaluate the
effectiveness of industrial mixers [31]. While their mixing
measure generalizes to more than two particle types (colors),
here we describe it in the context of two. Briefly, imagine two
different “types” of tracer particles are placed in a fluid within
the region of interest in equal amounts (one half are magenta
and one half are green). At any given time, for any spatial point
in the domain, one can query how many particles of each color
fall within a ball of a given radius centered at that point. If half
of the particles in that ball are green and half are magenta, the
original global ratios of each color, then locally at that point, the
fluid can be considered totally mixed (M̂ = 1). If, on the other
hand, all the particles in that ball are green (or magenta), there
is no mixing (M̂ = 0). This measure, then, depends upon two
choices: (1) the spatial centers of these balls, and (2) the radius
of these balls. Robinson et al. choose a Lagrangian approach
whereby the centers of these balls at time t are the positions
of the fluid tracers themselves [31]. The choice of the radius
should be linked to the spatial scale of the flow, and here we
choose each ball radius to be the radius of the helix α.

Consider the vector with two components, where the first
component indicates the original (or global) fraction of ma-
genta particles and the second indicates the fraction of green
particles. If the space was seeded with an equal amount of each
color particles, this vector is (1/2,1/2). The normalized global
fraction vector is then

sg = 1√
2

(1,1).

We define a normalized vector of local ratios in a ball of radius
α centered at particle p at time t as

sl(p,t) = 1√(
n1

N1

)2

+
(

n2

N2

)2

(
n1

N1
,
n2

N2

)
,

where n1 and n2 are the number of green and magenta particles,
respectively, within the ball and N1 and N2 are the total
number of green and magenta particles in the whole domain,
respectively. Again, here we assume N1 = N2.

A measure of mixing M̂(p,t) at each particle p (the center
of the ball) at time t that has the desired features is then

M̂(p,t) = sl(p,t) · sg − Mmin

1 − Mmin
,

where Mmin = 1/
√

2.
Because M̂(p,t) is now a Lagrangian function defined at

a tracer particle, we can also visualize the evolution of this
mixing measure at the particles. Figures 10(e) and 10(f) show
a snapshot of particles at time t = 0 colored by their mixing
measure M̂(p,0), where M̂ = 0 corresponds to dark blue and
no mixing, and M̂ = 1 corresponds to yellow. Initially, only
the particles near the boundary between the magenta and
green particles are the centers of balls with nonzero M̂ , but
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FIG. 10. (a) and (b) show snapshots of particles seeded in a cylindrical region enclosing two identical helices at time t = 0 when viewed
from (a) the top and (b) the side. (c) and (d) show these same particles and the helices after 20 rotations. These helices are rotated in phase
(φ = 0) and are separated by a base distance of d = 3α = 0.255. (e) and (f) show the particles colored by their initial mixing measure M̂(p,0).
(g) and (h) show these particles colored by their mixing measure M̂(p,20) after 20 rotations. The mixing measure ranges from dark blue (no
mixing) to yellow (optimal mixing).

the particles away from this boundary are centers of balls
containing particles of only one color. Whereas a particle
always retains its green or magenta color, M̂(p,t) changes over
time, thus a single particle in the plots that track mixing will
change color accordingly. Figures 10(g) and 10(h) show the
final mixing values of each particle after 20 rotations. Here, we
see that significant mixing of the two particle types occurred
within the central region between the helices.

We now compute this mixing measure for various phase
differences and separation distances between the two helices.
In each simulation, the domain is seeded with an equal amount
of green and magenta particles (N1 = N2 = 5000), and the
boundary between them is equidistant from the base of both
helices. We track the mixing measure M̂(p,t) over the course
of 20 rotations of the helices.

Snapshots (all from the top view) from some of these
simulations are shown in Fig. 11. Helices are separated by
a distance of d = 3α in the top row and d = 6α in the bottom
row. The first column shows the helices and the particles at
t = 0. Within each column, the phase difference remains the
same: φ = 0 (second column), φ = π/2 (third column), and
out of phase φ = π (fourth column). Subsequent columns
show the final particle positions after 20 rotations. When
d = 3α, we observe significant mixing near the helices. As
d increases, the mixing appears to decrease; for d = 6α, the
particles inside each helix do not appear to be mixing at all.
This trend holds for φ = π/2 (third column) and φ = π (fourth
column) as well. We will quantify these observations using the
mixing measures.

Figure 12 depicts the same simulations and same particle
positions as in Fig. 11, but now the particles are colored

according to their mixing measures M̂(p,t). Visually, we
observe the most mixing for the smallest separation distance,
d = 3α, where the yellow indicates regions of well-mixed
particles in the center near the helices. When the spacing
between helices is increased, the size of the regions with high
mixing gets smaller. For d = 6α, there are small, concentrated
bands of well-mixed regions, but these coincide with the
advection of the original border between the two particle types
shown in the first column of Fig. 11.

To further quantify the mixing at a time t , we average
M̂(p,t) over all of the particles to give M(t). We performed
20 simulations, using five different phase differences and four
distances between the helices. M(t) is plotted as a function
of helical rotations in Fig. 13. Helical spacing is grouped by
line style, and the same phase difference is grouped by line
color. When the separation distance is greatest (dotted lines),
varying the phase difference has no effect. In addition, the least
amount of mixing occurs during these simulations compared
to the mixing computed for helices that are closer together. The
overall trend we observe is that as the helices become closer
together, there is both a larger mixing measure and a more
prominent effect from varying phase difference. The maximal
mixing, after 20 rotations, results from helices that are very
close together and rotating completely out of phase.

IV. CONCLUSION

We have investigated the fluid dynamics of a pair of rigid
helices rotating at a constant velocity in a viscous fluid. We
examined how the spacing between the helices and their phase
difference influence their axial thrust and pumping ability. In
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FIG. 11. Viewed from above, the first column shows the initial seeding of 5000 green and 5000 magenta particles, where each row depicts
simulations with the same distance between helices [d = 3α (top) and 6α (bottom)]. The phase difference between the helices is varied across
columns [φ = 0 (second column), φ = π/2 (third column), and φ = π (fourth column)]. The last three columns show the positions of the green
and magenta particles after 20 rotations.

essence, we have shown that the answer to the question “are
two helices twice as effective as one helix?” is “no.” Two
helices close to one another do not pump twice as much fluid
across a flow meter as a single one, nor do they impart twice
as much thrust. However, if the goal of these two helices is to
mix their surrounding fluid, then our results suggest that they
should be placed close together and rotated out of phase. While
motivated by bacterial flagella, this study may have more direct
implications in the design of fabricated helical rotors actuated
in microfluidic environments, where precise geometries and

rotation rates can be controlled, which is not possible in the
world of biology.

Nevertheless, while the two-helix system studied here is
certainly idealized, it is interesting to examine its relationship
to the biological question of bacterial motility. The findings of
the idealized system that two helices are not twice as effective
as one is consistent with observations that bacteria with
multiple flagella do not achieve greater swimming velocities
than those with a single flagellum [15]. Moreover, the flagellar
bundling model of Reigh et al. [15] demonstrates that tighter

FIG. 12. Here, the particles and helix configurations are the same as in Fig. 11, but the particles are colored by their mixing measures.
Viewed from above, the first column shows the initial seeding of the 10 000 particles colored by their mixing measure M̂(p,0), where each row
depicts simulations with the same distance between helices [d = 3α (top) and 6α (bottom)]. The phase difference between the helices is varied
across columns [φ = 0 (second column), φ = π/2 (third column), and φ = π (fourth column)]. The last three columns show the positions of
the particles colored by their mixing measures M̂(p,20) after 20 rotations.
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FIG. 13. Mixing as a function of number of helical rotations. Line
style denotes helical spacing d = 3α (–), 4α (−−), 5α (−·), 6α (· · · ),
and color denotes phase difference ranging from in phase (φ = 0 dark
purple) to completely out of phase (φ = π light purple).

flagellar bundles enhance swimming efficiency compared to
loosely bundled flagella, and that loosely bundled flagella are,
in turn, not more efficient than an individual helix.

A similar idealized two-helix system has previously been
studied using a physical model that tracked velocities using
PIV and a numerical model based upon slender body theory, all
in free space [29]. The studies presented here use a regularized
Stokeslet formulation with images that accounts for the surface
that the helices emanate from. By turning off the images, we
see a significant change in flow features compared to those
in the free-space idealization. Of course, we recognize that
these calculations using images still represent an unbounded
domain. Certainly, the flow generated by rotating helices in a
microfluidic device is confined by more than one plane, as is the
flow generated by nodal cilia during embryonic development
[32]. We also offer these calculations as a caution and a
reminder that using free-space solutions to quantify flow in
a confined environment at the microscale only tells part of the
story.
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