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Abstract The coordinated beating of motile cilia is responsible for ovum transport in the
oviduct, transport of mucus in the respiratory tract, and is the basis of motility in many
single-celled organisms. The beating of a single motile cilium is achieved by the ATP-
driven activation cycles of thousands of dynein molecular motors that cause neighboring
microtubule doublets within the ciliary axoneme to slide relative to each other. The pre-
cise nature of the spatial and temporal coordination of these individual motors is still
not completely understood. The emergent geometry and dynamics of ciliary beating is a
consequence of the coupling of these internal force-generating motors, the passive elas-
tic properties of the axonemal structure, and the external viscous, incompressible fluid.
Here, we extend our integrative model of a single cilium that couples internal force gen-
eration with the surrounding fluid to the investigation of multiciliary interaction. This
computational model allows us to predict the geometry of beating, along with the detailed
description of the time-dependent flow field both near and away from the cilia. We show
that synchrony and metachrony can, indeed, arise from hydrodynamic coupling. We also
investigate the effects of viscosity and neighboring cilia on ciliary beat frequency. More-
over, since we have precise flow information, we also measure the dependence of the total
flow pumped per cilium per beat upon parameters such as viscosity and ciliary spacing.

Keywords Multiciliary beating · Synchrony · Metachrony · Beat frequency · Viscosity
changes · Interciliary spacing · Immersed boundary method

1. Introduction

Cilia are microscopic, hair-like organelles projecting from a cell’s surface. In the hu-
man body, cilia have been identified on almost all cells, including embryonic, kidney,
and brain cells (Marshall and Nonaka, 2006). Afzelius (2004) reported that there are
at least eight categories of cilia or cilia-derived organelles with lengths ranging from
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Fig. 1 Schematic of an axoneme cross-section, depicting 9 microtubule doublets and the central pair of
two microtubules. Also depicted are the dynein motors, the nexin links, and the radial spokes.

about 2 µm to 50 µm. Motile cilia are central to ovum transport in the oviduct, trans-
port of mucus across respiratory epithelia, and cerebrospinal fluid movement in the
brain (Talbot et al., 1999; Afzelius, 2004; Pan et al., 2005; Davenport and Yoder, 2005;
Fauci and Dillon, 2006). Other cilia serve important sensory functions, and play a key
role in the development and homeostasis of cell proliferation (Avidor-Reiss et al., 2004;
Snell et al., 2004). Ciliary defects lead to a surprisingly wide range of clinical problems
from polycystic kidney disease (PKD) to syndromes associated with obesity, hyperten-
sion, diabetes rhinitis, sinusitis, bronchiectasis, and retinitis pigmentosa (Afzelius, 1976,
2004, Eley et al., 2005; Pan et al., 2005; Davenport and Yoder, 2005; Fliegauf and Om-
ran, 2006). For a recent review of cilia in human development and disease, see Vogel
(2005).

A cilium consists of a basal body and an axonemal core covered by a plasma mem-
brane. The axoneme in a motile “9 + 2” cilium has two central microtubule singlets
surrounded by nine microtubule doublets. A schematic of a cross-section depicting this
“9 + 2” axonemal structure is shown in Fig. 1. The nine outer doublets are connected
by radial spokes to a sheath surrounding the central pair. Other protein structures such as
nexin serve as structural links supporting the axoneme. Thousands of dynein molecular
motors are distributed along the length and circumference of the axoneme, each attached
permanently at one end to an outer doublet, and able to attach and detach dynamically to
the neighboring doublet. The beating of the cilium is achieved by ATP-driven dynein ac-
tivation cycles that cause neighboring microtubule doublets to slide relative to each other
(Witman, 1990; Murase, 1992). The precise nature of the spatial and temporal control
mechanisms regulating the ciliary beat is still unknown (Brokaw, 2001). Considerable in-
terest has been focused on understanding how the local force production of the dynein
motors is translated into the controlled, regular beating of the single cilium, as well as the
coordinated beating of multiciliary arrays. When neighboring cilia in a multiciliary array
beat with regular phase differences between them, coherent traveling waves propagate on
the surface of the array. These metachronal waves are used by paramecium to swim, and
by respiratory cilia to propel mucus.

The external, viscous fluid environment in which the cilium beats is an integral com-
ponent of this complex, coupled mechanical system. In the past 50 years, there have
been many successful mathematical models that capture various aspects of the fluid
dynamics of ciliary and flagellar beating. In their classical resistive force theory, Gray
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and Hancock (1955) describe the cilium by a series of cylinders and assume that the
local force on each cylinder is proportional to the local velocity. Central to this ap-
proach is the use of estimated resistance coefficients. Models for ciliary and flagel-
lar motion based on a generalized resistive force theory have been developed and ex-
plored by several researchers (Brokaw, 1972; Hines and Blum, 1978, 1979). A com-
prehensive review of this class of mathematical models is presented by Murase (1992).
Lighthill (1967) improved this theory by incorporating slender body approximations
since the diameter of a cilium is much smaller than its length. More detailed hydro-
dynamic analysis, such as refined slender body theory and boundary element methods
has produced excellent simulations of both two- and three-dimensional flagellar propul-
sion in an infinite fluid domain or in a domain with a fixed wall (Dresdner et al., 1980;
Higdon, 1979a, 1979b; Phan-Thien et al., 1987). In all of these fluid dynamical models,
the shape and the kinematics of the ciliary or flagellar beat was taken as given. Of course,
the actual geometry of a beating cilium is an emergent property of the coupled system
consisting of the internal force generating mechanisms, the passive elastic structure, and
the external fluid dynamics. Several models of ciliary beating have been developed that in-
clude both internal bend-generating mechanics and fluid dynamics. The models of Gueron
et al. (1997), Gueron and Levit-Gurevich (1998, 1999) use digitized data from a beating
paramecium cilium to back out the parameters of an internal force engine that depends
upon the ciliary geometry. The force due to this engine is then coupled to hydrodynamics
using a revised slender body theory. Velocities and evolving beat geometries of a ciliary
array are computed. Realistic beat patterns emerge, and ciliary synchrony and metachrony
are shown to be a result of hydrodynamic coupling. An extension of this model that in-
cludes a representation of internal force generation for three-dimensionalcilia is presented
in Gueron and Levit-Gurevich (2001).

Camalet and Jülicher (2000) presented an elastic rod model of a cilium whose dy-
namics are driven by internal stresses that result from tracking internal, active elements.
A simple hydrodynamic model using frictional coefficients was employed (Wiggins and
Goldstein, 1998; Wiggins et al., 1998), and small deformations of the filaments were
assumed. Recently, this model has been extended by Guirao and Joanny (2007) to inves-
tigate the emergence of metachronal waves in an array of cilia. The simplified hydrody-
namics uses a coarse-grained approach where the effect of the cilia on the flow is replaced
by an effective force, and assumes that neighboring cilia are far away from each other.
A mean field approximation is used to compute a uniform, scalar velocity due to cil-
iary beating. Another model of multiciliary interaction that does include a more detailed
treatment of hydrodynamics is due to Vilfan and Jülicher (2006). Here, a minimal model
represents the cilium by a small sphere at the center of mass. The flow field generated
by the periodic motion of this sphere is calculated using image Stokeslet solutions to the
governing Stokes equations in the presence of a planar boundary. Here, a state diagram is
presented indicating synchronized states between two cilia as a function of their distance.

In this paper, we use as a starting point our model of ciliary beating that incorporates
discrete representations of dynein arms, the passive elastic structure of the axoneme in-
cluding the doublets, and nexin links presented in Dillon and Fauci (2000), Dillon et al.
(2003). Dynein activation is governed by a simple curvature control mechanism (Brokaw,
1972). This model, based upon the immersed boundary method (Peskin, 2002), couples
the internal forces generated by the dynein motors with the external, viscous fluid me-
chanics. Within the immersed boundary framework, the forces due to each cilium are
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communicated to the fluid region in which it sits. As each additional cilium in the same
fluid domain adds to the external force field, the fluid dynamic interactions of multiple
cilia is readily achieved with little additional computational cost.

We emphasize that the model presented here does not take the ciliary beat form as
given, nor utilize digitized data to derive forces, but constructs the cilium itself out of
mechanical elements. The properties of these elements can be adapted to test internal
mechanisms of force generation. Since the resulting forces are fully coupled to the sur-
rounding fluid, one may directly evaluate the affects of the viscous environment on the
emergent beat characteristics of individual cilia, as well as ciliary interactions. In Sec-
tion 2, we present the simple axonemal representation of the cilia, the mathematical frame-
work describing the coupled fluid-structure system, and the computational algorithm used
to solve this system. We present numerical results that demonstrate how synchrony and
metachrony evolve between neighboring cilia arising from hydrodynamic interactions.
We also examine the effects of viscosity and ciliary spacing on beat frequency and fluid
transport. A discussion of the model, the numerical experiments, and future model en-
hancements is also presented.

2. Mathematical model

The bending of the three-dimensional axoneme is caused by sliding between pairs of outer
doublets. Active sliding is due to the unidirectional ATP-induced force generation of the
dynein power stroke. Backward, passive sliding is due to the active sliding of other pairs
of doublets within the axoneme. Here we present a two-dimensional model of a simplified
axoneme that is comprised of only two microtubules. A schematic for this model cilium is
shown in Fig. 2. Each microtubule consists of a pair of parallel microtubule filaments built
out of a series of links that are also supported by diagonal cross-links. These links give
the microtubules structural rigidity. The dyneins and nexin links are represented in the
model as forces which act upon the microtubule filaments. We assume that the filaments
are highly resistant to stretching and compression but not to bending. In the ciliary model,
we include two sets of dyneins that share the same space between the two microtubules.
We activate one set (E) during the effective stroke and a second set (R) during the recov-
ery stroke. The effective stroke (E) dyneins are shown in Fig. 2 (left), and the recovery
stroke (R) dyneins are shown in Fig. 2 (right). During the effective stroke, the (E) dyneins
contract. These forces pull the microtubule on the right upward, and push the microtubule
on the left downward. Since the microtubules are tethered to fixed spatial points at the
cell wall at the microtubule base, the contraction of dyneins results in bending toward the
right. The (E) dyneins are permanently attached to the microtubule on the left, but tran-
siently attached to a nearby site on the microtubule on the right. This dynein attachment
and connectivity is a dynamic process that must be determined during the computation.
During the recovery stroke, the (R) dyneins contract, producing a bending toward the left.
Note that in the true three-dimensional axoneme, the dyneins between adjacent pairs of
doublet microtubules produce active sliding forces in only one direction. A coordinated
ciliary beat requires an activation of dyneins on one side of the circular cross-sections of
the axoneme, followed by an activation of the dyneins on the other side. Thus, our model
can be viewed as a model of the entire axoneme in which each of the model microtubules
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(a) bending from left to right

(b) bending from right to left

Fig. 2 Schematic of model ciliary axoneme during (E) effective stroke and (R) recovery stroke. Each
microtubule is built from two parallel microtubule filaments. Here we assume that the effective stroke
will bend toward the right. The dynein links are depicted as diagonal links with open arrows pointing
downward from their permanent attachment points (on the left microtubule for (E) dyneins and on the
right microtubule for (R) dyneins). The horizontal links with open arrows are the nexin structural links of
the model axoneme. The contraction of the dynein links (depicted by arrows) causes local sliding between
the microtubules, and this sliding is converted to bending.
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represents one half of the 9 + 2 axoneme. Similarly, the (E) and (R) dyneins represent the
dyneins on each half of the axoneme.

The formulation of our model is based upon the immersed boundary method (Peskin,
1977, 2002). This method provides a framework for coupling elastic dynamics of flexible
boundaries with a surrounding viscous, incompressible fluid. These elastic objects are
accounted for by suitable contributions to a force term in the fluid-dynamics equations.
The force of each object on the fluid is a Dirac delta-function layer of force supported only
by the region of fluid that coincides with material points of the object. Once these forces
on the fluid are accounted for, one can solve the fluid-dynamics equations efficiently on a
finite difference or finite element grid.

The fluid is regarded as viscous and incompressible, and the filaments that comprise
the microtubules of the axoneme as elastic boundaries immersed in this fluid. We assume
that the flow is governed by the Navier–Stokes equations:

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + μ�u + F(x, t), (1)

∇ · u = 0, (2)

where ρ is the fluid density, μ is the fluid viscosity, t is time, and u is the fluid velocity,
p denotes the pressure, and F is the force density which is exerted on the fluid by the
axoneme and cell wall. The force density F in Eq. (1)

F = FM + FN + FD + FC + FT (3)

includes contributions arising from the deformation of the elastic structure of the micro-
tubules FM, elongation of the nexin links FN, contraction of the dynein links FD as well as
tethering forces that prevent movement of the cell wall FC and the base of the axoneme FT.

Let Xk,ia(s, t) represent the “kth” microtubule filament (k = 1,4) of the “iath” ax-
oneme or cilium. Here s is a Lagrangian parameter, such as arclength in an unstressed
configuration, measured along each filament. The mass of these neutrally-buoyant fila-
ments is attributed to the mass of the fluid in which they sit, and thus the passive and
elastic forces at material points of the filaments are transmitted directly to the fluid. The
force densities FX , X = M,N,D,T and FC in Eq. (3) are, therefore:

FX(x, t) =
∑
k,ia

∫
filaments

fk,ia
X (s, t)δ

(
x − Xk,ia(s, t)

)
ds, (4)

FC(x, t) =
∫

Cell wall
fC(s, t)δ

(
x − XC(s, t)

)
ds, (5)

where δ is the two-dimensional Dirac delta-function, fk,ia
X is the boundary force per unit

length along the kth microtubule filament of the iath axoneme and fC(s, t) is the force per
unit length along the cell wall whose configuration is given by XC(s, t).

Each of the forces fk,ia
X and fC(s, t) are derived from spring forces. For instance, the

passive elastic forces fk,ia
M due to the structural springs of the microtubules contain contri-

butions of the form:

−Sf

(∥∥Xk,ia
i+1 − Xk,ia

i

∥∥ − �Sf

) Xk,ia
i − Xk,ia

i+1

‖Xk,ia
i − Xk,ia

i+1‖ . (6)
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Here Sf is a spring constant that is chosen to reflect the material properties of the micro-
tubules, and X

k,ia
i represents the ith discrete point of the microtubule filament (i = 1, np,

where np is the total number of discrete points on a microtubule filament). Note that these
forces are due to springs with resting length �Sf connecting adjacent points of the fila-
ments. Other forces due to cross-connections within the microtubules depicted in Fig. 2
are also included.

The dynamic forces arising from the activation of individual dyneins are of the form:

fLi = −Sdyn

(
XL

i − XR
j(i)−M

)
, (7)

Note that this (E) dynein force may be thought of as arising from a spring with resting
length zero that connects a point XL

i on the left microtubule to a point XR
j(i)−M on the right

microtubule. The index j (i) is chosen to minimize the distance ‖XL
i −XR

j(i)‖. Hence, these
are dynamic springs that change connectivity during the course of the computation. The
offset M and the stiffness constant Sdyn are numerical parameters that may be chosen to
reflect the force strength of each individual dynein. In the simulations presented in this
manuscript, the offset parameter was chosen to be M = 2. The forces due to nexin links
are also modeled as dynamic springs between the microtubules that act to keep them a
fixed distance apart. Finally, to keep the base of each cilium as well as the cell wall fixed
in space, tethering forces due to strong springs connect these immersed boundary points
to prescribed spatial positions (see Dillon and Fauci, 2000).

These forces defined on the microtubules are communicated to the fluid domain using
discrete versions of Eqs. (4)–(5). In the computations presented here, we follow Peskin
(1977) and choose the discrete delta-function δh(x) = d(x)d(y) where h is the mesh width
of the fluid grid:

d(r) =
{

1
4h

(
1 + cos πr

2h

)
, |r| < 2h,

0, |r| ≥ 2h.
(8)

Our coupled fluid-axoneme system is closed by requiring that the velocity of the mi-
crotubules and cell wall must be equal to the local fluid velocity at each point.

∂X(s, t)

∂t
= u

(
X(s, t), t

) =
∫

u(x, t)δ
(
x − X(s, t)

)
dx (9)

where X = Xk,ia or XC and the integration is over the entire fluid domain.
Within this modeling framework, at each time step, we have detailed geometric infor-

mation available for each cilium such as the curvature of the microtubules, the stretch-
ing of nexin links, and the amount of shear or sliding between the microtubules. For the
model cilia presented here, we choose a curvature-control algorithm motivated by Brokaw
(1972). The discrete dyneins in each cilia obey the following rules of activation: In the ef-
fective mode, we activate all (E) dyneins. The end of the effective stroke is reached when
the right microtubule has slid SD attachment units with respect to the left microtubule
at the axonemal tip. This condition is reached when np − j (np) = SD. In the recovery
mode, (E) dyneins are inactive. The (R) dyneins are activated in a traveling wave from
base to tip by means of a curvature-control algorithm in the following manner. At time
level tn, we calculate the index pn that corresponds to the point of maximum curvature
on the unfolding ciliary axoneme. All (R) dyneins at time tn with indices less than pn
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are then activated and all (R) dyneins with indices greater than pn are inactive. This al-
gorithm is described in more detail in Dillon and Fauci (2000). The end of the recovery
stroke is determined in a way analogous to the end of the effective stroke. In this case, the
axoneme switches from recovery mode to effective mode when the left microtubule has
slid SD units distally with respect to the tip of the right microtubule.

The numerical algorithm may be summarized as follows: At the end of a time step n

we have the fluid velocity field un on our finite difference grid, and the configuration of
the immersed boundary points comprising the filaments of the microtubules (Xk,ia

i )n and
the cell wall (Xc)

n. To advance to the next step we:

1. Use the geometric switch algorithm to determine whether each cilium is in effective or
recovery mode.

2. Use geometric information to determine activation and connectivity properties of dis-
crete dyneins for each individual cilium.

3. Calculate force densities along microtubules of each cilium and the cell wall.
4. Use discrete delta-functions to spread force densities to the fluid domain.
5. Solve the Navier–Stokes equations for un+1.
6. Interpolate grid velocities to immersed boundary points using the discrete delta-

functions, and update their positions to arrive at (Xk,ia
i )n+1 and (Xc)

n+1.

Note that the dynein activation dynamics are determined separately for each individual
cilium. For instance, within a simulation, there may be some cilia in the power stroke, and
some in the recovery stroke. However, each of the cilia interact through their coupling
with the surrounding viscous, incompressible fluid. For the solution of the Navier–Stokes
equations, we use an FFT-based solver. Since additional cilia interacting in the same fluid
domain act as additional contributions to the force density term in the Navier–Stokes
equations, the cost of computing forces due to N cilia is just O(N).

3. Numerical results

We present an illustrative simulation of two adjacent cilia beating in Fig. 3. This series of
snapshots show the evolution of the ciliary beat, the fluid velocity field, and the evolution
of a cloud of fluid markers within the fluid domain. Each cilium is composed of two
microtubules, which can be seen in the figure. Note that the tip of the microtubule on the
inner part of the bend in each cilium is extended, showing that sliding that has occurred
between the microtubules. The individual dynein “springs” that drive this sliding are not
depicted in this figure, but occupy the space between the two microtubules, as do the nexin
“springs” (also not shown).

These two cilia are identical in the sense that they have the same material properties,
the same initial configuration of dynein activation, same geometric switch between the
power and recovery strokes, and same curvature controlled algorithm that determines the
evolution of the recovery stroke. However, we see from Fig. 3 that their beat patterns are
not identical—their evolving shape is determined by the fluid dynamics. Here the periodic
domain has dimensions of 40 µm × 40 µm, and is discretized using a 256 × 256 finite
difference grid. The length of the cilium is approximately 14 µm, and each filament of a
ciliary microtubule is described by 120 discrete immersed boundary points. Either an (E)
or (R) dynein is associated to each of the discrete points of the inner microtuble filaments,
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Fig. 3 Snapshots of velocity fields of 2 cilia at different times. A patch of neutrally buoyant fluid markers
is tracked as it is advected by the flow. The beat frequency is 59 Hz.

except at a short region at the base where no sliding is allowed. Hence, each cilium has
at least 100 (E) dyneins and 100 (R) dyneins. Other governing material parameters are
identical to those described in Dillon and Fauci (2000).

In this model, it is important to use material parameters for microtubules and dynein
springs that reflect the properties of true cilia. Since the coupled fluid-cilia system is
described using the 2D equations of fluid dynamics, we must take care in translating
the two-dimensional parameters and units to their three-dimensional counterparts. For
instance, the amount of force generated by a dynein link at the moment it is activated, in
our model, is about 2.5 × 10−2 dynes per unit length. We choose our length scale to be
on the order of the intermicrotubule distance in our model, which is a few grid spacings,
dz = 1.5 × 10−5 cm. This gives us a dynein force of about 4 pN, which is in the range
of 1–5 pN reported by Howard (2001), Lindemann (2003). In order to estimate the bend
modulus or flexural rigidity of our elastic model axoneme, we follow the procedure of
Lim and Peskin (2004). We initialize the structure in the form of an arc with curvature K ,
and compute the total energy in the springs that comprise the mechanical model. Using the
relation E = 1

2AK2L, where A is the bend modulus, L is the ciliary length, we compute
in our two-dimensional case, A = 0.6 × 10−8 dynes cm. For comparison with the three-
dimensional axoneme, we need to multiply by a length scale to achieve a bend modulus
with units dynes cm2. Again, using a length scale on the order of the microtubule distance,
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we arrive at a bend modulus of about 10−21 N m2. Note that the bend modulus measured
for sea urchin sperm lies in the range 0.6–12 × 10−21 N m2 (Howard, 2001; Ishijima and
Hiramoto, 1994). Of course, translating each of these parameters (dynein force and bend
modulus) from its two-dimensional units to its three-dimensional counterpart made use
of a scale factor, which though plausible, may be suspect. We remark that even without
choosing a scale factor, we may assert that the ratio of axoneme bend modulus to dynein
force strength in our model fits well within the range of ratios exhibited by biological cilia
and flagella.

The resulting beat frequency that emerges as a consequence of the coupling of external
fluid mechanics with the internal dynamics of our model cilia in Fig. 3 is about 59 Hz.
As in all of the simulations presented in this manuscript, this reflects dynein motor forces
at the high end of about 4 pN. It is unlikely that this large force per dynein is achieved
during dynamic sliding. We remark that when we cut the stiffness constants for the dynein
motor springs in half, the resulting beat frequency reduces to about 33 Hz. Although these
are faster than beat frequencies reported for respiratory cilia (10–13 Hz) (Chilvers and
O’Callaghan, 2000), they are in line with the beat frequencies of about 60 Hz measured
for Chlamydomonas flagella, which undergo a ciliary beat (Brokaw and Luck, 1983).

3.1. Synchrony and metachrony

It has long been established that hydrodynamic forces are central to the coordination of
motile structures at the microscopic level. Randomly distributed flagella of the peritric-
hously flagellated bacteria such as Escherichia coli form a coherent bundle behind the cell
during forward swimming (Darnton et al., 2004). This bundling is due to hydrodynamic
interactions (Flores et al., 2005; Powers, 2001; Kim et al., 2003). Note that the prokaryotic
bacterial flagella are fundamentally different from eucaryotic cilia and flagella as they are
driven solely by a rotary motor at their base.

Hydrodynamic entrainment of spermatozoa was noted by Gray (1928). Nearby swim-
ming sperm tend to beat in phase (Taylor, 1951). This phase-locking phenomenon of
flagellar swimming was demonstrated using computational studies in Fauci and McDon-
ald (1994). Hydrodynamic coupling has also been implicated in the generation of ciliary
metachronal waves, whereby neighboring cilia beat in synchrony, but a continuous phase
difference results in the ciliary tips forming a traveling wave (Childress, 1981). This co-
ordinated beating allows respiratory cilia to clear mucus from the lungs, and single-celled
organisms to swim. Recently, hydrodynamic feedback was shown to direct planar polarity
of cilia in the developing Xenopus embryo (Mitchell et al., 2007).

In previous studies, Gueron et al. (1997), Gueron and Levit-Gurevich (1998) used their
model to obtain self-synchronization between two adjacent cilia. Fast self-synchronization
is reported with intercilia spacing in the range of 0.3 to 1.5 cilium lengths in Gueron and
Levit-Gurevich (1998). In addition, metachrony was shown to develop in linear arrays of
cilia.

Our model also shows that hydrodynamic forces cause the rapid synchronization of
beating for closely spaced cilia. Fig. 4 shows snapshots of a simulation where two cilia,
initially at different phases of their power stroke, begin beating in a fluid at rest. The
ciliary beats quickly synchronize, and settle into a regular beat frequency of about 64 Hz.
The snapshots are not equally spaced in time, but show positions during the first couple
of beat periods, and later positions during the sixth beat period.



1202 Yang et al.

Fig. 4 Snapshots of synchronization of two cilia initially at different phases of the effective stroke. The
numbers in the bracket correspond to the denoted times on the synchronization graph shown in Fig. 5.

Motivated by Gheber and Priel (1989), we define the following function in order to
quantify the synchronization of neighboring cilia:

syn(t) =
√√√√ 1

np

np∑
k=1

(
dk(t) − d̄(t)

)2
,

where

dk(t) = ‖Xleft(k, t) − Xright(k, t)‖
ciliary length

, for k = 1,2, . . . , np,

and

d̄(t) = 1

np

np∑
k=1

dk(t).

Xleft(k, t) or Xright(k, t) (k = 1,2, . . . , np) are the coordinates of the immersed points
on a selected microtubule filament of the left or right cilium at time t . We choose the
corresponding filaments on the cilia. If the two cilia had identical beat pattern, syn(t)
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Fig. 5 Synchronization measurement for the simulation depicted in Fig. 4. The numbers shown on the
graph correspond to the geometry of the two cilia shown in the indicated frame in Fig. 4.

would be identically zero. The smaller the function value syn(t) is, the larger the degree
of synchronization. Fig. 5 shows the evolution of the synchronization as a function of time.
Numbers are placed on the graph that correspond to the times shown in the snapshots of
Fig. 4.

More dramatic synchronization is demonstrated in Fig. 6. Here the two cilia are initial-
ized in opposite states; the cilium on the right begins in the recovery stroke, and the cilium
on the left begins in the effective stroke. The velocity field in the second frame shows that
at this stage, the cilia are indeed moving in opposite directions. The ciliary beats do syn-
chronize and also settle into a regular beat frequency of about 64 Hz. The snapshots are
not equally spaced in time, but show positions during the first couple of beat periods, and
later positions during the fifth beat period. Fig. 7 shows the evolution of synchrony mea-
sured as described above. The simulations presented in Fig. 4 and Fig. 6 were performed
with identical geometric, fluid, and numerical parameters—the only difference is the ini-
tial phase of the two cilia. In order to compare their course of synchronization, Fig. 8
shows each of their synchronization functions plotted on the same graph. We see that it
takes longer for the two cilia started in opposite phases to synchronize, but after about
T = 0.05 seconds, the beats are basically the same, slightly translated in time.

Fig. 9 shows snapshots of another simulation where the bases of three cilia are placed
1.5 cilium lengths apart; considerably further apart than the simulation above. Their con-
figurations and dynein activation states are initially set at random phases within a recovery
stroke. Synchrony again develops, but this time there is a marked phase difference be-
tween the three cilia. Periodic boundary conditions imposed in the horizontal direction of
the fluid domain allow us to interpret these simulations as those of an infinite, linear array
of cilia. Although periodic boundary conditions are imposed on the entire fluid domain,
the cilia do not feel the presence of their periodic copies in the vertical direction because
of the presence of the cell body wall. In essence, we are representing a linear array of cilia
beating in a channel. Fig. 10 shows a sequence of overlays within a recovery stroke and a
power stroke.
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Fig. 6 Snapshots of synchronization of two cilia. The cilium on the left is initialized in its recovery stroke,
and the cilium on the right is initialized in its effective stroke. The numbers in the bracket correspond to
the denoted times on the synchronization graph shown in Fig. 7.

Fig. 7 Synchronization measurement for the simulation depicted in Fig. 6. The numbers shown on the
graph correspond to the geometry of the two cilia shown in the indicated frame in Fig. 6.
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Fig. 8 The synchronization functions shown in Fig. 5 (curve marked with circles) and Fig. 7 (curve
marked with dots) plotted together. Note that the two simulations eventually settle into a similar beat
pattern.

Table 1 Frequency and flow rate for 1, 2, and 3 cilia

Freq (Hz) Flow rate (cm2/s) Net flow/beat (cm2/beat) Net flow/beat per cilium

1 cilium 48.48 257.64 5.31 5.31
2 cilia 60.60 409.76 6.76 3.38
3 cilia 61.67 494.93 8.04 2.68

3.2. Influence of neighboring cilia on beat frequency and flow rate

Gueron et al. (1997) reported that the beat frequency of their model cilium increases in
the presence of neighboring cilia. To examine this feature, we performed simulations of 1,
2, and 3 cilia, each initialized with the same geometry and dynein activation states. Here
the fluid domain is taken to be 80 µm × 40 µm, and the interciliary spacing is 2.4609 µm.
The fluid domain is discretized using a 512 × 256 finite difference grid. Fig. 11 shows
snapshots of each of these simulations at selected times. Subtle differences are noted in
the beat geometries. There is a 25% increase in beat frequency as we move from one to
two cilia, but less than 2% increase as we moved from two to three cilia (see Table 1). In
the model cilia of Gueron et al. (1997), the beat frequency did not change significantly
once the cilia number exceeded 10.

During the course of our simulation, the fluid velocity field is readily available at grid
points of our underlying finite difference grid in the entire domain. We can monitor the
total flow in the direction of beating from time T = 0 to T = t by computing the integral:

Q(t) =
∫ t

0

∫ top

bottom
udy dt (10)

where u is the x-component of the velocity field, and the integration is over any fixed
vertical line. Q(t) has units of cm2. Note that due to incompressibility, this integral should
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Fig. 9 A ciliary array shows spontaneous metachrony. Snapshots of cilia geometry and velocity fields
shown at equally spaced times.
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Fig. 10 Overlay of cilia geometry during recovery stroke (from time t = 0.02 to t = 0.0332 s) and in
power stroke (from time t = 0.0336 s to t = 0.0432 s). Cilia positions are plotted at time intervals of
0.0012 s.

be the same at any cross section of the domain. Fig. 12 shows a plot of the total flow
Q(t) for each of the three simulations. During the power stroke, the flow in the positive
x-direction increases, but there is substantial backflow during the recovery stroke. We
remark that this backflow would be much less pronounced in a full three-dimensional
ciliary beat when this return stroke is not in the plane of the recovery stroke. We may also
compute the average flow rate over a period (the slope of the dashed lines in Fig. 12). This
has units of cm2/sec:

Q̂(t) = 1

T2 − T1

∫ T2

T1

∫ top

bottom
udy dt. (11)

Here T1 is the beginning of a power stroke and T2 is the end of the subsequent recovery
stroke. Although this average flow rate varies slightly from period to period, we take as
the flow rate the average of this slope during the second and third period of beating. This
flow rate is shown in Table 1. Here we see that the flow rate increased by 59% as we
moved from one to two cilia and increased by more than 20% as we moved from two
to three cilia. Thus, as we moved from two to three cilia, there was little change in beat
frequency, but a significant change in flow rate. Note that that net flow per beat units of
cm2/beat for the ciliary array increases as the number of cilia increase (see Table 1). We
can also examine how much each cilium is contributing to the fluid transport by looking
at net flow per beat per cilium.

3.3. Effect of viscosity changes

In experimental investigations that measured beat frequency of paramecium cilia in fluids
of different viscosities, Machemer reported that beat frequency decreased when viscosity
increased (Machemer, 1972). Gueron et al. also reported this decrease in their model cilia
(Gueron et al., 1997). Gheber et al. (1998) used double and triple simultaneous photoelec-
tric measurements on cultured ciliary cells from the frog esophagus in the viscosity range
of 1–2,000 cp and observed that increasing the viscosity of the medium caused not only a
decrease in the ciliary beat frequency, but also changes in the metachrony and correlation
between cilia.

We chose to examine the effect of viscosity on beat frequency and flow rate in simula-
tions with two cilia as shown in Fig. 13 and Fig. 14. For the particular range of viscosities,
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Fig. 11 Comparison of the beats of 1, 2, and 3 cilia at selected times.

material parameters, and dynein-activation rules used in this model, the ciliary beats look
virtually the same. Table 2 shows the computed beat frequencies, average flow rate, and
net flow per beat as a function of viscosity. Following Machemer’s presentation, Fig. 15
shows a plot of beat frequency versus the log of viscosity. Machemer (1972) argued that
his measured data, plotted this way, exhibited a linear relationship. Fig. 15 also depicts
the least squares linear fit to our computational results. As in the model cilia of Gueron et
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Fig. 12 Comparison of total flow pumped from left to right at the end of each stroke (power/recovery) for
1, 2, and 3 cilia with μ = 1.5 cP.

Fig. 13 Snapshots of one complete beat (including a power stroke and a recovery stroke) from t = 0.008 s
to t = 0.0172 s of 2 cilia with μ = 1.0.

al. (1997), there is a deviation from linearity so that the frequency versus log of viscosity
graph itself appears to be exponential.

As the viscosity decreases from 3.5 cP to 1.0 cP, the flow rate and frequency each in-
crease approximately fourfold. However, from Table 2, we see that the net flow per beat
is fairly constant for this range of viscosities, exhibiting only a 15% drop as viscosity
is increased from 1 cP to 3.5 cP. This is not surprising since the geometry of the ciliary
beats in these model cilia do not appear to change significantly with increased viscosity
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Fig. 14 Snapshots of one complete beat (including a power stroke and a recovery stroke) from
t = 0.0296 s to t = 0.0664 s of 2 cilia with μ = 3.5.

Table 2 Frequency of beat, flow rate, and net flow per beat with different viscosities

μ (cP) Freq (Hz) Flow rate Net flow/beat

1.0 101.09 613.03 6.06
1.5 61.64 366.37 5.94
2.0 42.62 259.27 6.08
2.5 34.12 195.40 5.73
3.0 28.96 164.14 5.67
3.5 26.95 137.59 5.10

load. The change from 1 cP to 3.5 cP is quite modest compared with the viscosity range
examined by Gheber et al. (1998). Related experiments examine flagellar waveforms of
motile sperm placed in fluids of different viscosities. Note that eucaryotic sperm flagella
are built out of the identical 9 + 2 axonemal ultrastructure as cilia. Significant changes
in emergent flagellar waveforms of sea-urchin sperm due to significant changes in exter-
nal fluid viscosity have been reported (Tani and Kamimura, 1998). In addition, dramatic
changes in the waveform of bull sperm have been shown to arise when the surrounding
fluid was changed from Newtonian to non-Newtonian (Ho and Suarez, 2001).

3.4. Effect of interciliary spacing

Using particle imaging velocimetry, Solari et al. (2006) investigated the fluid motion
around colonies of Volvox carteri. The fluid motion was induced by the cilium-like power
and recovery strokes of the flagella that emanate from the spherical surface of the colony.
These colonies are comprised of many flagellated cells along with germ cells. Growth of
the colonies occurs as the germ cells grow, causing the distance between flagella on the
surface of the colony to increase. Flow velocities near the surface of the colonies were
measured during different growth phases. It was noted that the maximum fluid velocity
was not monotonic as the distance between the flagella increased, but showed a peak at
an intermediate stage. The measured beat frequencies and flagellar lengths at the different
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Fig. 15 Here we plot the measured beat frequency as a function of the log of viscosity along with the line
that is the least squares fit of this data.

Fig. 16 Three examples of two-cilia spacings. These show ciliary spacings of d = 0.175,0.5, and 2.25
ciliary lengths.

stages of colony growth did not show a dramatic change at the instance of peak velocity
(Solari et al., 2006).

Motivated by these experiments, in this section we investigate how the spacing be-
tween two cilia affects their beat frequency and flow rate. We have already noted that
there is a strong tendency for two cilia to synchronize when placed nearby. In order to
minimize transient effects of synchronization, we place two identical model cilia in the
fluid domain, initialized with identical dynein activation states. Our rectangular fluid do-
main has dimensions 80 µm × 40 µm. The cilia are 14 µm in length. Three examples of
two-cilia spacings are depicted in Fig. 16. Note that we cannot space the cilia an arbitrary
distance apart measured along the cell wall, since as they move apart, their periodic copies
in the horizontal direction move closer.

Table 3 shows the measured beat frequency, flow rate, and net flow per beat in the two-
cilia configurations for different spacings of their bases. Note that the net flow per beat is
not a monotonic function of ciliary spacing, but shows a dramatic peak at a distance of
one half of a cilium length (see Fig. 17). This is consistent with the observations of Solari
et al. (2006).
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Table 3 Emerging beat frequencies, flow rate, and net flow per beat in the two-cilia simulations as a
function of the distance of their bases on the cell wall (measured in cilium lengths)

Distance in cilium lengths Freq (Hz) Flow rate Net flow/beat

0.175 60.60 409.76 6.76
0.200 62.61 464.02 7.41
0.500 40.39 532.89 13.19
1.000 40.99 345.68 8.43
1.250 52.78 515.32 9.76
1.500 50.04 356.81 7.13
1.750 51.90 447.48 8.62
2.000 50.41 358.38 7.11
2.250 52.81 366.76 6.94

Fig. 17 Net flow per beat as a function of distance between the two cilia (measured in cilium lengths).

4. Discussion

The distinctive feature of this model is the detailed and biologically realistic mechanism
by which the ciliary beat is produced. Unlike previous mathematical models, the ciliary
beat form is not assumed and digitized data is not used to derive forces. The activation
of the individual dyneins produces forces directly on the elastic structures of the ciliary
axoneme. These forces generate the sliding between neighboring microtubule doublets
that is converted into ciliary bending by the passive structures of the axoneme. It remains
an open question as to just how it is that dyneins are uniformly activated or inactivated
during the power stroke, and why there is a traveling wave of activation from base to
tip during the recovery stroke. As this type of ciliary model is refined, one can consider
the effect on the ciliary beat of defects in individual components within the axonemal
structure and how these defects influence the global ciliary beating patterns.

Our model does predict the establishment of synchrony and metachrony due to hydro-
dynamic coupling of neighboring cilia. Our model shows that beat frequency decreases
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approximately linearly as a function of the logarithm of viscosity. This feature was also
found experimentally by Machemer (1972) and in the model cilia of Gueron et al. (1997).
We found that ciliary beat frequency increased dramatically as we increased from one to
two cilia, and a much smaller increase in beat frequency as we added an additional cil-
ium. The saturation in beat frequency was also noted in Gueron et al. (1997). Since our
immersed boundary model gives us fluid velocities over the entire domain, we are able to
easily calculate the flow rates and found that the flow rate per beat increased significantly
as more cilia were added. Our study suggests that ciliary efficiency may depend critically
on ciliary spacing. We found a significant peak in net flow per beat at an optimal ciliary
spacing. This was also observed by Solari et al. (2006) in Volvox colonies.

While the actual coupled system consisting of the surrounding fluid and a ciliary array
is obviously three-dimensional, the 2D results presented in this paper match the dynamics
observed in experiment and other 3D models remarkably well. Moreover, this modeling
framework can be used to test hypotheses concerning internal force generating mechanics
of individual ciliary dyneins, such as Lindemann’s geometric clutch hypothesis (Linde-
mann, 2007). Nevertheless, a fully 3D immersed boundary ciliary model is currently being
developed.
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