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(Paul Melvin):  “Remind yourself
that you know more today than

you did a year ago.”
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Studying 3- & 4-manifolds:
Handlebody theory

Glue

Solid torus

1-handle

0-handle
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Studying 3- & 4-manifolds:
Handlebody theory

3 dimensions: (Screen is     )S2
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Studying 3- & 4-manifolds:
Handlebody theory

4 dimensions: (Screen is a projection of      ) S3
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Studying 3- & 4-manifolds:
Gauge theory & Floer homology

+
Y

infinite-dimensional
moduli space

(e.g., space of  flat connections
modulo gauge on principal SU(2)

bundle on Y)

some other topological space
constructed from data (Y,g):

M(Y, g)

geometric structures “g”
(e.g., complex structure on 

an imbedded surface)
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Studying 3- & 4-manifolds:
Gauge theory & Floer homology

+
Y

an invariant of  
diffeomorphism class of  Y
(independent of  choice of 
extra geometric structures)

If  lucky...

H∗(M(Y, g))

geometric structures “g”
(e.g., complex structure on 

an imbedded surface)
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Handlebodies + Gauge theory = 
Heegaard-Floer homology

Ozsváth-Szabó

(+ extra geometric
structure)

(C, ∂)
abstract chain

complex

3-manifold     Y
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Handlebodies + Gauge theory = 
Heegaard-Floer homology

Ozsváth-Szabó

3-manifold     Y

(+ extra geometric
structure)

H∗(C, ∂)
is an invariant of  Y
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Handlebodies + Gauge theory = 
Heegaard-Floer homology

Ozsváth-Szabó

(+ extra geometric
structure)

(C, ∂)
abstract chain

complex

Knot in Y

*
*

, Rasmussen

(+ extra algebraic
structure)
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Handlebodies + Gauge theory = 
Heegaard-Floer homology

Ozsváth-Szabó

(+ extra geometric
structure)

Knot in Y

*
*

, Rasmussen

(+ extra algebraic
structure)

H∗(C, ∂)

is an invariant of  K
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Handlebodies + Gauge theory = 
Heegaard-Floer homology

Ozsváth-Szabó

(+ extra geometric
structure)

Knot in Y

*
*

, Rasmussen

H∗(C, ∂)

•Detects knot genus
(Ozsváth-Szabó)

• Detects knot 
fiberedness

(Ghiggini, Ni)
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Heegaard-Floer homology

Trying to prove that there was a combinatorial description
for the Heegaard Floer chain complex for any Heegaard 

diagram.

Question (Kirby, Melvin, 2003): Does the Heegaard Floer 
chain complex have a combinatorial description?

Hard problem...
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Heegaard-Floer homology

Answer (Sarkar, 2006): Yes, for special types of  Heegaard 
diagrams.

Question (Kirby, Melvin, 2003): Does the Heegaard Floer 
chain complex have a combinatorial description?
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“You gotta know know when to fold ‘em.”
-Kenny Rogers

Lessons
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I. Background: Handlebody theory & 
Heegaard Floer homology

II.Branched double covers: Applications 
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III.Branched double covers: 
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homology & Khovanov homology
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There is an algebraic relationship between
certain invariants (of  links) defined by Khovanov and 

Heegaard-Floer invariants (of  their double-branched covers). 

(Ozsváth-Szabó, 2003)

geometric
representation

theory

gauge theory,
symplectic geometry

Double-branched covers

Connection between two seemingly unrelated areas.
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There is an algebraic relationship between
certain invariants (of  links) defined by Khovanov and 

Heegaard-Floer invariants (of  their double-branched covers). 

(Ozsváth-Szabó, 2003)

Connection between two seemingly unrelated areas.

Double-branched covers

topological
operation
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Double-branched covers

K
codim 2 double-branched

cover

Σ(K)
“branch set”
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Double-branched covers

(2 copies)S3− +-

1st copy

2nd copy
Σ(K)
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Double-branched covers

What is the relationship between the 
Heegaard-Floer invariants of  a knot and the 
Heegaard-Floer invariants of  the preimage 

of  a knot in its double-branched cover?

Question :(Ozsváth)
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Double-branched covers

(2 copies)S3− +-

1st copy

2nd copy
Σ(K)

K̃
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Double-branched covers
Partial answer:

When              a two-bridge knot,K ⊂ S3

=

⊕

i∈Zn

ĤFK(Σ(K), K̃; i)

ĤFK(S3, K) = ĤFK(Σ(K), K̃; i = 0)

ĤFK(S3, K) ⊂ ĤFK(Σ(K), K̃)
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Double-branched covers

Better answer: No nice general relationship

There exist pairs of  knots for which 

ĤFK(S3, K1) ∼= ĤFK(S3, K2)
but

ĤFK(Σ(K1), K̃1) !∼= ĤFK(Σ(K2), K̃2)
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Double-branched covers

Conclusion:  The Heegaard-Floer invariants 
of  a knot and the Heegaard-Floer invariants 
of  its preimage in its double-branched cover 

carry different topological information. 

What good is this???
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Application: Knot concordance

S3

K

B4

F minimal
genus of
such F

g4(K) =

“Link cobordisms”

Tuesday, November 17, 2009



Application: Knot concordance

S3

K

B4

D
g4(K) = 0

K is “slice”
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Application: Knot concordance

S3

K

B4

D τ(K) ∈ Z

τ(K) = 0

(Ozsváth-Szabó,
Rasmussen)

If  K is slice, then

:

Obstruction to K being slice.
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S3

K

B4

D

Σ2(K)

Σ2(D)

K̃

D̃

K slice

Application: Knot concordance
(Casson-Gordon)

K̃ bounds D̃ ⊂ Σ(D)

QHB4
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S3

K

B4

D

Σ2(K)

Σ2(D)

K̃

D̃

K slice

Application: Knot concordance
(Ruberman-Strle)

τ(K̃) = "0
(for a certain

subset)
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Application: Knot concordance
Calculations depended on new combinatorial

techniques (special Heegaard diagrams 
generalizing Manolescu-Ozsvath-Sarkar)

...led to new concordance information
about 2-bridge knots

X

O X

O

special
Heegaard
diagram
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•Sometimes a problem is more interesting than 
it seems at first.

• If  you know something very well, it is 
probably useful to someone.

• Keep your eye out for new “technology”!

Lessons
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Heegaard Floer homology

II.Branched double covers: Applications 
to knot concordance
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Application: Connections
between Khovanov and Heegaard-

Floer homology

There is an algebraic relationship between
certain invariants (of  links) defined by Khovanov and 
Heegaard-Floer invariants (of  their double branched 

covers). 

(Ozsváth-Szabó, 2003)
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Application: Connections
between Khovanov and Heegaard-

Floer homology

There is a spectral sequence connecting the (reduced) 
Khovanov homology of  (the mirror of) a link and the 

Heegaard-Floer homology of  the link’s double branched 
cover. 

(Ozsváth-Szabó, 2003)

“Deforming” Khovanov homology (of  a link) yields Heegaard Floer 
homology (of  the double branched cover).

combinatorial
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Definition: Khovanov Homology
1

3

2
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Definition: Khovanov Homology
1

3

2

“0” res.

“1” res.
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k circles

V ⊗k

V = SpanF(v+, v−)

Definition: Khovanov Homology
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Application: Connections
between Khovanov and Heegaard-

Floer homology

Question: Can the spectral sequence from Khovanov 
homology to Heegaard Floer homology be described 

combinatorially?

+  Stephan Wehrli

about 6 months...
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Application: Connections
between Khovanov and Heegaard-

Floer homology

(Juhasz): a version of  Heegaard Floer 
homology for sutured manifolds

Heegaard Floer homology
detects knot genus and knot fiberedness

cobordisms of
surfaces with boundary

R− R+

suture
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Application: Connections
between Khovanov and Heegaard-

Floer homology

(Gabai): foliations

contact
structures

Sutured structure geometric 
structures

(Eliashberg-Thurston,
Giroux,

Honda-Kazez-Matic)
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Application: Connections
between Khovanov and Heegaard-

Floer homology

Question: What is the relationship between
Khovanov homology and sutured

Floer homology?

The “right” structure for understanding
Khovanov homology (and its relationship to Heegaard Floer 

homology).
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Sutured Khovanov homology
and Sutured Heegaard-Floer 

homology

T

Sutured
Khovanov

homology of  T

Sutured
HF homology

of Σ(T )

spectral
sequence
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Sutured Khovanov homology
and Sutured Heegaard-Floer 

homology

Application:
Sutured Khovanov homology

detects the unknot.
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Detecting the unknot

K ⊆ S3

remove N(pt)

reduced
n-cable
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Not a product, sutured Khovanov homology 
has rank > 1n ≥ 2

Detecting the unknot

T
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uses connection to 
sutured HF homology

Detecting the unknot

T
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Sutured Khovanov homology
and Sutured Heegaard-Floer 

homology
• Khovanov homology for tangles in other 

(sutured) manifolds?
• Khovanov homology for (sutured) 3-

manifolds?
• Dependence of  Khovanov homology on 
geometric sructures (like foliations, contact 

structures)?
• Relationship to 4-dimensional geometric 

structures (like broken fibrations)?
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Lessons

• Talking to people (especially those whose 
knowledge is disjoint from yours) is always useful.

• Sometimes you won’t solve the problem you 
started working on.  And that’s OK.  You will find 

another problem.
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A few more words...

(Rob Kirby):  “Make sure you’re 
enjoying the math you’re doing.  

Otherwise, why are you doing it?”
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• Keep learning

• Enjoy the pain!

A few more words...
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