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Abstract

In this paper, we investigate the arithmetic properties of the differ-
ence between the number of partitions of a positive integer n with even
crank and those with odd crank, denoted C(n) = ce(n) − co(n). In-
spired by Ramanujan’s classical congruences for the partition function
p(n), we establish a Ramanujan-type congruence for C(n), proving
that C(5n+ 4) ≡ 0 (mod 5). Further, we study the generating func-

tion
∑∞

n=0 a(n) q
n = (−q;q)2∞

(q;q)∞
, which arises naturally in this context,

and provide multiple combinatorial interpretations for the sequence
a(n). We then offer a complete characterization of the values a(n)
mod 2m for m = 1, 2, 3, 4, highlighting their connection to general-
ized pentagonal numbers. Using computational methods and mod-
ular forms, we also derive new identities and congruences, including
a(7n+ 2) ≡ 0 (mod 7), expanding the scope of partition congruences
in arithmetic progressions. These results build upon classical tech-
niques and recent computational advances, revealing deep combinato-
rial and modular structure within partition functions.
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1 Introduction

A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n [1]. Let p(n) denote the number of partitions of
n with the usual convention that p(0) = 1 and p(n) = 0 when n is not
a non-negative integer. In 1919, Ramanujan [18] announced three elegant
congruences satisfied by the partition function p(n). These results reveal a
remarkable arithmetic regularity, showing that for every non-negative integer
k, the partition function p(k) vanishes modulo 5, 7, and 11 when k is of the
forms 5n+ 4, 7n+ 5, and 11n+ 6, respectively, i.e.,

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

In order to explain the last two congruences combinatorially, Dyson [12]
introduced the rank of a partition. The rank of a partition is defined to be
its largest part minus the number of its parts.

In 1988, Andrews and Garvan [3] defined the crank of an integer partition
as follows. The crank of a partition is the largest part of the partition if there
are no ones as parts and otherwise is the number of parts larger than the
number of ones minus the number of ones. More precisely, for a partition
λ = [λ1, λ2, . . . , λk] let ℓ(λ) denote the largest part of λ, ω(λ) denote the
number of 1’s in λ, and µ(λ) denote the number of parts of λ larger than
ω(λ). The crank c(λ) is given by

c(λ) =

{
ℓ(λ), if ω(λ) = 0,

µ(λ)− ω(λ), if ω(λ) > 0.

Definition 1. Let n be a non-negative integer. We define:

1. ce(n) is the number of partitions of n with even crank.

2. co(n) is the number of partitions of n with odd crank.
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3. C(n) := ce(n)− co(n).

From [2], with a small corection, we have the identity:

∞∑
n=0

C(n) qn = 2q +
(q; q)∞
(−q; q)2∞

,

where the standard q-Pochhammer symbol (a; q)∞ is given by:

(a; q)∞ =
∞∏
n=0

(1− aqn).

We assume that q is a complex number with |q| < 1.
As stated in [7, Theorem 2.3.4], Ramanujan’s first congruence can be

derived from the elegant identity:

∞∑
n=0

p(5n+ 4) qn = 5 · (q
5; q5)5∞
(q; q)6∞

.

Inspired by this result, we observe the following analogous identity.

Theorem 1.1. For |q| < 1, we have

∞∑
n=0

C(5n+ 4) q5n+4 = 5q4 · (q
5; q5)2∞ (q25; q25)∞ (q50; q50)2∞

(q10; q10)4∞
.

This result was originally established by Choi et al. [8] through the use
of modular forms. Subsequently, in 2024, Tang [20] presented an indepen-
dent proof. Our approach is distinct from both the modular forms method
employed by Choi et al. and Tang’s argument.

Lemma 1.2. Let ϕ(q) :=
∏∞

n=1(1−qn) = (q; q)∞. We have the quintisection
expansions

(a) ϕ2(q2) =
ϕ2(q50) (q20; q50)2∞(q30; q50)2∞

(q10; q50)2∞(q40; q50)2∞
+ 2q6

ϕ2(q50) (q10; q50)∞(q40; q50)∞
(q20; q50)∞(q30; q50)∞

− 2q2
ϕ2(q50) (q20; q50)∞(q30; q50)∞

(q10; q50)∞(q40; q50)∞
+ q8

ϕ2(q50) (q10; q50)2∞(q40; q50)2∞
(q20; q50)2∞(q30; q50)2∞
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− q4 ϕ2(q50),

(b) ϕ3(q) =
ϕ3(q25) (q15; q25)3∞(q10; q25)3∞

(q20; q25)3∞(q5; q25)3∞
− 3q5

ϕ3(q25) (q20; q25)2∞(q5; q25)2∞
(q15; q25)2∞(q10; q25)2∞

− 3q
ϕ3(q25) (q15; q25)2∞(q10; q25)2∞

(q20; q25)2∞(q5; q25)2∞
− q6

ϕ3(q25) (q20; q25)3∞(q5; q25)3∞
(q15; q25)3∞(q10; q25)3∞

+ 5q3 ϕ3(q25).

Proof. We revive an identity due to Ramanujan (for instance, see Berndt’s
book [6, pp. 81-82]),

ϕ(q) =
ϕ(q25) (q15; q25)∞(q10; q25)∞

(q20; q25)∞(q5; q25)∞
−q ϕ(q25)−q2

ϕ(q25) (q5; q25)∞(q20; q25)∞
(q15; q25)∞(q10; q25)∞

,

from which both (a) and (b) follow after grouping terms according to the
powers of q modulo 5.

As a corollary of Theorem 1.1, we derive the following Ramanujan type
congruences modulo 5.

Corollary 1.3. For any non-negative integer n, we have:

(a) C(5n+ 4) ≡ 0 (mod 5);

(b) ce(5n+ 4) ≡ 0 (mod 5);

(c) co(5n+ 4) ≡ 0 (mod 5).

In this context, we observe the following identity.

Theorem 1.4. For |q| < 1, we have that

(q2; q2)3∞ (q10; q10)∞
(q; q)∞ (q5; q5)3∞

− q
(q; q)∞ (q10; q10)5∞
(q2; q2)∞ (q5; q5)5∞

= 1.

In this paper, we will examine the arithmetic properties of the sequence
a(n), defined as the reciprocal of the infinite product arising from the gener-
ating function of ce(n)− co(n):

∞∑
n=0

a(n) qn =
(−q; q)2∞
(q; q)∞

.

The generous nature of this generating function allows us to remark multiple
combinatorial interpretations for a(n):
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• Considering Euler’s identity

(−q; q)∞ =
1

(q; q2)∞
,

we easily deduce that a(n) is the number of partitions of n in which each
odd part is decorated using 3 different colors. For example a(3) = 16,
because the partitions in question are:

(33), (32), (31), (2, 13), (2, 12), (2, 11), (13, 13, 13), (13, 13, 12),

(13, 13, 11), (13, 12, 12), (13, 12, 11), (13, 11, 11), (12, 12, 12),

(12, 12, 11), (12, 11, 11), (11, 11, 11).

• Let ν2(n) be the highest power of 2 dividing n. Based on the formulas∏
n=1

1

1− qn
=
∏
n=1

∏
m=0

(1 + qn2
m

) =
∏
n=1

(1 + qn)ν2(2n),

we deduce that
(−q; q)2∞
(q; q)∞

=
∏
n=1

(1 + qn)3+ν2(n).

Thus a(n) is the number of colored partitions of n into distinct parts
in which each part k is decorated using ν2(2

3k) different colors. For
example a(3) = 16, because the partitions in question are:

(33), (32), (31), (24, 13), (24, 12), (24, 11), (23, 13), (23, 12), (23, 11),

(22, 13), (22, 12), (22, 11), (21, 13), (21, 12), (21, 11), (12, 12, 11).

• The product structure (q; q)−1
∞ ·(−q; q)2∞ can be understood as the prod-

uct of two kinds of partitions:

- (q; q)−1
∞ : This factor corresponds to choosing a standard partition.

- (−q; q)2∞: This factor introduces the coloring mechanism on par-
titions into distinct parts, where each part is decorated using 2
different colors.

Thus a(n) is the number of partitions of n in which the first 2 occur-
rences of their parts receive any (but distinct) of the 2 colors. For
example a(3) = 16, because the partitions in question are:

(3), (31), (32), (2, 1), (2, 11), (2, 12), (21, 1), (21, 11), (21, 12),

(22, 1), (22, 11), (22, 12), (1, 1, 1), (11, 1, 1), (12, 1, 1), (12, 11, 1).
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We define the sequence (ωk)k≥0 to be the generalized pentagonal numbers,
given by the formula:

ωk =
1

2

⌈
k

2

⌉⌈
3k + 1

2

⌉
,

where ⌈x⌉ denotes the ceiling function, which rounds x up to the nearest
integer. We remark that

ω2n =
n(3n+ 1)

2
and ω2n−1 =

n(3n− 1)

2
.

The following results provide a complete characterization of the congruences
modulo 2m of the sequence a(n) for m ∈ {1, 2, 3, 4}.

Theorem 1.5. Let n be a non-negative integer.

(a) If m ∈ {1, 2, 3, 4}, then a(n) ≡ 0 (mod 2m) ⇐⇒ n ̸∈ {ωk | k ≥ 0}.

(b) If m ∈ {1, 2, 3, 4}, then a(ωn) ≡ 1 (mod 2m) ⇐⇒ n ≡ {−1, 0}
(mod 2m).

(c) If m ∈ {2, 3, 4}, then a(ωn) ≡ 3 (mod 2m) ⇐⇒ n ≡ {−2, 1}
(mod 2m).

(d) If m ∈ {3, 4}, then

(d1) a(ωn) ≡ 5 (mod 2m) ⇐⇒ n ≡ {−m− 1,m} (mod 2m);

(d2) a(ωn) ≡ 7 (mod 2m) ⇐⇒ n ≡ {−3, 2} (mod 2m).

(e) a(ωn) ≡ 9 (mod 24) ⇐⇒ n ≡ {−8, 7} (mod 24).

(f) a(ωn) ≡ 11 (mod 24) ⇐⇒ n ≡ {−7, 6} (mod 24).

(g) a(ωn) ≡ 13 (mod 24) ⇐⇒ n ≡ {−4, 3} (mod 24).

(h) a(ωn) ≡ 15 (mod 24) ⇐⇒ n ≡ {−6, 5} (mod 24).

Corollary 1.6. Let n be a non-negative integer. If m ∈ {1, 2, 3, 4}, then

a(wn+2m) ≡ a(ωn) (mod 2m).
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Using Mathematica package RaduRK developed by Nicolas Smoot [19], we
found the following generating function for a(7n+ 2).

Theorem 1.7. For |q| < 1, we have:

∞∑
n=0

a(7n+ 2) qn = 7

(
1024 f 8

2 f
18
14

f 20
1 f 7

7

q8 +
1344 f 9

2 f
11
14

f 21
1

q6 − 1024 f 16
2 f 10

14

f 24
1 f 3

7

q5

+
72 f 10

2 f 7
7 f

4
14

f 22
1

q4 − 320 f 17
2 f 4

7 f
3
14

f 25
1

q3 − 40 f 11
2 f 14

7

f 23
1 f 3

14

q2

+
56 f 18

2 f 11
7

f 26
1 f 4

14

q +
f 12
2 f 21

7

f 24
1 f 10

14

)
,

where f b
a = (qa; qa)b∞.

As a corollary of this theorem, we derive the following Ramanujan type
congruence modulo 7.

Corollary 1.8. For any non-negative integer n, we have:

a(7n+ 2) ≡ 0 (mod 7).

We remark the following identity.

Theorem 1.9. For |q| < 1, it holds that

(q2; q2)7∞ (q7; q7)∞
(q; q)7∞ (q14; q14)∞

− 7q
(q7; q7)4∞
(q; q)4∞

+ 7q3
(q14; q14)7∞

(q; q)3∞ (q2; q2)∞ (q7; q7)3∞
= 1.

In the following sections, we present rigorous proofs and supporting re-
sults for our theorems. Section 2 establishes Theorem 1.1 using classical
q-series identities and quintisection expansions. In Section 3, we derive and
analyze Theorem 1.4, a modular identity crucial for simplifying the gener-
ating function of the crank parity difference. Section 4 explores the arith-
metic properties and combinatorial significance of the sequence a(n), which
emerges naturally in this context. Section 5 proves Theorem 1.7 via an al-
gorithmic approach grounded in the theory of modular functions, using the
RaduRK package in Mathematica to implement Radu’s Ramanujan-Kolberg
algorithm. In Section 6, we establish Theorem 1.9 by examining the behav-
ior of eta-quotients at cusps, leveraging classical modular form theory and
Atkin-Lehner involutions. Finally, Section 7 discusses several applications of
Theorem 1.1.

7



2 Proof of Theorem 1.1

We split the following relevant sum via 5-section (i.e., based on powers of q
modulo 5)

∞∑
n=−∞

(−1)nqn(3n+1)/2 = ϕ(q) = e0 + e1 + e2 + e3 + e4,

ϕ2(q2) = g0 + g1 + g2 + g3 + g4,
∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2 = ϕ3(q) = h0 + h1 + h2 + h3 + h4,

∞∑
n=0

u(n)qn =
ϕ3(q)

ϕ2(q2)
= P0 + P1 + P2 + P3 + P4.

First of all note that by definition of es we have e3 = e4 = 0 (because
n(3n+1)/2 is never equal to 3 or 4 modulo 5). Similarly n(n+1)/2 is never
equal to ±2 modulo 5 and hence h2 = h4 = 0.

Multiplying ϕ3(q)
ϕ2(q2)

and ϕ2(q2), in the above equations, and combining terms
according to powers of q modulo 5 we get the following set of equations

g0P0 + g4P1 + g3P2 + g2P3 + g1P4 = h0

g1P0 + g0P1 + g4P2 + g3P3 + g2P4 = h1

g2P0 + g1P1 + g0P2 + g4P3 + g3P4 = 0

g3P0 + g2P1 + g1P2 + g0P3 + g4P4 = h3

g4P0 + g3P1 + g2P2 + g1P3 + g0P4 = 0

Our goal to is calculate P4 which is given by P4 = D4/D where D4 and D
are determinants given by

D =

∣∣∣∣∣∣∣∣∣∣
g0 g4 g3 g2 g1
g1 g0 g4 g3 g2
g2 g1 g0 g4 g3
g3 g2 g1 g0 g4
g4 g3 g2 g1 g0

∣∣∣∣∣∣∣∣∣∣
and D4 =

∣∣∣∣∣∣∣∣∣∣
g0 g4 g3 g2 h0

g1 g0 g4 g3 h1

g2 g1 g0 g4 0
g3 g2 g1 g0 h3

g4 g3 g2 g1 0

∣∣∣∣∣∣∣∣∣∣
.

The evaluation of determinant D is aided by the fact that it is the deter-
minant of a circulant matrix, call it A. The determinant of a square matrix
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is the product of its eigenvalues and it is easy to find the eigenvalues of a
circulant matrix. If ω is a 5th root of unity (including 1) then

g0 + ωg1 + ω2g2 + ω3g3 + ω4g4

is an eigenvalue of A. Thus if ω is a primitive 5th root of unity then

λt = g0 + ωtg1 + ω2tg2 + ω3tg3 + ω4tg4

gives all the eigenvalues of A for t = 0, 1, 2, 3, 4. The determinant D is
therefore given by

D =
4∏

t=0

(g0 + ωtg1 + ω2tg2 + ω3tg3 + ω4tg4) =
4∏

t=0

4∑
s=0

ωstgs

From the definition of gs = gs(q) we can easily see that ωstgs(q) = gs(ω
tq)

and hence

D =
4∏

t=0

4∑
s=0

ωstgs =
4∏

t=0

4∑
s=0

gs(ω
tq) =

4∏
t=0

ϕ2(ω2tq2)

=
4∏

t=0

∞∏
n=1

(1− ω2ntq2n)2 =
∞∏
n=1

4∏
t=0

(1− ω2tnq2n)2

=
∏

n̸≡0 (mod 5)

(1− q10n)2
∏

n≡0 (mod 5)

(1− q2n)10

=
ϕ12(q10)

ϕ(q50)2
. (1)

From the above calculations, we can see that

∞∑
n=0

u(5n+ 4)q5n+4 = P4 =
D4

D
= D4 ·

ϕ(q50)2

ϕ12(q10)
.

The matrix determinant lemma [11] states that if A is a matrix, v is a vector
(vT its transpose) and z is any indeterminate, then∣∣∣∣v A

z vT

∣∣∣∣ = vTadj(A) v − z |A|.
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Based on this fact, we compute

δ(g0, g1, g2, g3, g4) :=

∣∣∣∣∣∣∣∣
g1 g0 g4 g3
g2 g1 g0 g4
g3 g2 g1 g0
g4 g3 g2 g1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
g1 g3 g4 g0
g2 g4 g0 g1
g3 g0 g1 g2
g4 g1 g2 g3

∣∣∣∣∣∣∣∣
= −[g1 g2 g3]

 g0g2 − g21 g1g0 − g4g2 g1g4 − g20
g1g0 − g4g2 g3g2 − g20 g0g4 − g1g3
g1g4 − g20 g0g4 − g1g3 g0g3 − g24

g1g2
g3

+ g4 |A|

where |A| = g0g2g3 + 2g0g1g4 − g30 − g21g3 − g2g
2
4.

In view of this, the determinant D4 can be given in the form

D4 = h0 · δ(g0, g1, g2, g3, g4) + h1 · δ(g1, g2, g3, g4, g0) + h3 · δ(g3, g4, g0, g1, g2).

Finally, the evaluation of the determinant D4 runs through the explicit ex-
pressions for gs and hs as given by Lemma 1.2, in combination with routine
simplifications, which leads to the desired result.

3 Proof of Theorem 1.4

Recall the Dedekind eta function η(q) := q
1
24

∏
k≥1(1 − qk). We prove the

equivalent form
η(q2)3 · η(q10)
η(q) · η(q5)5

− η(q)η(q10)5

η(q2) · η(q5)5
= 1

presented as an identity between eta-quotients, in M0(Γ0(10)), a weight 0
level 10 modular form. Both expressions on the left-hand side have a simple
pole at the cusp 1

5
(under the image of the Atkin-Lehner involution W2 [5])

and no other poles. This means there must be a linear combination of them
which is constant, so just checking the constant and the vanishing of one
other coefficient is enough.

Also, if you act by W2, those eta-quotients become hauptmodln for the con-
gruence group Γ0(10) listed by Conway and Norton [9], which must differ
only by a constant.
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4 Proof of Theorem 1.5

To establish our theorem, we turn to two foundational results: Euler’s pen-
tagonal number theorem

(q; q)∞ =
∞∑
n=0

(−1)n(n+1)/2 qωn

and a classical theta identity attributed to Gauss

(q; q)∞
(−q; q)∞

= 1 + 2
∞∑

n=∞

(−1)n qn
2

. (2)

These identities form the backbone of our approach to proving the theorem.

Case m = 1. Given that

(−q; q)∞
(q; q)∞

=

(
1 + 2

∞∑
n=∞

(−1)n qn
2

)−1

≡ 1 (mod 2).

we proceed as follows:

∞∑
n=0

a(n) qn =
(−q; q)∞
(q; q)∞

· (−q; q)∞ ≡ (−q; q) (mod 2) ≡ (q; q)∞ (mod 2)

≡
∞∑
n=0

(−1)n(n+1)/2 qωn (mod 2).

Case m = 2. Expanding the inverse of (2) modulo 4, we find

(−q; q)∞
(q; q)∞

≡ 1− 2
∞∑
n=1

(−1)n qn
2 ≡ 1 + 2

∞∑
n=1

(−1)n qn
2

(mod 4).

Thus, we conclude that

(−q; q)∞
(q; q)∞

≡ (q; q)∞
(−q; q)∞

(mod 4).

Now, we consider:

∞∑
n=0

a(n) qn =
(−q; q)∞
(q; q)∞

· (−q; q)∞
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≡ (q; q)∞ · (−q; q)∞
(−q; q)∞

(mod 4)

≡ (q; q)∞ (mod 4).

This reasoning shows that

∞∑
n=0

a(n) qn ≡
∞∑
n=0

(−1)n(n+1)/2 qωn (mod 4),

concluding the proof.

Case m = 3. Expanding the inverse of (2) modulo 8, we obtain

(−q; q)∞
(q; q)∞

≡ 1− 2
∞∑
n=1

(−1)n qn
2

+

(
2

∞∑
n=1

(−1)n qn
2

)2

(mod 8)

≡ 1− 2
∞∑
n=1

(−1)n qn
2

+ 4
∞∑
n=1

q2n
2

(mod 8)

≡ 1− 2
∞∑
n=1

(−1)n qn
2

+ 4
∞∑
n=1

(−1)n q2n
2

(mod 8).

This allows us to express

(−q; q)∞
(q; q)∞

≡ 2
(q2; q2)∞
(−q2; q2)∞

− (q; q)∞
(−q; q)∞

(mod 8).

Then

∞∑
n=0

a(n) qn =
(−q; q)∞
(q; q)∞

· (−q; q)∞

≡ 2
(q2; q2)∞ (−q; q)∞

(−q2; q2)∞
− (q; q)∞ (mod 8)

≡ 2 (q2; q2)∞ (−q; q2)∞ − (q; q)∞ (mod 8)

≡ 2
(q2; q2)∞
(q;−q)∞

− (q; q)∞ (mod 8)

≡ 2 (−q;−q)∞ − (q; q)∞ (mod 8).
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In other words, we have shown that

∞∑
n=0

a(n) qn ≡
∞∑
n=0

(−1)n(n+1)/2
(
2 (−1)ωn − 1

)
qωn (mod 8),

thereby concluding the proof.

Case m = 4. To summarize, we have:

(−q; q)2∞
(q; q)2∞

=

(
1 + 2

∞∑
n=1

(−1)nqn
2

)−2

=

1 + 4
∞∑
n=1

(−1)nqn
2

+

(
2

∞∑
n=1

(−1)nqn
2

)2
−1

.

Modulo 16, this simplifies to

(−q; q)2∞
(q; q)2∞

≡ 1− 4
∞∑
n=1

(−1)n qn
2 −

(
2

∞∑
n=1

(−1)n qn
2

)2

(mod 16)

≡ 3− 2 (q; q)∞
(−q; q)∞

−
(

(q; q)∞
(−q; q)∞

− 1

)2

(mod 16)

≡ 2− (q; q)2∞
(−q; q)2∞

(mod 16).

Next, we consider

∞∑
n=0

a(n) qn =
(−q; q)2∞
(q; q)2∞

· (q; q)∞.

Substituting, we find

∞∑
n=0

a(n) qn ≡ 2 (q; q)∞ − (q; q)3∞
(−q; q)2∞

(mod 16).

Considering [13, eq. (32.6)]), this yields

∞∑
n=0

a(n) qn ≡ 2
∞∑

n=−∞

(−1)n qn(3n−1)/2 +
∞∑

n=−∞

(6n− 1) qn(3n−1)/2 (mod 16)
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≡
∞∑

n=−∞

(6n− 1 + 2 (−1)n) qn(3n−1)/2 (mod 16).

Thus, we conclude

∞∑
n=0

a(n) qn ≡
∞∑
n=0

(
2 (−1)n(n+1)/2−(−1)n (3n+1)+

1− (−1)n

2

)
qωn (mod 16).

This completes the proof.

5 Proof of Theorem 1.7

Currently, this type of identity can be proven using computer algebra sys-
tems that implement Radu’s Ramanujan-Kolberg algorithm [17]. We make
use of the Mathematica package RaduRK, developed by Nicolas Smoot [19],
which is known for its ease of use. The RaduRK package depends on 4ti2,
a software suite designed to address algebraic, geometric, and combinatorial
problems involving linear spaces. To use the package, we follow the installa-
tion instructions outlined in [19] and activate it within a Mathematica session
using the following command:

<<RaduRK‘

It is essential to define the values of the two primary global variables, q and
t, before executing the program:

{SetVar1[q],SetVar2[t]}

The algorithmic verification of our identity is accomplished through the fol-
lowing procedure call:

RK[14,2,{-3,2},7,2]
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Smoot’s package presents the proof in the following format:

N: 14

{M,(rδ)δ|M}: {2, {−3, 2}}

m: 7

Pm,r(j): {2}

f1(q):
(q; q)20∞ (q7; q7)7∞

q8 (q2; q2)8∞ (q14; q14)18∞

t:
(q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q14; q14)7∞

AB:
{
1,

(q2; q2)8∞ (q7; q7)4∞
q3 (q; q)4∞ (q14; q14)8∞

− 4 (q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q14; q14)7∞

}
{pg(t):g ∈ AB}:

{
7168− 19264t− 8456t2 + 1288t3 + 7t4,−7168− 2240t+ 392t2

}
Common Factor: 7

As outlined in [4], the output can be interpreted as follows:

• The first parameter in the procedure call RK[14,2,{-3,2},7,2] sets
N = 14, thereby defining the space of modular functions that the
program will utilize:

M(Γ0(N)) := the algebra of modular functions for Γ0(N).

For detailed definitions of concepts like Γ0(N) and M(Γ0(N)), as well
as a thorough explanation of Radu’s Ramanujan-Kolberg algorithm,
please consult [16].

• The assignment {M, (rδ)δ|M} = {2, (−3, 2)} is derived from the second
and third entries of the procedure call RK[14,2,{-3,2},7,2]. This
specifies M = 2 and (rδ)δ|2 = (r1, r2) = (−3, 2), such that

∞∑
n=0

a(n) qn =
∏
δ|M

(qδ; qδ)rδ∞ =
(q2; q2)2∞
(q; q)3∞

.

In the output expression Pm,r(j) the abbreviation r := (rδ)δ|M is used;
i.e., here r = (−3, 2).
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• The final two parameters in the procedure call RK[14,2,{-3,2},7,2]
correspond to the assignments m = 7 and j = 2, highlighting our
emphasis on the generating function:

∞∑
n=0

a(mn+ j) qn =
∞∑
n=0

a(7n+ 2) qn.

The parameters m and j are utilized in the output expression Pm,r(j);
in this case, it is represented as P7,r(2), with r = (−3, 2).

• The output Pm,r(j) = P7,(−3,2)(2) = {2} indicates the existence of an
infinite product:

f1(q) =
(q; q)20∞ (q7; q7)7∞

q8 (q2; q2)8∞ (q14; q14)18∞

such that

f1(q)
∞∑
n=0

a(7n+ 2) qn ∈ M(Γ0(N)), with N = 14.

• The output

t =
(q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q14; q14)7∞

,

AB =
{
1,

(q2; q2)8∞ (q7; q7)4∞
q3 (q; q)4∞ (q14; q14)8∞

− 4 (q2; q2)∞ (q7; q7)7∞
q2 (q; q)∞ (q14; q14)7∞

}
,

{pg(t) : g ∈ AB} =
{
7168− 19264t− 8456t2 + 1288t3 + 7t4,

− 7168− 2240t+ 392t2 (3)

provides a solution to the following objective: find a modular function
t ∈ M(Γ0(N)) and polynomials pg(t) such that

f1(q)
∞∑
n=0

a(7n+ 2) qn =
∑
g∈AB

pg(t) · g. (4)

Generally, the elements of the finite set AB form a C[t]-module basis
of M(Γ0(N)), resp. of a large subspace of M(Γ0(N)). The elements g
belonging to the set AB are C-linear combinations of modular functions
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in M(Γ0(N)) which are representable in infinite product form such as
f1(q) and t. In our case, the program delivers (3), which means

f 20
1 f 7

7

q8f 8
2 f

18
14

∞∑
n=0

a(7n+ 2) qn = 7168− 19264
f2 f

7
7

q2 f1 f 7
14

− 8456

(
f2 f

7
7

q2 f1 f 7
14

)2

+1288

(
f2 f

7
7

q2 f1 f 7
14

)3

+ 7

(
f2 f

7
7

q2 f1 f 7
14

)4

+

(
f 8
2 f

4
7

q3 f 4
1 f

8
14

− 4 f2 f
7
7

q2 f1 f 7
14

)
×

×

(
−7168− 2240

f2 f
7
7

q2 f1 f 7
14

+ 392

(
f2 f

7
7

q2 f1 f 7
14

)2
)
.

This yields our identity on rearrangement.

6 Proof of Theorem 1.9

We prove the equivalent form

η(q2)7 · η(q7)
η(q)7 · η(q14)

− 7
η(q7)4

η(q)4
+ 7

η(q14)7

η(q)3 · η(q2) · η(q7)3
= 1

in M0(Γ0(14)), which is a weight 0 level 14 modular form of an identity
between eta-quotients. For background on such calculations see [15, p. 18].
Write the above identity as f1 + f2 + f3 = 1.

For each eta quotient, f , we associate a 4-tuple (a, b, c, d) giving the order of
vanishing at each cusp, ordered by the Atkin-Lehner involutions (W1,W2,W7,W14)
[5]. The f1 gives (0, 0, 2,−2), the f2 gives (1, 2,−1,−2), and f3 gives (3, 0,−1,−2).
Of course we can also associate a 4-tuple to the constant function 1: (0, 0, 0, 0)
Since these functions have no other poles, there is a non-trivial linear combi-
nation g with orders at least (1, 0, 0,−1). Here we could use a combination
of f2 and f3 to get something with no pole under W7, and then a multiple of
f1 to reduce the order of pole under W14 to at least −1, and then subtract a
constant to get vanishing at infinity. This function g is either 0, or g|W14is
a hauptmodl (a meromorphic weight 0 functions with a single pole at infin-
ity). However, the modular curve X0(14) has genus 1, so it cannot have a
haputmodul. Thus g is 0.

This argument shows that there is a non-trivial relation between the func-
tions. Obviously 1, f2 and f3 are independent by q-expansion, and so f1 can
be found in terms of them by comparing the coefficients up to q3. We arrived
at the conclusion.
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7 Applications of Theorem 1.1

7.1 Euler’s pentagonal number theorem

This section is devoted to listing a number of applications to Theorem 1.1. To
minimize unduly replications, we only offer proofs to selected representatives
of our results.

Denote ∆k =
k(k+1)

2
. Considering the theta series [10, Eq. (0.44), p. 16]

(q; q)∞ =
∞∑

n=−∞

(−1)n qωn ,

we derive the following corollaries.

Corollary 7.1. Let n be a non-negative integer.

(a) If n ≡ 0 (mod 2), then
∑
k∈Z

C(5n + 4 − 5ωk) ≡ 1 (mod 2) ⇐⇒ n ∈

{20ωj|j ≥ 0}.

(b) If n ≡ 0 (mod 8), then
∑
k∈Z

C(5n + 4 − 25ωk) ≡ 1 (mod 2) ⇐⇒

n ∈ {8∆j|j ≥ 0}.

(c) If n ≡ 4 (mod 8), then
∑
k∈Z

C(5n + 4 − 25ωk) ≡ 1 (mod 2) ⇐⇒

n ∈ {40∆j + 4|j ≥ 0}.

Corollary 7.2. Let n be a non-negative integer.

(a) If n ≡ 1 (mod 2), then
∑
k∈Z

C(5n+ 4− 25ωk) ≡ 0 (mod 2).

(b) If n ≡ 6 (mod 8), then
∑
k∈Z

C(5n+ 4− 25ωk) ≡ 0 (mod 2).

(c) If n ≡ 5 (mod 8), then 1
5

∑
k∈Z

(−1)kC(5n+ 4− 25ωk) ≡ 0 (mod 5).

(d) If n ̸≡ 0 (mod 5), then 1
5

∑
k∈Z

(−1)kC(50n+ 24− 50ωk) ≡ 0 (mod 5).

(e) If n ̸≡ 2 (mod 5), then 1
5

∑
k∈Z

(−1)kC(50n+ 49− 50ωk) ≡ 0 (mod 5).

18



Proof. Corollary 7.2 (a). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
1 f

2
5 f

2
10

f 4
2

.

It is clear that

A(n) =
∞∑

k=−∞

(−1)k

5
C (5(n− 5ωk) + 4) . (5)

We need to show that A(2n+1) ≡ 0 (mod 2). Using the Mathematica pack-
age RaduRK with

RK[20,10,{2,-4,2,2},2,1],

we derive the following identity:

∞∑
n=0

A(2n+ 1) qn = −2
f2 f

8
5 f20

f 4
1 f4 f

3
10

+ 2 q
f 2
4 f

3
5 f

2
20

f 3
1 f2 f10

+ 2 q3
f2 f

3
5 f

6
20

f 3
1 f

2
4 f

3
10

.

The claim follows.

Corollary 7.3. Let n be a non-negative integer.

(a)
∑
k∈Z

a(2n− ωk) ≡ 1 (mod 2) ⇐⇒ n ∈ {ωj|j ≥ 0}.

(b)
∑
k∈Z

a(2n+ 1− 2ωk) ≡ 0 (mod 2) ⇐⇒ n ∈ {∆j|j ≥ 0}.

(c)
∑
k∈Z

a(2n− 5ωk) ≡ 1 (mod 2) ⇐⇒ n ∈ {∆j|j ≥ 0}.

(d)
∑
k∈Z

a(2n+ 1− 5ωk) ≡ 1 (mod 2) ⇐⇒ n ∈ {5∆j|j ≥ 0}.

Corollary 7.4. Let n be a non-negative integer.

(a)
∑
k≥0

(−1)ka(2n+ 1− ωk) ≡ 0 (mod 2).

(b)
∑
k∈Z

a(3n+ 1− 2ωk) ≡ 0 (mod 3).
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(c)
∑
k∈Z

a(3n+ 2− 2ωk) ≡ 0 (mod 6).

(d)
∑
k∈Z

a(2n+ 1− 3ωk) ≡ 0 (mod 3).

Proof. Corollary 7.3 (a) and Corollary 7.4 (a). We consider the sequence
A(n) defined by

∞∑
n=0

A(n) qn =
f 2
2

f 2
1

.

It is clear that

A(n) =
∞∑

k=−∞

(−1)k a (n− ωk) .

The proof follows if we consider that

f 2
2

f 2
1

=
f 5
8

f 3
2 f

2
16

− 2 q
f 2
4 f

2
16

f 3
2 f8

and
f 5
4

f 3
1 f

2
8

≡ f1 (mod 2).

Corollary 7.3 (b) and Corollary 7.4 (b)-(c). We consider the sequence A(n)
defined by

∞∑
n=0

A(n) qn =
f 3
2

f 3
1

.

It is clear that

A(n) =
∞∑

k=−∞

(−1)k a (n− 2ωk) .

The proof follows if we consider that:

f 3
2

f 3
1

≡ f 2
2

f1
(mod 2),

∞∑
n=0

A(3n+ 1) qn = 3
f 4
2 f

5
3

f 8
1 f6

, and

∞∑
n=0

A(3n+ 2) qn = 6
f 3
2 f

2
3 f

2
6

f 7
1

.

Corollary 7.4 (d). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
2 f3
f 3
1

.
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It is evident now that

A(n) =
∞∑

k=−∞

(−1)k a (n− 3ωk) .

The proof follows if we consider that

f 2
2 f3
f 3
1

=
f 6
4 f

3
6

f 7
2 f

2
12

+ 3 q
f 2
4 f6 f

2
12

f 5
2

.

Corollary 7.3 (c)-(d). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
2 f5
f 3
1

.

Therefore,

A(n) =
∞∑

k=−∞

(−1)k a (n− 5ωk) .

The proof follows if we consider that

f 2
2 f5
f 3
1

≡ f 2
4

f2
+ q

f 2
20

f10
(mod 2).

We conclude the argument.

7.2 Jacobi’s identity

Considering the Jacobi identity [10, Eq. (0.46), p. 17]

(q; q)3∞ =
∞∑
n=0

(−1)n (2n+ 1) q∆n ,

we derive the following identity.

Corollary 7.5. Let n be a non-negative integer.

(a) If n ≡ {1, 3} (mod 5), then 1
5

∑
k≥0

(−1)k (2k + 1)C(5n + 4 − 5∆k) ≡ 0

(mod 5).
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(b) If n ≡ {2, 3} (mod 5), then
∑
k≥0

(−1)k (2k + 1)C(5n+ 4− 10∆k) = 0.

(c) If n ̸≡ 0 (mod 5), then
∑
k≥0

C(5n+ 4− 10∆k) ≡ 0 (mod 2).

(d) If n ≡ 1 (mod 2), then
∑
k≥0

C(5n+ 4− 25∆k) ≡ 0 (mod 2).

Proof. (b)-(c). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
1 f5 f

2
10

f2

It is clear that

A(n) =
1

5

∞∑
k=0

(−1)k (2k + 1)C (5n+ 4− 5k(k + 1)) .

We need to show that A(5n±2) = 0, and A(5n±1) ≡ 0 (mod 2). The proof
follows easily if we consider

f 2
1

f2
=

f 2
25

f50
− 2 q (q15, q35, q50; q50)∞ − 2 q4 (q5, q45, q50; q50)∞.

(d). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
1 f

4
5 f

2
10

f 4
2

It is clear that

A(n) =
1

5

∞∑
k=0

(−1)k (2k + 1)C

(
5n+ 4− 25k(k + 1)

2

)
.

We need to show that A(2n+ 1) ≡ 0 (mod 2). On the other hand, we have

A(2n+ 1) ≡ B(2n+ 1) (mod 2),

where the sequence B(n) defined by

∞∑
n=0

B(n) qn = f 2
1 f

4
5 .

22



The proof follows easily if we consider the identities:

f 2
1 =

f2 f
5
8

f 2
4 f

2
16

− 2 q
f2 f

2
16

f8
and f 4

1 =
f 10
4

f 2
2 f

4
8

− 4 q
f 2
2 f

4
8

f 2
4

.

We conclude the argument.

Corollary 7.6. Let n be a non-negative integer.

(a)
∑
k≥0

(−1)k (2k + 1) a(2n+ 1−∆k) = 0.

(b)
∑
k≥0

a(4n−∆k) ≡ 1 (mod 2) ⇐⇒ n ∈ {ωj|j ≥ 0}.

(c)
∑
k≥0

a(4n+ 2−∆k) ≡ 0 (mod 2).

(d) If n ̸= 1 (mod 5) then
∑
k≥0

a(5n+ 2− 2∆k) ≡ 0 (mod 2).

Proof. (a)-(c). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn = f 2
2

It is clear that

A(n) =
∞∑
k=0

(−1)k (2k + 1) a (n−∆k) .

The proof follows considering that

f 2
2 =

f4 f
5
16

f 2
8 f

2
32

− 2 q2
f4 f

2
32

f16
and

f1 f
5
4

f 2
2 f

2
8

≡ f1 (mod 2).

We conclude the argument.
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7.3 Gauss theta series

Considering the theta series identity [10, Eq. (0.41), p. 16]

(q; q)2∞
(q2; q2)∞

=
∞∑

n=−∞

(−1)n qn
2

,

we derive the following corollary.

Corollary 7.7. Let n be a non-negative integer.

(a) If n ≡ 4 (mod 5), then 1
5

∞∑
k=−∞

(−1)k C
(
5n+ 4− 5k2

)
≡ 0 (mod 5).

(b) If n ≡ 4 (mod 5), then 1
5

∞∑
k=−∞

(−1)k C
(
5n+ 4− 10k2

)
≡ 0 (mod 5).

Considering the theta series identity [10, Eq. (0.45), p. 16]

(q2; q2)2∞
(q; q)∞

=
∞∑
n=0

q∆n ,

we derive the following corollary.

Corollary 7.8. Let n be a non-negative integer.

(a) If n ≡ {6, 8} (mod 10), then
∞∑
k=0

C
(
5n+ 4− 5∆k

)
≡ 0 (mod 2).

(b) If n ≡ 1 (mod 2), then
∞∑
k=0

C
(
5n+ 4− 25∆k

)
≡ 0 (mod 2).

Proof. (b). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
1 f

4
10

f 4
2

It is clear that

A(n) =
1

5

∞∑
k=0

C
(
5
(
n− 5∆k

)
+ 4
)
.
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We need to show that A(2n + 1) ≡ 0 (mod 2) whose proof follows easily if
we consider that

f 2
1

f2
=

f 5
8

f 2
4 f

2
16

− 2 q
f 2
16

f8
.

We conclude the argument.

7.4 Ramanujan theta functions

Considering the theta identity [10, Eq. (0.47), p. 17, with q replaced by −q]

(q2; q2)5∞
(q; q)2∞

=
∞∑

n=−∞

(−1)n (3n+ 1) q3n
2+2n,

we derive the following corollary.

Corollary 7.9. If n ≡ {1, 3} (mod 5), then

∞∑
k=−∞

(−1)k (3k + 1)C (5n+ 4− 5k(3k + 2)) = 0.

Proof. We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn = f2 f5 f
2
10

It is clear that

A(n) =
1

5

∞∑
k=−∞

(−1)k (3k + 1)C
(
5
(
n− k(3k + 2)

)
+ 4
)
.

The proof follows if we consider that

f2 f10 = (q20, q30, q50; q50)2∞ − f10 f50 · q2 − (q10, q40, q50; q50)2∞ · q4 or

f1 f5 = (q10, q15, q25; q25)2∞ − f5 f25 · q − (q5, q20, q25; q25)2∞ · q2.

The proof is complete.
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Considering the theta identity [10, Eq. (0.48), p. 17]

(q; q)5∞
(q2; q2)2∞

=
∞∑

n=−∞

(1− 6n) qωn ,

we derive the following corollary.

Corollary 7.10. Let n be a non-negative integer.

(a) If n ≡ {2, 3} (mod 5), then 1
5

∞∑
k=−∞

(1−k)C (5n+ 4− 5ωk) ≡ 0 (mod 5).

(b) If n ≡ 9 (mod 10), then 1
5

∞∑
k=−∞

(1−k)C (5n+ 4− 25ωk) ≡ 0 (mod 5).

Proof. (b). We consider the sequence A(n) defined by

∞∑
n=0

A(n) qn =
f 2
1 f

6
5

f 4
2

It is clear that

A(n) =
1

5

∞∑
k=−∞

(1− 6k)C
(
5
(
n− 5ωk

)
+ 4
)
.

We need to show that A(10n + 9) ≡ 0 (mod 10). Using the Mathematica
package RaduRK with

RK[20,10,{2,-4,6,0},10,9]

allows to derive the following identity:

∞∑
n=0

A(10n+ 9) qn = −10
f 2
5

f 10
1 f 4

2

(
17 f 38

4 f 4
10

f 20
2 f 6

20

+
617 f 31

4 f 5
5

f1 f 16
2 f 3

20

q +
6448 f 34

4 f 2
10

f 18
2 f 2

20

q2

+
37948 f 27

4 f 5
5 f20

f1 f 14
2 f 2

10

q3 +
57143 f 30

4 f 2
20

f 16
2

q4 +
110960 f 23

4 f 5
5 f

5
20

f1 f 12
2 f 4

10

q5

−331248 f 26
4 f 6

20

f 14
2 f 2

10

q6 − 346100 f 19
4 f 5

5 f
9
20

f1 f 10
2 f 6

10

q7 +
422490 f 22

4 f 10
20

f 12
2 f 4

10

q8
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+
453450 f 15

4 f 5
5 f

13
20

f1 f 8
2 f

8
10

q9 +
471600 f 18

4 f 14
20

f 10
2 f 6

10

q10 − 367500 f 11
4 f 5

5 f
17
20

f1 f 6
2 f

10
10

q11

−1736450 f 14
4 f 18

20

f 8
2 f

8
10

q12 − 5000 f 7
4 f

5
5 f

21
20

f1 f 4
2 f

12
10

q13 +
1630000 f 10

4 f 22
20

f 6
2 f

10
10

q14

+
162500 f 3

4 f
5
5 f

25
20

f1 f 42
2 f 14

10

q15 − 466875 f 6
4 f

26
20

f 4
2 f

12
10

q16 − 46875 f 5
5 f

29
20

f1 f4 f 16
10

q17

−100000 f 2
4 f

30
20

f 2
2 f

14
10

q18 +
46875 f 34

20

f 2
4 f

16
10

q20
)

This concludes the proof.
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