Double branched covers, Heegaard Floer homology, and applications

National Forum of Young Topologists Tulane University November 14, 2009

(Paul Melvin): "Remind yourself that you know more today than you did a year ago."

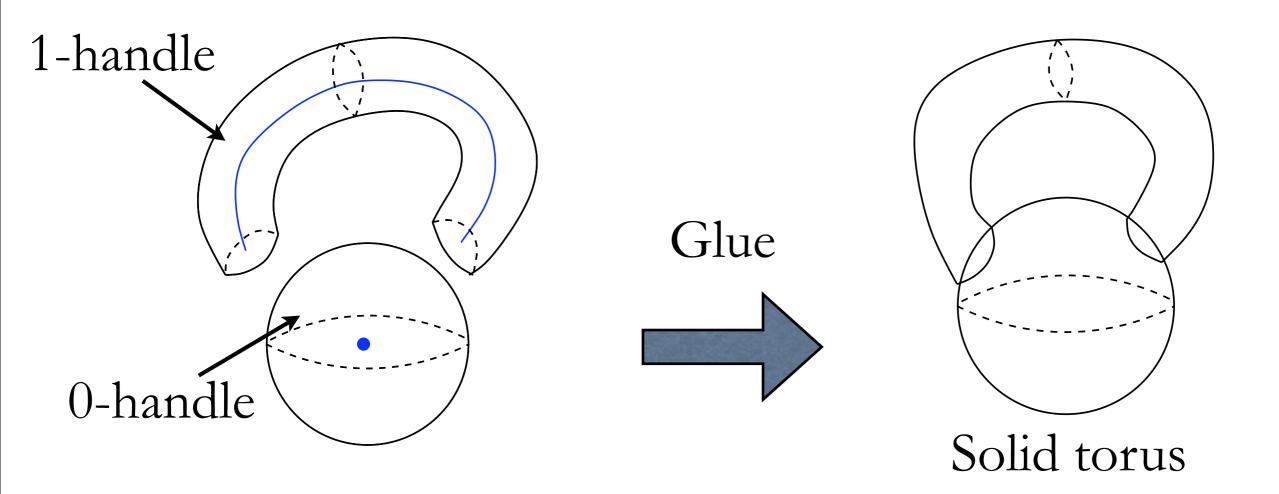
Outline

I. Background: Handlebody theory & Heegaard Floer homology

II.Branched double covers: Applications to knot concordance

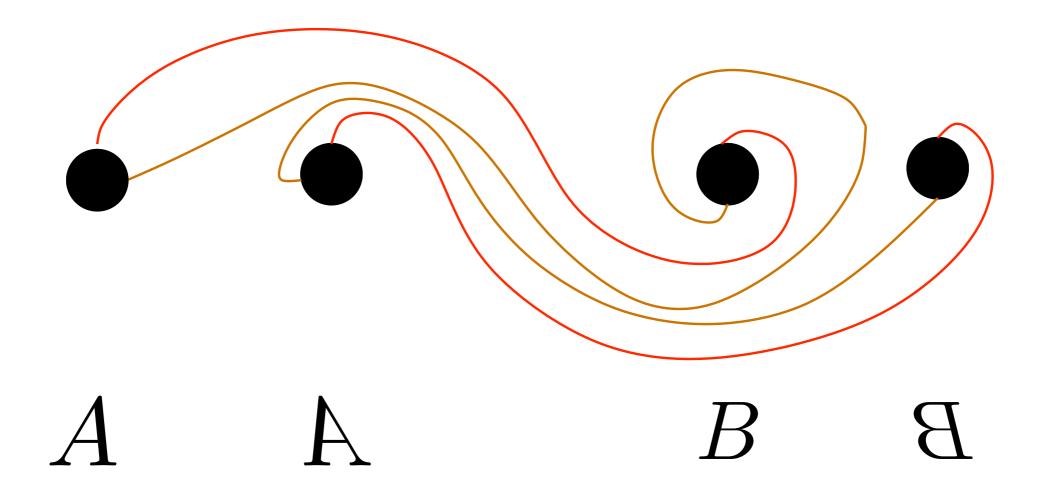
III.Branched double covers: Connections between Heegaard Floer homology & Khovanov homology

Studying 3- & 4-manifolds: Handlebody theory



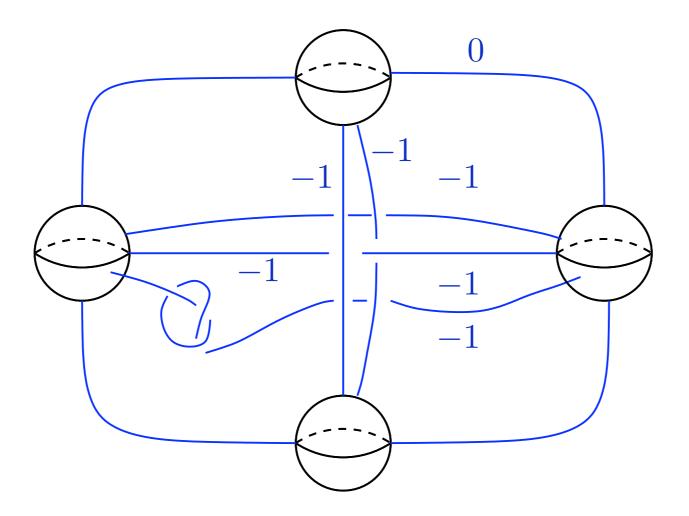
Studying 3- & 4-manifolds: Handlebody theory

3 dimensions: (Screen is S^2)

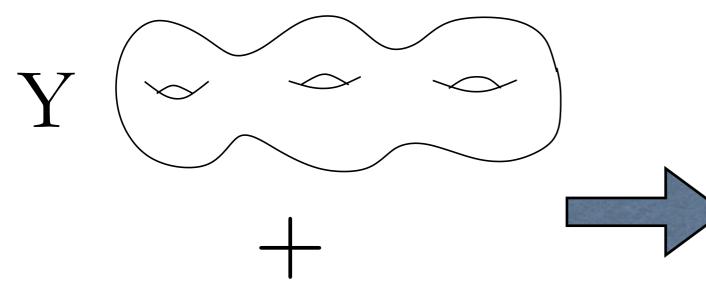


Studying 3- & 4-manifolds: Handlebody theory

4 dimensions: (Screen is a projection of S^3)



Studying 3- & 4-manifolds: Gauge theory & Floer homology

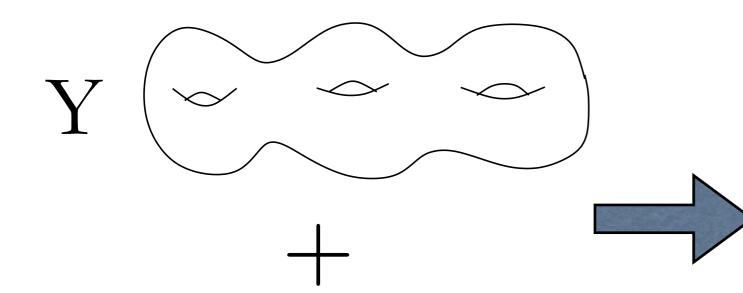


geometric structures "g" (e.g., complex structure on an imbedded surface) some other topological space constructed from data (Y,g):

(Y, g)

infinite-dimensional moduli space (e.g., space of flat connections modulo gauge on principal SU(2) bundle on Y)

Studying 3- & 4-manifolds: Gauge theory & Floer homology



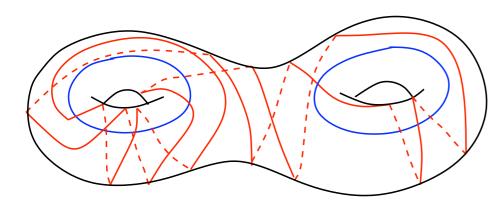
geometric structures "g" (e.g., complex structure on an imbedded surface)

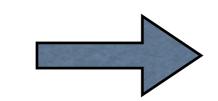
If lucky...

 $H_*(\mathcal{M}(Y,g))$

an invariant of diffeomorphism class of Y (independent of choice of extra geometric structures)

Handlebodies + Gauge theory = Heegaard-Floer homology Ozsváth-Szabó



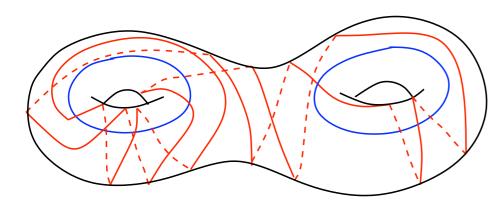


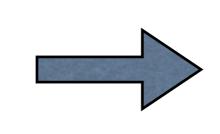
 (\mathcal{C},∂)

abstract chain complex

(+ extra geometric structure)

Handlebodies + Gauge theory = Heegaard-Floer homology Ozsváth-Szabó





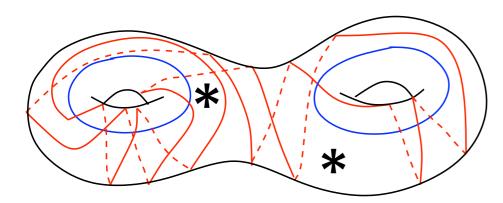
 $H_*(\mathcal{C},\partial)$

is an invariant of Y

(+ extra geometric structure)

Handlebodies + Gauge theory = Heegaard-Floer homology Ozsváth-Szabó, Rasmussen

Knot in Y

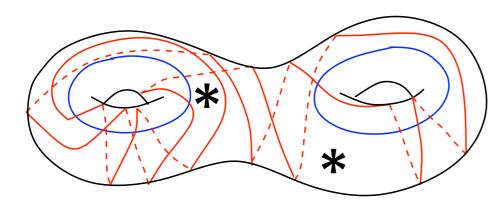


(+ extra geometric structure)

 (\mathcal{C},∂)

abstract chain complex (+ extra algebraic structure)

Handlebodies + Gauge theory = Heegaard-Floer homology Ozsváth-Szabó, Rasmussen



(+ extra geometric structure)

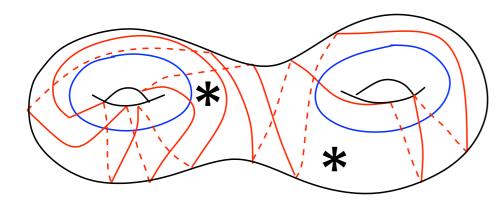
 $H_*(\mathcal{C},\partial)$ (+ extra algebraic structure)

is an invariant of K

Handlebodies + Gauge theory = Heegaard-Floer homology Ozsváth-Szabó, Rasmussen

Knot in Y

 $H_*(\mathcal{C},\partial)$



(+ extra geometric structure)

(Ozsváth-Szabó) • Detects knot genus (Ghiggini, Ni) • Detects knot

Detects knot fiberedness

Heegaard-Floer homology

Question (Kirby, Melvin, 2003): Does the Heegaard Floer chain complex have a combinatorial description?

Hard problem...

Trying to prove that there was a combinatorial description for the Heegaard Floer chain complex for *any* Heegaard diagram.

Heegaard-Floer homology

Question (Kirby, Melvin, 2003): Does the Heegaard Floer chain complex have a combinatorial description?

Answer (Sarkar, 2006): Yes, for special types of Heegaard diagrams.

Lessons

"You gotta know know when to fold 'em." -Kenny Rogers

Outline

I. Background: Handlebody theory & Heegaard Floer homology

II.Branched double covers: Applications to knot concordance

III.Branched double covers: Connections between Heegaard Floer homology & Khovanov homology

(Ozsváth-Szabó, 2003)

There is an algebraic relationship between certain invariants (of links) defined by Khovanov and Heegaard-Floer invariants (of their double-branched covers). gauge theory, symplectic geometry

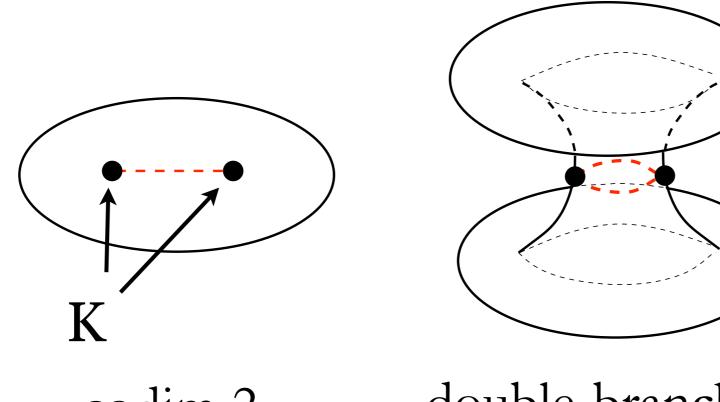
theory

Connection between two seemingly unrelated areas.

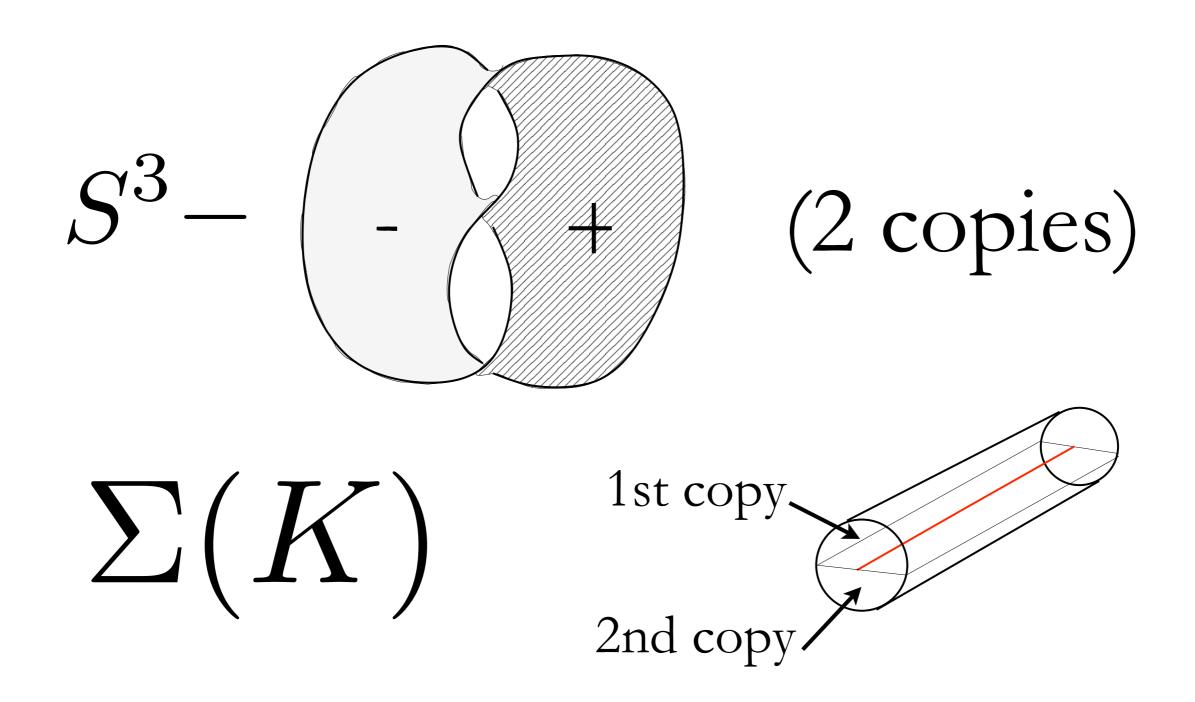
(Ozsváth-Szabó, 2003)

There is an algebraic relationship between certain invariants (of links) defined by Khovanov and Heegaard-Floer invariants (of their double-branched covers).

Connection between two seemingly unrelated areas.

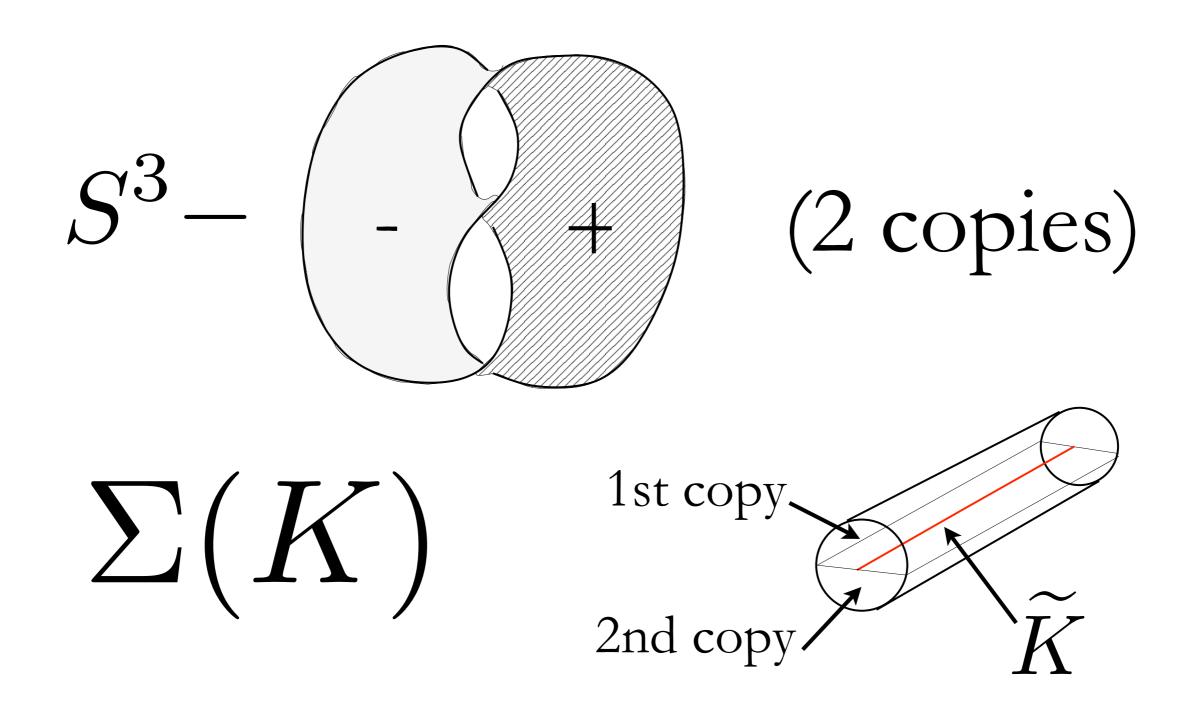


codim 2 "branch set" double-branched cover $\Sigma(K)$



Question (Ozsváth):

What is the relationship between the Heegaard-Floer invariants of a knot and the Heegaard-Floer invariants of the preimage of a knot in its double-branched cover?



Partial answer: When $K \subset S^3$ a two-bridge knot,

 $\widehat{HFK}(S^3, K) \subset \widehat{HFK}(\Sigma(K), \widetilde{K})$ $\bigcap \widetilde{HFK}(\Sigma(K), \widetilde{K}; i)$ $i \in \mathbb{Z}_n$

 $\widehat{HFK}(S^3, K) = \widehat{HFK}(\Sigma(K), \widetilde{K}; i = 0)$

Better answer: No nice general relationship

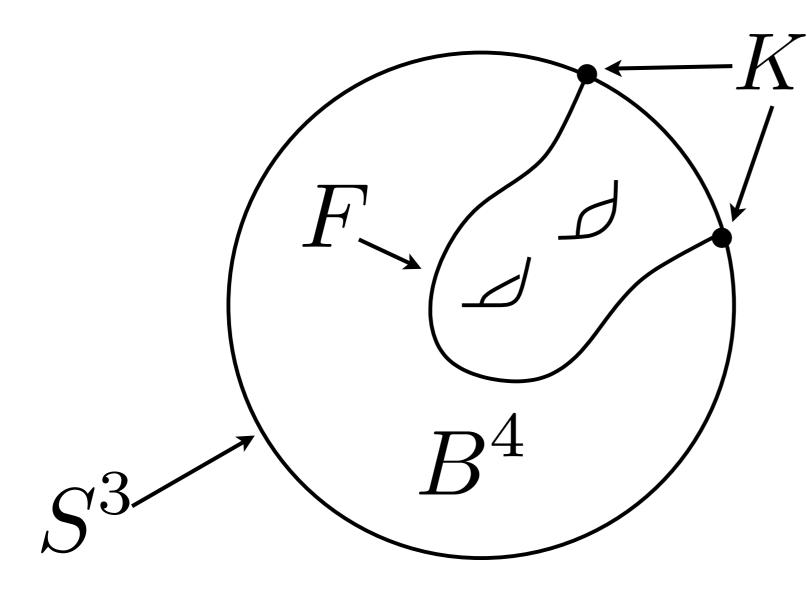
There exist pairs of knots for which

$$\widehat{HFK}(S^3, K_1) \cong \widehat{HFK}(S^3, K_2)$$

but
$$\widehat{HFK}(\Sigma(K_1), \widetilde{K}_1) \ncong \widehat{HFK}(\Sigma(K_2), \widetilde{K}_2)$$

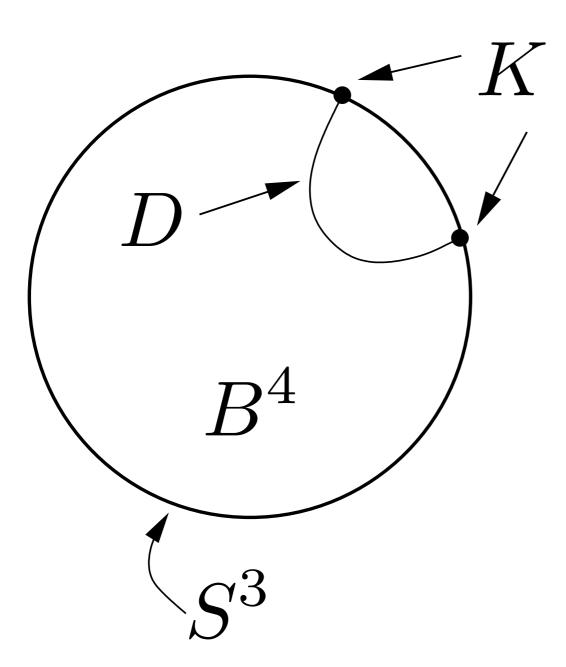
Conclusion: The Heegaard-Floer invariants of a knot and the Heegaard-Floer invariants of its preimage in its double-branched cover carry different topological information.

What good is this???



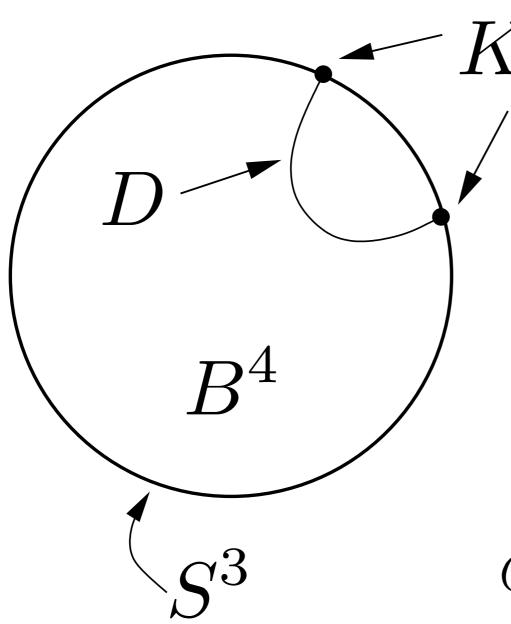
 $g_4(K) =$ minimal genus of such F

"Link cobordisms"



 $g_4(K) = 0$

K is "slice"



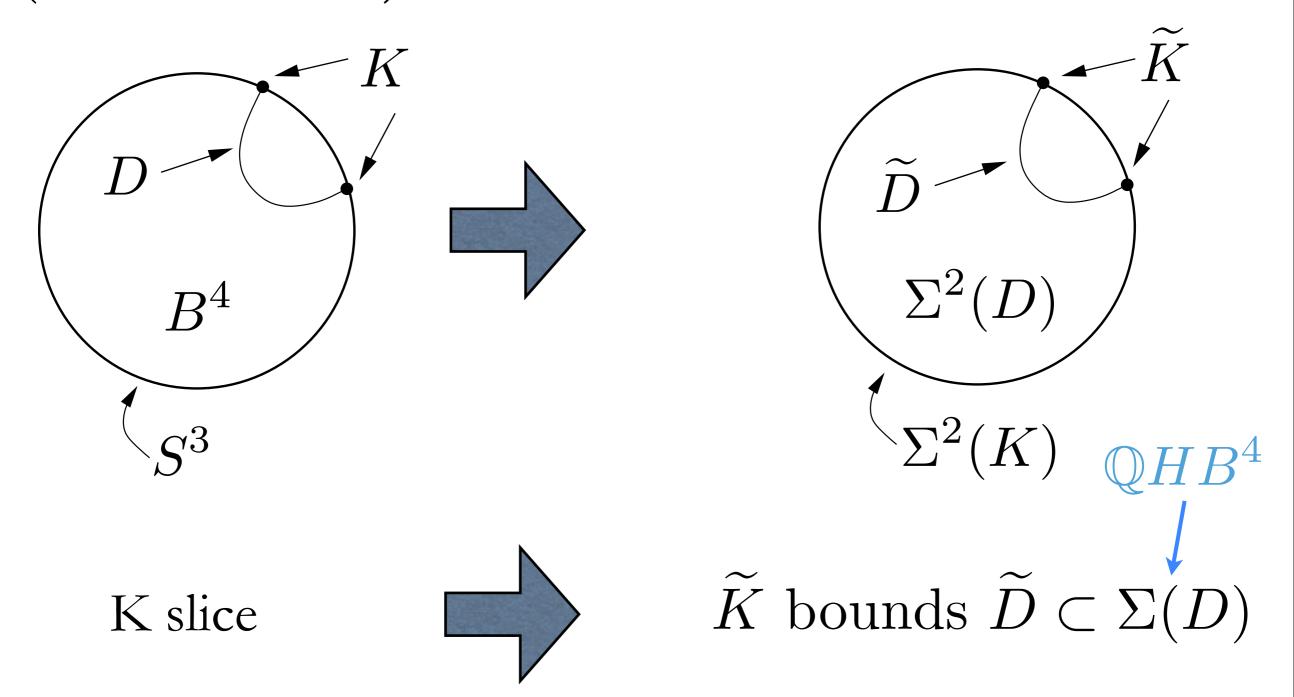
(Ozsváth-Szabó, Rasmussen):

 $\tau(K) \in \mathbb{Z}$

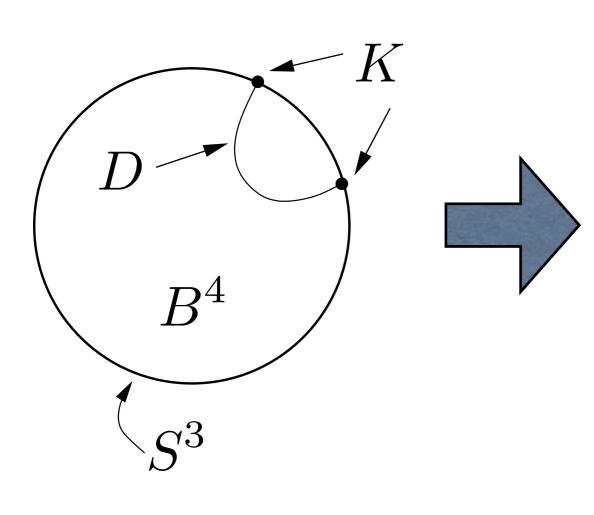
If K is slice, then $\tau(K) = 0$

Obstruction to K being slice.

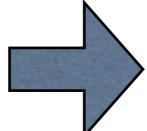
Application: Knot concordance (Casson-Gordon)

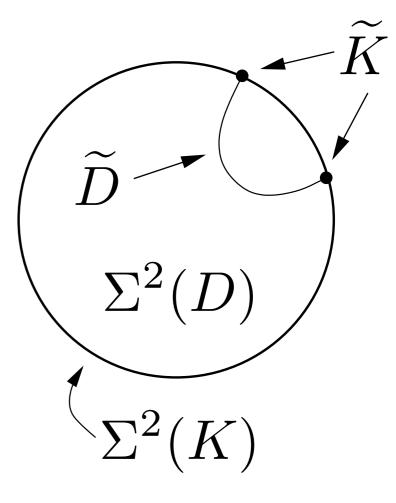


Application: Knot concordance (Ruberman-Strle)



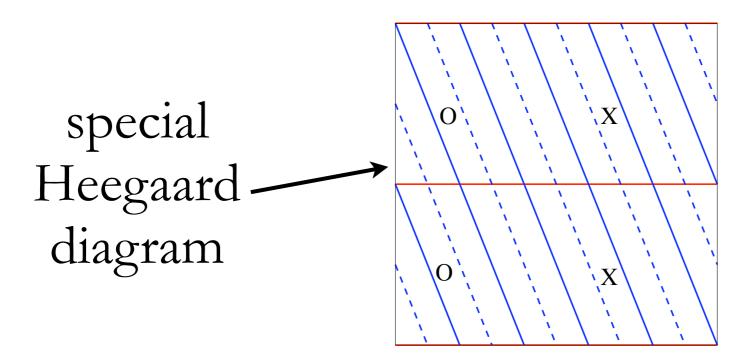
K slice





 $\tau(\widetilde{K}) = \vec{0}$ (for a certain subset)

Calculations depended on new combinatorial techniques (special Heegaard diagrams generalizing Manolescu-Ozsvath-Sarkar)



...led to new concordance information about 2-bridge knots

Lessons

- Sometimes a problem is more interesting than it seems at first.
- If you know something very well, it is probably useful to someone.
- Keep your eye out for new "technology"!

Outline

I. Background: Handlebody theory & Heegaard Floer homology

II.Branched double covers: Applications to knot concordance

III.Branched double covers: Connections between Heegaard Floer homology & Khovanov homology

Application: Connections between Khovanov and Heegaard-Floer homology

(Ozsváth-Szabó, 2003)

There is an algebraic relationship between certain invariants (of links) defined by Khovanov and Heegaard-Floer invariants (of their double branched covers).

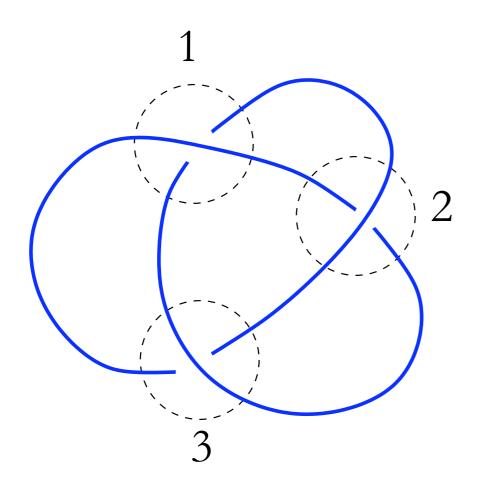
Application: Connections between Khovanov and Heegaard-Floer homology

combinatorial (Ozsváth-Szabó, 2003)

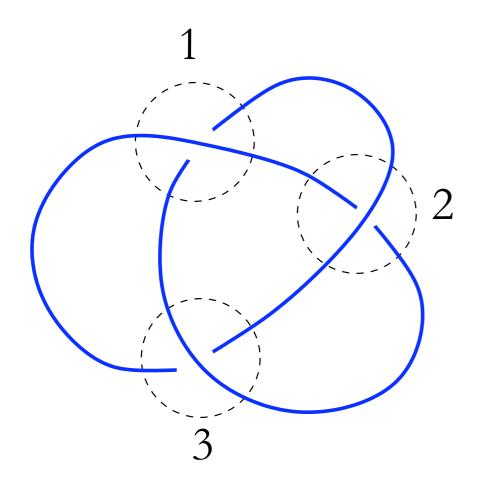
There is a *spectral sequence* connecting the (reduced) Khovanov homology of (the mirror of) a link and the Heegaard-Floer homology of the link's double branched cover.

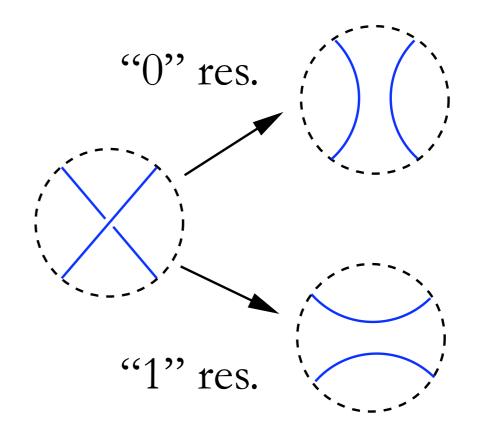
"Deforming" Khovanov homology (of a link.) yields Heegaard Floer homology (of the double branched cover).

Definition: Khovanov Homology

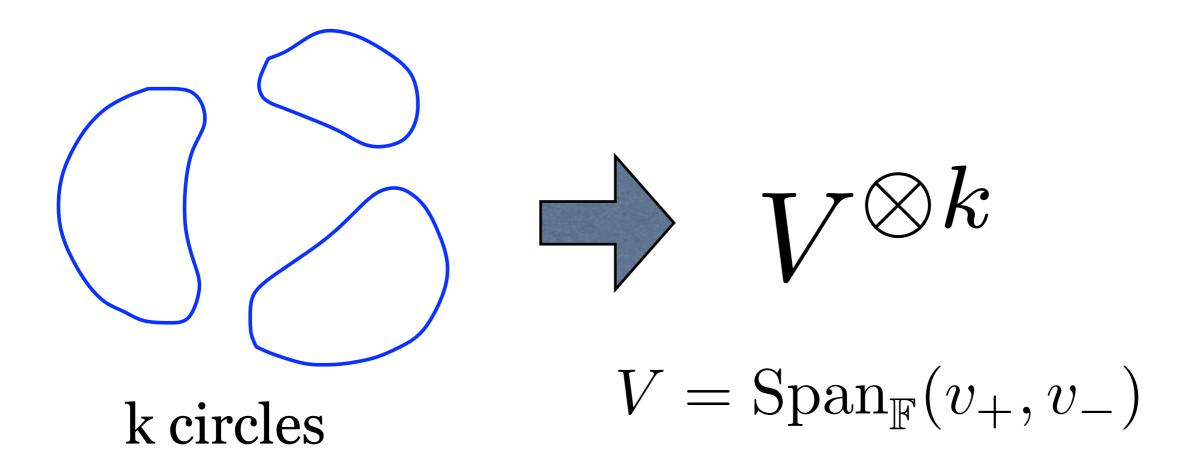


Definition: Khovanov Homology

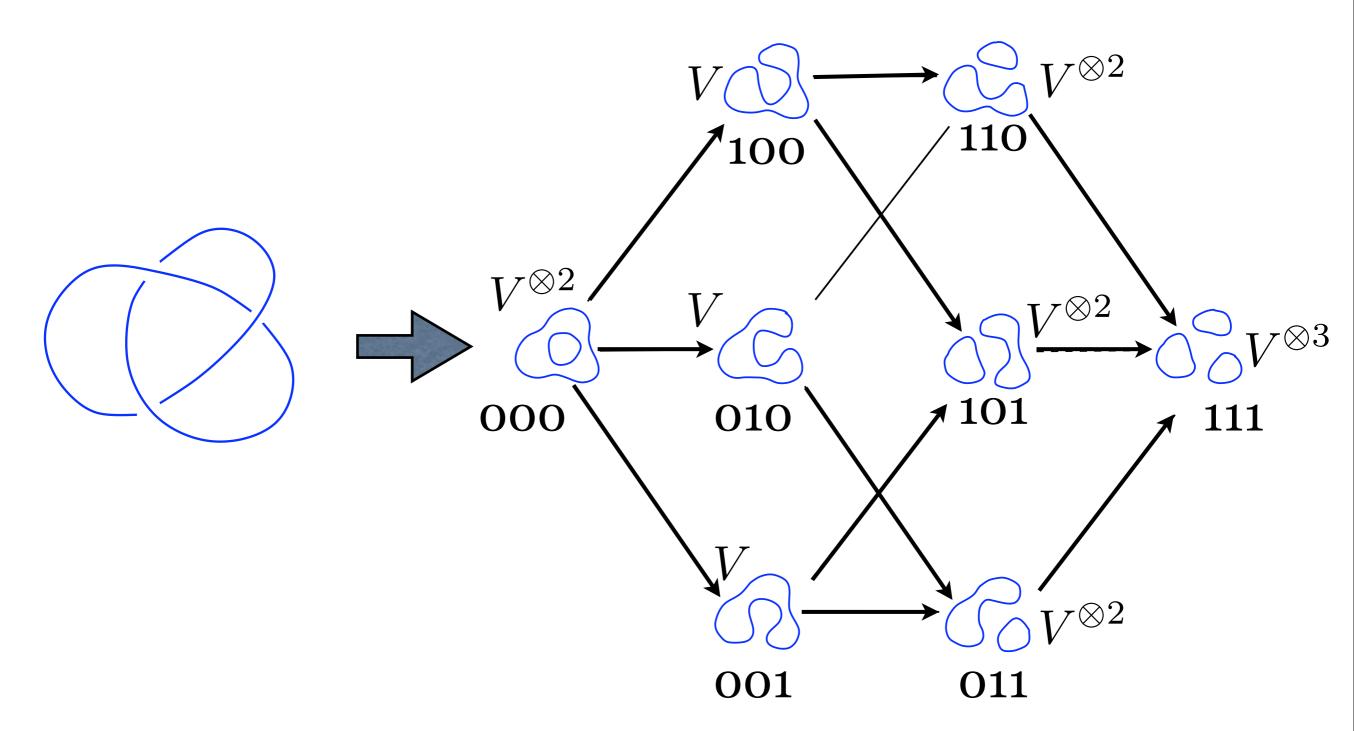


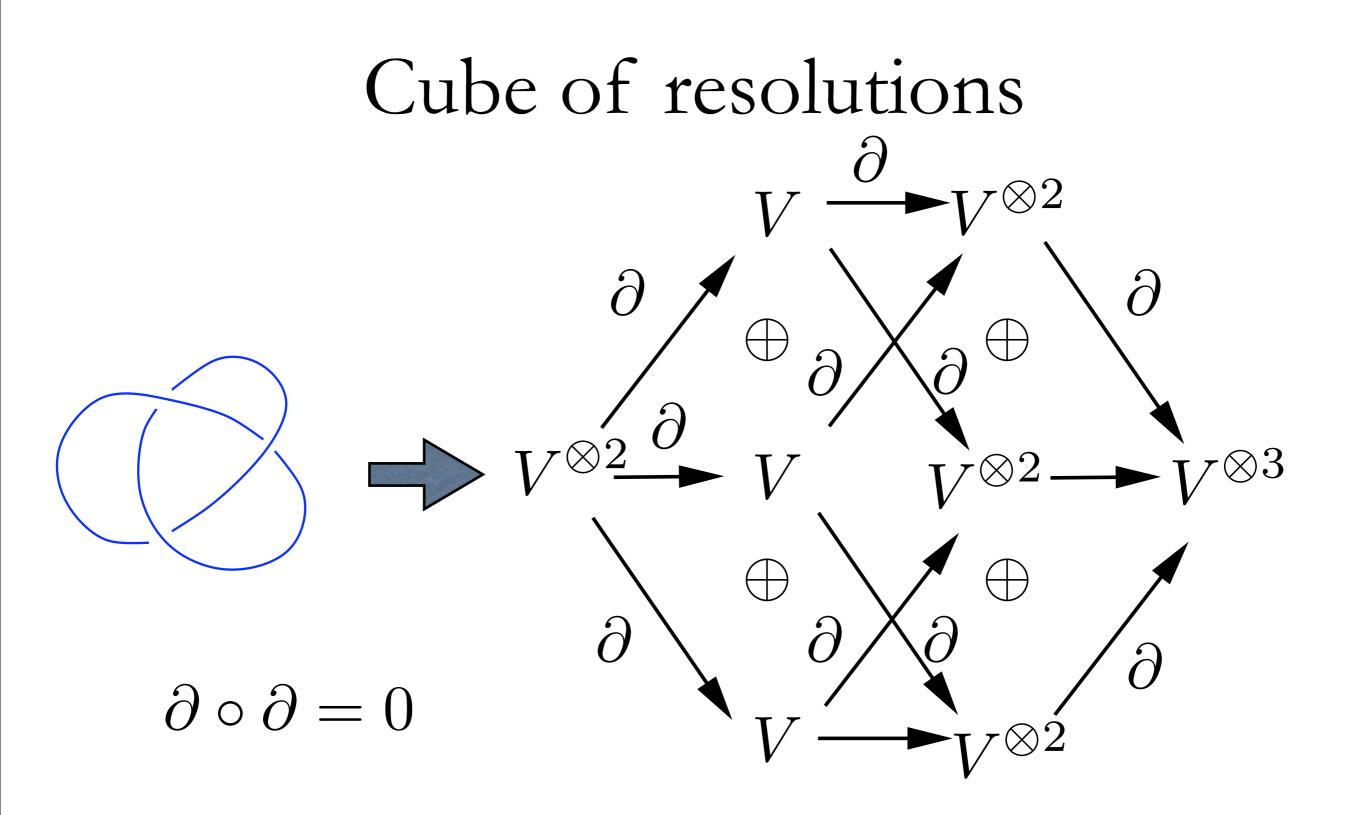


Definition: Khovanov Homology



Cube of resolutions



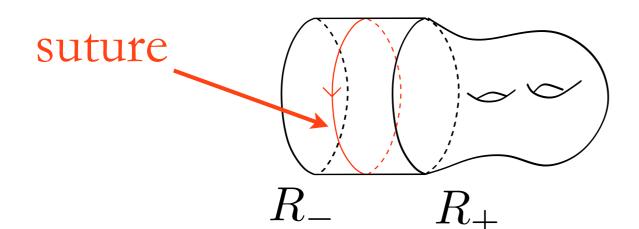


+ Stephan Wehrli

Question: Can the spectral sequence from Khovanov homology to Heegaard Floer homology be described combinatorially?

about 6 months...

(Juhasz): a version of Heegaard Floer homology for sutured manifolds



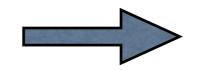
cobordisms of surfaces with boundary

Heegaard Floer homology detects knot genus and knot fiberedness

Sutured structure geometric structures

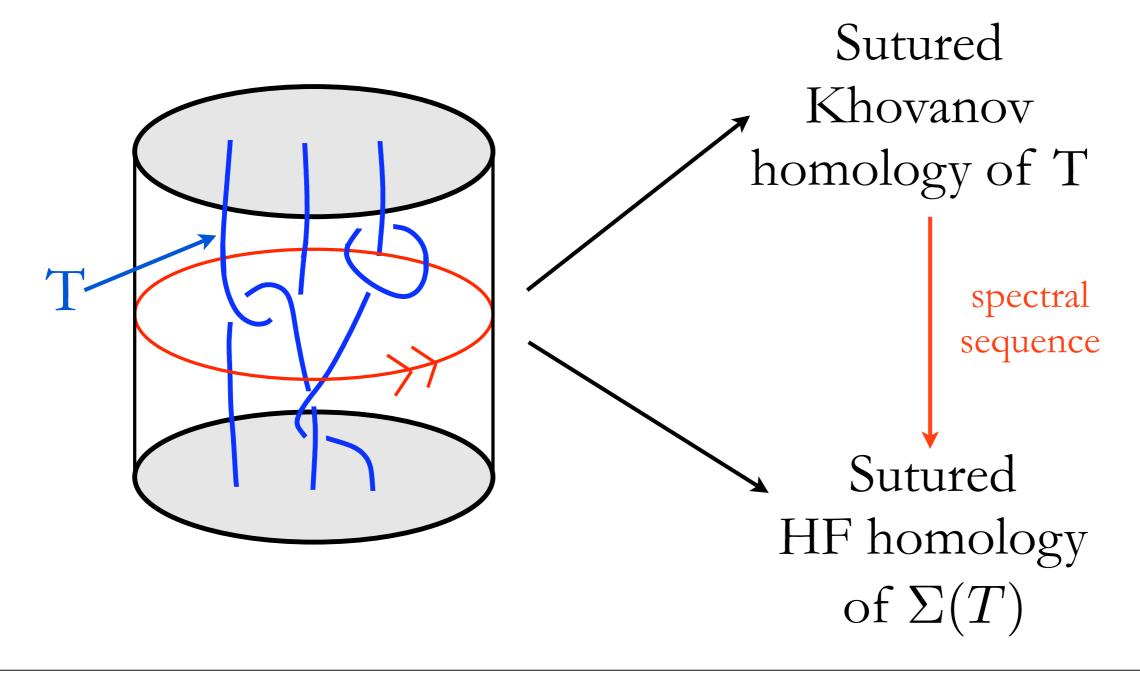
(Gabai): foliations
(Eliashberg-Thurston, contact
Giroux,
Honda-Kazez-Matic) Structures

Question: What is the relationship between Khovanov homology and sutured Floer homology?



The "right" structure for understanding Khovanov homology (and its relationship to Heegaard Floer homology).

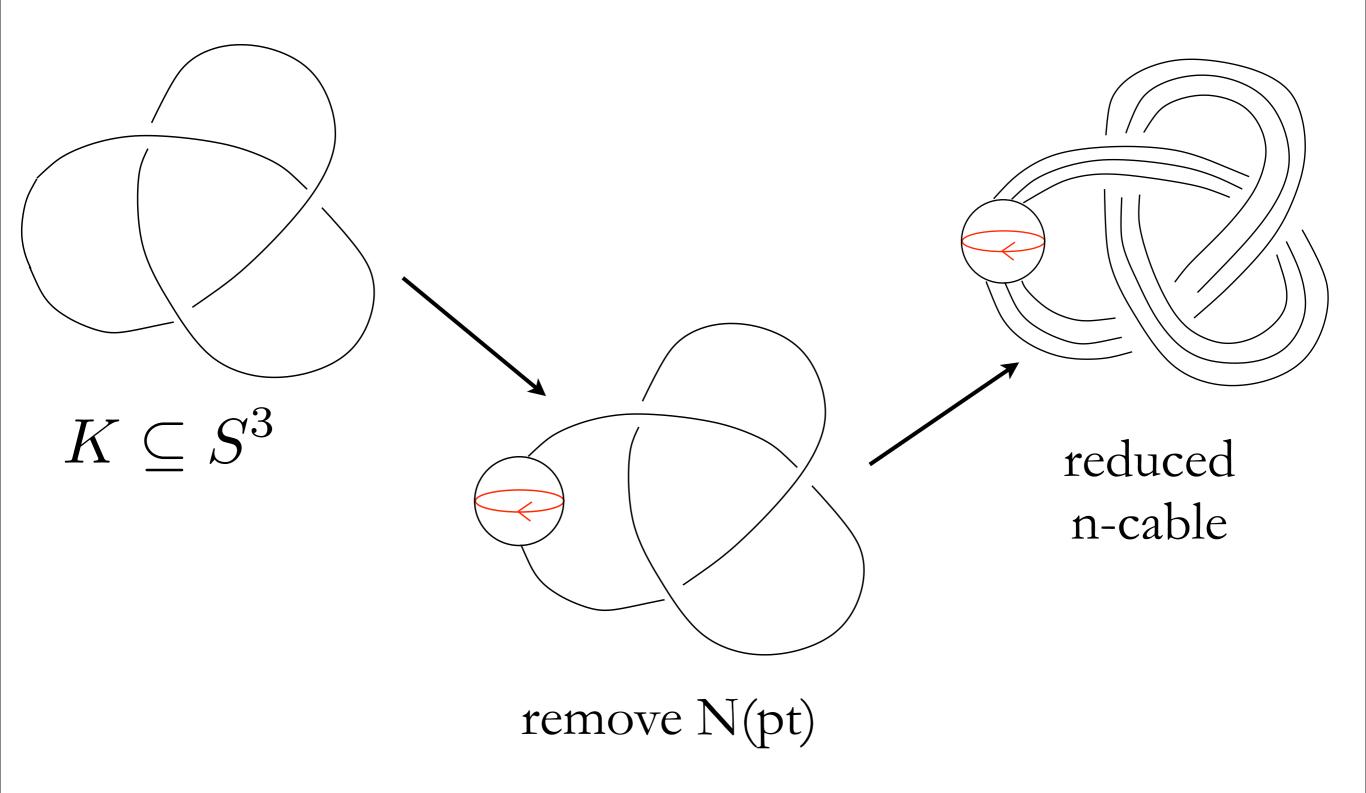
Sutured Khovanov homology and Sutured Heegaard-Floer homology



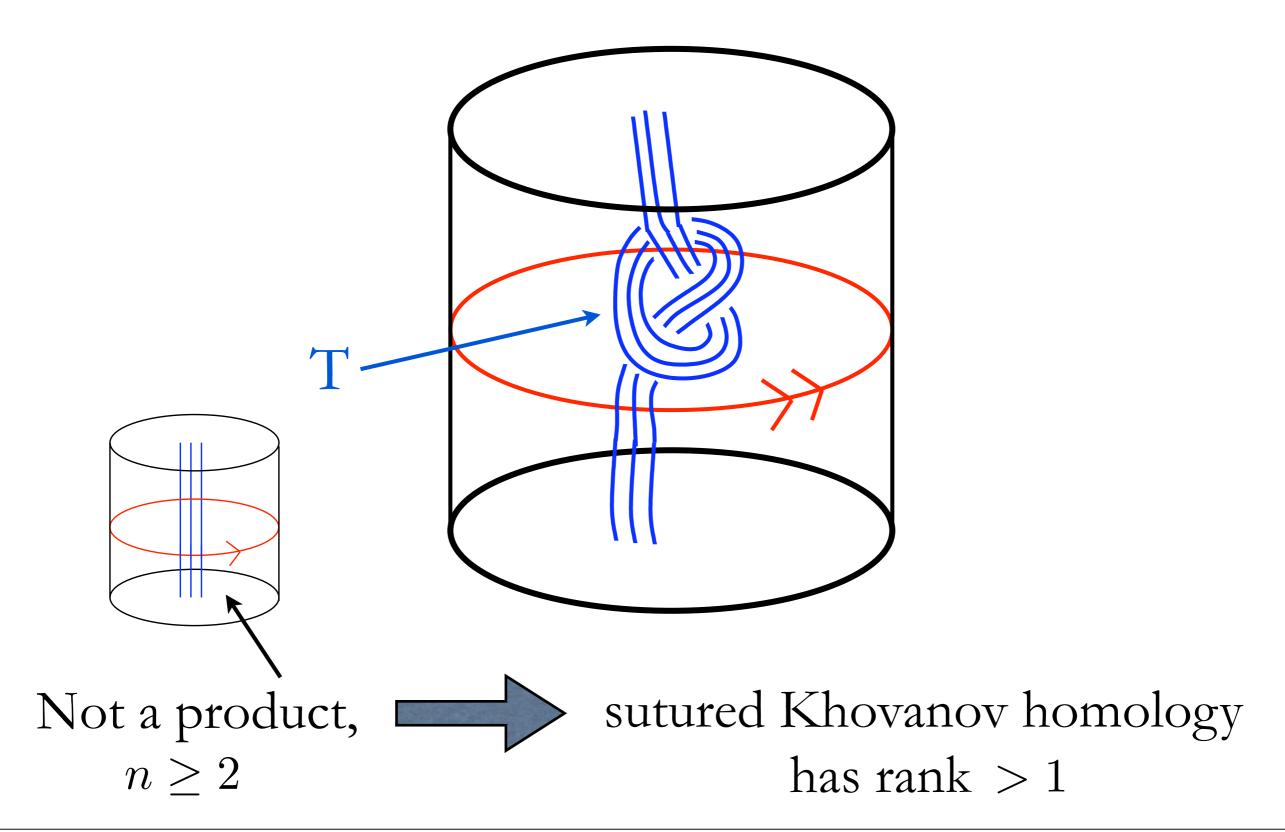
Sutured Khovanov homology and Sutured Heegaard-Floer homology

Application: Sutured Khovanov homology detects the unknot.

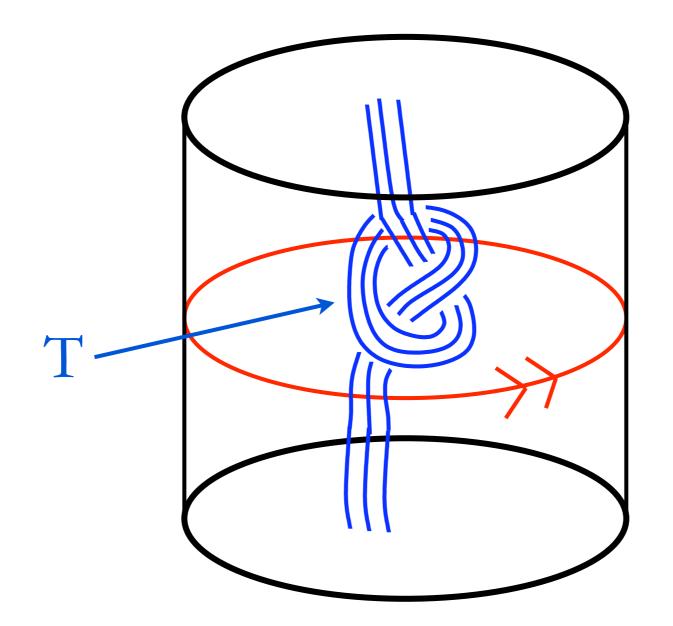
Detecting the unknot



Detecting the unknot



Detecting the unknot



uses connection to sutured HF homology

Sutured Khovanov homology and Sutured Heegaard-Floer homology

- Khovanov homology for tangles in other (sutured) manifolds?
- Khovanov homology for (sutured) 3manifolds?
- Dependence of Khovanov homology on geometric sructures (like foliations, contact structures)?
- Relationship to 4-dimensional geometric structures (like broken fibrations)?

Lessons

• Talking to people (especially those whose knowledge is disjoint from yours) is always useful.

• Sometimes you won't solve the problem you started working on. And that's OK. You will find another problem.

A few more words...

(Rob Kirby): "Make sure you're enjoying the math you're doing. Otherwise, why are you doing it?"

A few more words...

• Keep learning

• Enjoy the pain!