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Topological methods in hydrodynamics

Advisor:

Read this book it has a lot
of interesting open
problems. . .
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Topological methods in hydrodynamics

In fact there are so many open problems that there is another book

“Arnold’s Problems” by Vladimir I. Arnold, available for free at
http://www.phasis.ru/Arnold-Problems/index.html
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Contact structures

Are plane distributions ξ such that for any pair of vector fields X,Y
spanning ξ, the field [X,Y ] = XY − Y X is transverse to ξ.

ξ0 = ker{dz + x dy}

ξ1 = ker{cos rdz + r sin r dθ}
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Contact forms as the curl eigenfields

Let α = 〈B, · 〉 be a 1-form on a 3-manifold M , then ξ = kerα, defines a
contact structure if and only if

α ∧ dα 6= 0, α ∈ Ω1(M).

Fact: For every contact form α there exist an ample set of Riemannian
metrics 〈 · , · 〉 for which the dual vector field B satisfies

∇×B = µB, µ 6= 0

i.e. B is an eigenfield of the curl operator ∇×. In terms of the contact
form α this equation can be written as follows

∗ dα = µα,

where ∗ is the Hodge star operator, d is the exterior differentiation.
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Isotopy of contact structures

two contact structures ξ0 and ξ1 are isotopic iff. there exists a
homotopy of plane fields ξt, 0 ≤ t ≤ 1, such that ξt is a contact plane
distribution for all t.

a contact structure ξ is overtwisted if and only if there exists an
embedded disk D2 ⊂M such that D is transverse to ξ near ∂D but
∂D is tangent to ξ. Any contact structure which is not overtwisted is
called tight. If all the covers of a structure are tight then we call it
universally tight.

full classification only on certain manifolds such us S3, T 3 most of
the 3d Seifert bundles. [Bennequin, Eliashberg, Etnyre, Giroux,
Honda, . . . ]. In general a big open problem in the field.
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Classification of contact structures up to isotopy

tight

overtwisted

() 13 November 2009 8 / 49



How to detect tight/overtwisted?

X is the contact vector field iff the flow of X preserves ξ.

The set of tangencies ΓX = {p ∈M : Xp ∈ ξp} is called the
characteristic hypersurface of X in ξ.

in terms of a contact form α, X is a contact vector field if
LXα = v α, f = α(X) is called a contact hamiltonian.

ΓX = f−1(0).
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How to detect tight/overtwisted?

[Giroux’s criteria]: Given an embedded orientable surface Σ in the contact
manifold (M, ξ) and a transverse to Σ contact vector field X define
Γ = ΓX ∩ Σ. Then:

(i) if Σ 6= S2, then ξ has a tight tubular neighborhood iff. none of the
components in Σ/Γ bounds a disc.

(ii) if Σ = S2, then ξ has a tight tubular neighborhood iff. Γ is connected.

(Σ is called the convex surface and Γ the dividing set).
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Contact structures and magnetic relaxation.

The velocity field v(x, t) of plasma and its magnetic field B(x, t) are
governed by the equations

ρ
(∂v
∂t

+ v · ∇v
)

= −∇p+ (∇×B)×B + µ∆v,

∂B

∂t
= ∇× (v ×B),

div(v) = div(B) = 0 .

As a direct consequence of these equations

E2(B(t)) + E2(v(t)) =
∫
|B(t)|2 +

∫
|v(t)|2 decreases as t→∞

and in particular E2(B(t)), which is known as magnetic relaxation.
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Contact structures and magnetic relaxation.

The second equation ∂B
∂t = ∇× (v ×B) can also be written as follows

d

dt
B + [v,B] = 0, div(B) = div(v) = 0.

As a consequence the evolution of B0 = B(0) occurs along a path
t −→ g(t) ∈ Diffvol

0 (M):

B(t) = g∗(t)B0,
d

dt
g(t) = v

Therefore, candidates the stationary points (a.k.a. steady Euler flows) are
minimizers to the problem

Extremize E =
∫
M
|B|2,

on ΨB0 = {B : B = g∗(B0), g ∈ Diffvol
0 (M)}.
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What happens at infinity . . .

. . . is not well understood.

Question
When do the minimizers exist?

Problem(s)

Existence results of generally nonsmooth minimizers are known only in
dimension 2 [Burton & Alvion, Trombetti, Lions]. For dimension greater
than 2, there is no proof that extremals exist except for certain partial
results.

In even dimensions there are nonexistence examples for the smooth
extremals [Ginzburg & Khesin] .

Open problem
Show nonexistence of smooth minimizers in dimension 3 for certain initial
conditions.
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Energy minimization

Minimize E =
∫
M
|B|2,

on ΨB0 = {B : B = g∗(B0), g ∈ Diffvol
0 (M)}.

Theorem [Arnold]

The “critical points” (i.e. extremals) of the above problem are
divergence-free vector fields B which commute with their curls i.e. satisfy:

[B,∇×B] = 0 .

Comment: Curl eigenfields naturally satisfy this condition.
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. . . but there is a closer connection to curl eigenfields

There is a well known quantity (the only such known for general vector
fields!) associated with B(t) which stays invariant in time, known as
helicity

H(B) =
∫
M
〈B,A〉, ∇×A = B .

i.e. H(B) = H(g∗B) for every g ∈ Diffvol
0 (M).

Thus, in the context of magnetic relaxation it makes perfect sense to
consider a constrained problem:

Minimize E := E2(B) on ΦB0 subject to H := H(B) = const.
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Critical points of the constrained problem.

The method of Lagrange multipliers tells us that extremals B satisfy

δE(B, h)− λ δH(B, h) = 0, for all h.

where δ(∗)(B, h) := d
dt(∗)(B + t h)|t=0 where h is traditionally denoted by

δB. Thus δ(∗) is just a directional derivative at B in the direction of δB.
Calculate to obtain

δE(B, h) =
d

dt

∫
〈B + t h,B + t h〉

∣∣∣
t=0

=
d

dt

∫
〈B,B〉+ 2 t〈h,B〉+ t2〈h, h〉

∣∣∣
t=0

= 2
∫
〈B, δB〉 = 2

∫
〈B,∇× (δA)〉

Analogously, for H(B) =
∫
〈B,A〉, B = ∇×A:

δH(B, h) =
∫ (
〈A,∇× (δA)〉+ 〈B, δA〉

)
.

() 13 November 2009 16 / 49



Critical points of the constrained problem.

The Lagrange equations now read∫
〈B,∇× (δA)〉 − λ

∫ (
〈A,∇× (δA)〉+ 〈B, δA〉

)
= 0 .

Applying the standard calculus identity:

div(X × Y ) = 〈Y,∇×X〉 − 〈X,∇× Y 〉

yields: 0 =
∫

div(B × δA) =
∫
〈δA,∇×B〉 −

∫
〈B,∇× (δA)〉,∫

〈δA,∇×B − λB〉 = 0, for all δA .

thus any smooth critical point B satisfies

∇×B = λB .
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Conclusion: λ becomes the eigenvalue µ and B is the curl eigenfield and
defines a contact structure on the whole domain whenever B is
nonvanishing everywhere. In particular B minimizes E2(B) whenever
µ = µ1 is the first eigenvalue of the curl operator ∇×.
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Contact structures in fluid dynamics

Important physics question
Are the curl eigenfields stable critical points ? Physicists suggest that the
only stable critical point is the principal curl eigenfield.

Theorem [Etnyre & Ghrist]

The curl eigenfield defined by an overtwisted contact structure is linearly
unstable (i.e. an unstable critical point of the linearized Euler equations).
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Principal curl eigenfields (ABC-fields)

ABC-fields on T 3 ∼= S1 × S1 × S1,

ẋ = A sin(z) + C cos(x),
ẏ = B sin(y) +A cos(z),
ż = C sin(x) +B cos(y).

(author: Ghrist)
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Principal curl eigenfields (Hopf fields)

Hopf fields on S3,

ẋ = −y; ż = −w
ẏ = x; ẇ = z.

(author: Ghrist)
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Contact structures in fluid dynamics

Fact: Both the ABC-fields and the Hopf fields are tight as contact
structures.

Question
Are the curl eigenfields B defined by the tight contact structures always
energy minimizing?

Conjecture [Etnyre & Ghrist]

The µ1-curl-eigenfields always define tight contact structures.
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. . .

. . . but the truth is that this motivation came after some calculations . . .
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How to get nonvanishing curl-eigenfields?

. . . or even just curl-eigenfields?

∗ dα = µα or ∇×B = µB,

(for α = 〈B, · 〉).

δα = 0, i.e. α is ”divergence free”.

∆1|H = dδ + δd = (∗d)2 on H = {β ∈ Ω1(M); δ β = 0}

∆1α = δ dα = ∗ d ∗ dα = µ2 α,

For the converse define:

β± = µα± ∗ dα,

where α a co-closed eigenform of ∆1.

∗ dβ± = µ ∗ dα±∆1α = µ ∗ dα± µ2α = ±µβ±.
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. . . it is never bad to calculate some simple examples.

Starting from the simplest eigenform: α = f dt, on S1 × Σ where
∆0f = µ2f , where f is an eigenfunction on the surface we get δα = 0 and
an eigenfield of the curl:

β = µ f ± ∗d(f dt) = µf dt± (fx dy − fy dx) .

β defines a contact structure whenever β 6= 0 or equivalently

{f = 0} ∩ {∇f = 0} = Ø
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Curl eigenfields on P = (S1 × Σ, 1⊕ gΣ)

On S1 × Σ for any α ∈ Ω1(P ):

α = f(t, x) dt+ β(t, x), (t, x) ∈ S1 × Σ

the Hodge Laplacian on P is given as

∆1
Pα = (−L2

∂tf + ∆0
Σf)dt+ (−L2

∂t β + ∆1
Σ β).

∆1
P respects the decomposition of H = {α ∈ Ω1(P ); δ α = 0}

H = H1 ⊕H⊥1 , H1 = {α : α = f dt, δα = 0}.

() 13 November 2009 26 / 49



Curl eigenfields on P = (S1 × Σ, 1⊕ gΣ)

Eigenforms:

H1 : α = f dt ∆0
Σf = λf, f ∈ C∞(Σ)

H⊥1 :
(
a sin

(2πnt
l

)
+ b cos

(2πnt
l

))
β, ∆1

Σβ = νβ, β ∈ Ω1(Σ)

where l = length(S1) in S1 × Σ.

Eigenvalues of ∆1
P : {λj , γk}; γk = νm + (2πn

l )2:

λj : eigenvalues of ∆0
Σ,

νm : eigenvalues of ∆1
Σ,(2πn

l

)2 : eigenvalues of − L2
∂t .

with the Hodge star L2-isometry one shows: λj = νj
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Curl eigenfields on P = (S1 × Σ, 1⊕ gΣ)

The first eigenvalue µ1 of the curl operator ∗ d on P satisfies,

µ2
1 = min

{
λ1,
(2π
l

)2
}
.

For small l: µ1-curl eigenfield α is S1-invariant:

α = f(x) dt+ β(x) f ∈ C∞(Σ), β ∈ Ω1(Σ).

where: β = ∗Σ d f , ∆0
Σf = µ2

1 f , µ2
1 = λ1.
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Curl eigenfields on P = (S1 × Σ, 1⊕ gΣ)

α(p) = 0 iff f(p) = 0 and ∇f(p) = 0, i.e. Γ = f−1(0) is singular.

if Γ = f−1(0) is nonsingular then ξ = kerα defines a contact
structure on P .

Observation: The vertical vector field ∂
∂t is a contact vector field !
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How to detect tight/overtwisted?

[Giroux’s criteria for S1 × Σ]: The contact vector field ∂
∂t define

Γ = Γ ∂
∂t
∩ Σ = f−1(0). Then:

(i) if Σ 6= S2, then ξ has a tight tubular neighborhood iff. none of the
components in Σ/Γ bounds a disc.

(ii) if Σ = S2, then ξ has a tight tubular neighborhood iff. Γ is connected.
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Observation: The vertical vector field ∂
∂t is a contact vector field, and the

dividing set Γ is the same as the nodal set i.e. the zero set of f !

(downloaded from: http://www.physics.utoronto.ca/∼nonlin/chladni.html)

Therefore, if you construct an eigenfunction f with a contractible nodal
curve the curl eigenfield, constructed above, will be overtwisted and tight
it the nodal set does not have such a curve.
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Questions. . .

Open problem #45, stated by Schoen and Yau in Lectures on Differential
Geometry:

A. Melas proved that the nodal line of any second eigenfunction
cannot enclose a compact subregion of a bounded convex domain in
R2. This is an open problem for general domains in R2 known as the
Payne’s conjecture (1967).

Is there a similar conclusion for higher dimensional Euclidean space?

To what extend do these conclusions hold for compact manifolds with
boundary?

What is the topology of nodal sets of higher eigenvalues? For
example, can one find an infinite sequence of eigenfunctions, which
domains are disjoint union of cells?
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Overtwisted principal curl eigenfields (a counterexample
to the conjecture). . .

Theorem

Overtwisted principal curl-eigenfields exist on products (S1 × Σ, 1⊕ gΣ)
for a carefully chosen Riemannian metric on gΣ.

Ideas behind the proof:
Recall that for small l: µ1-curl eigenfield α is S1-invariant:

α = f(x) dt+ β(x) f ∈ C∞(Σ), β ∈ Ω1(Σ).

and the dividing set is Γ = f−1(0). Thus is suffices to ”produce” an
eigenfunction which has a contractible circle in its nodal set.
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The idea behind the proof. . .

M2(ε)ε

Ξ(M1)

Ξ(Mε)

M1(ε)

x0

Dx0(ε)
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Contact structures in fluid dynamics

Theorem (Ghrist & )

The E-curl eigenfield η = 〈X, · 〉 by the vertical unit Killing vector field X
defined on a principal S1-bundle: π : (P, gP ) 7→ (Σ, gΣ) with constant
length fibers is a tight energy minimizer if

E2 < min
(ν1

3
,
4π2

l2
)

where ν1 is the first nonzero eigenvalue of the scalar Laplacian on Σ, and l
the length of the fiber.
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Yet another interesting question . . .

Problem
Provide a geometric characterization of tight (overtwisted) contact
structures. Namely, indicate sufficient conditions (such as injectivity
radius, curvature, eigenvalues,. . . ) for an adapted Riemannian metric g
to the contact form α which imply that ξ = kerα is tight (overtwisted).
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Geometric characterization of ΓX

(M, g, α) a Riemannian 3-manifold, α a contact form, g is adapted to
α, i.e. ∗ dα = µα,

X a global nonsingular vector field on M such that LXα = 0,
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Geometric characterization of ΓX

Theorem ( )

Then the contact hamiltonian f = α(X) ∈ C∞(M) satisfies the
following sub-elliptic equation;

∆Ef − 〈∇ lnh,∇f〉+ µ(E − µ)f = 0

where E = (∗d η1)(e1), η1 = g(e1, · ), h = 1/(µ‖X‖), and ∆E is the
sub-Laplacian on E = ker η1, e1 = X/‖X‖.
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Geometric tightness theorem.

Theorem ( )

X is a unit Killing field ‖X‖ = 1, LXg = 0, such that LXα = 0,

X has circular orbits and lmin is a lower bound for length of the orbits.

(i) E = ∗ dη(X) = const, µ = const, E ≤ µ, where η = 〈X, · 〉;
(ii) the sectional curvature κE of planes E = ker η, satisfies:

κE ≤ −3
4 E

2;

(iii) for a constant CM which depends only on M we have

4πlmin

µ(µ− E)
> CM Vol(M).

Then α defines a universally tight contact structure on M .

Special thanks to Margaret Symington here for a lot of help.
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... When you go for a “postdoc” people expect you to detach
from your advisor and your thesis, do something new and develop
your own research program.
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.. so?

Arnold and Khesin in “Topological Methods in Hydrodynamics” have proposed:

The higher helicity problem: . . . The dream is to define such hierarchy of

invariants for generic vector fields B such that, whereas all the invariants of

order ≤ k have zero value for a given field and there exists a nonzero

invariant of order k + 1, this nonzero invariant provides a lower bound for

the field energy.
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Theorem ( )

Let T = T1 × T2 × T3 be a product of three unlinked handlebodies in S3,
the following limit (asymptotic µ̄123-invariant of orbits) exists for almost
all (x, y, z) ∈ T :

m̄B(x, y, z) = lim
T→∞

1
T 3
µ̄123

(
ŌX1
T (x), ŌX2

T (y), ŌX3
T (y)

)
.

Moreover, the new helicity invariant can be defined as
H123(B; T ) =

∫
T m̄B(x, y, z)µ(x) ∧ µ(y) ∧ µ(z).
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... We mathematicians are measured in the sup norm not the L2

norm.
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... The impression of a hiring committee with amount of
publications only lasts for about 1min, because the next question
they usually ask is “what is the best result there...” .
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... The way human brain works (when doing mathematics) is
that you need to articulate your thoughts, even if something
sounds like a complete nonsense articulating is the only way for
me to really understand it...” .
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... You must give good talks. People will never remember what
this is you are doing, but they will always remember that you
have given a good talk .
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The End.
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