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Abstract. We revisit the Â-genus, Hirzebruch’s L-genus and Witten’s W -genus, cobordism

invariants of special classes of manifolds. After slight modification, we show that the Â-genus
and L-genus arise directly from Jacobi’s theta function. As a consequence, we obtain explicit
quasimodular representations of their genera as “traces” of partition Eisenstein series. Surpris-
ingly, this work shows that Ramanujan discovered “twisted” quasimodular representations of

the Â-genera, in his study of derivatives of theta functions, decades before Borel and Hirze-
bruch rediscovered them in the context of spin manifolds. Furthermore, we prove that the
nonholomorphic G⋆

2-completion of the characteristic series of the Witten genus is the Jacobi

theta function avatar of the Â-genus.

1. Introduction and Statement of Results

A sequence of polynomials f1, f2, . . . in the variables p1, p2, . . . is multiplicative if the identity

1 + p1t+ p2t
2 + · · · = (1 + r1t+ r2t

2 + . . . )(1 + s1t+ s2t
2 + . . . )

implies that

∞∑
n=1

fn(p1, p2, . . . )t
n =

(
∞∑
a=1

fa(r1, r2, . . . )t
a

)(
∞∑
b=1

fb(s1, s2, . . . )t
b

)
.

If Q(z) is a power series with constant term 1, then one gets such sequences from the infinite
product

(1.1) F (p1, p2, . . . ; t) :=
∞∏
i=1

Q(xit) = 1 + f1t+ f2t
2 + . . . ,

where pk is the kth elementary symmetric function (in the variables, x1, x2, . . . ) defined by

pk :=
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

By work of Thom, this combinatorial framework applies to the study of homomorphisms
of cobordism rings of manifolds with prescribed structure. The idea is that a characteristic
power series Q(z) encodes invariants of oriented manifolds, with dimensions that are multiples
of 4, via its genus given by (1.1). Here the pk represent the Pontryagin classes, the cohomology
classes of real vector bundles.

We consider the number theoretic properties of some well-known examples. We first consider

the Â-genus of spin manifolds discovered by Borel and Hirzebruch [5, 9]. The first few values
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are

Â0 = 1, Â1 = −
1

24
p1, Â2 =

1

5760

(
−4p2 + 7p21

)
, Â3 =

1

967680

(
−16p3 + 44p1p2 − 31p31

)
, . . . .

This example is historically significant because of its role in the discovery of the Atiyah-Singer
index theorem (for example, see Hitchin’s expository article [8]). Atiyah and Singer discovered

and employed their index theorem to explain the mysterious integrality of the Â-genera. To
compute these values, they implemented (1.1) with

(1.2) QÂ(z) :=
1
2

√
z

sinh(1
2

√
z)

= 1− z

24
+

7z2

5760
− 31z3

967680
+ . . . .

Namely, the Â values (in order) are the coefficients of the formal power series

Â(p1, p2, . . . ; t) =
∞∑
n=0

Ânt
n =

∞∏
i=1

QÂ(xit)

= 1− 1

24
p1t+

1

5760
(−4p2 + 7p21)t

2 +
1

967680
(−16p3 + 44p1p2 − 31p31)t

3 + . . . .(1.3)

We prove that Â(p1, p2, . . . ; t), after minor modification, is essentially a Jacobi form (see
Chapter 2 of [6] or [12]) on C×H. To make this precise, we recall the celebrated Jacobi theta
function (see [7, 12])

θ(z; τ) :=
∑
n∈Z

unqn
2/2,

where u := e2πiz and q := e2πiτ . This function is a Jacobi form for SL2(Z) of weight 1/2 and
index 1/2. We work instead with a slightly modified version of this functiona Namely, in terms

of Dedekind’s eta-function η(τ) := q
1
24

∏∞
n=1(1− qn), it will be convenient for us to employ

(1.4) Θ̃(z; τ) = exp

(
π

2
· z2

ℑ(τ)

)
· u

1
2 q

1
8 ·

θ
(
z + τ

2
+ 1

2
; τ
)

η(τ)3
.

We transform the Â-genus, as described above, into the function

Â(Xτ (s); t) :=
∏

x∈Xτ (s)

QA(xt),(1.5)

where ℑ(τ) > 0 and s ∈ R+, and

(1.6) Xτ (s) :=

{
1

(mτ + n)2 · |mτ + n|s
: gcd(m,n) = 1

}
.

As a function on C×H, we have the following identity in terms of the Jacobi theta function.

Theorem 1.1. We have that

lim
s→0+

Â(Xτ (s); (2πiz)
2) = 2πiz · Θ̃(z; τ)−1.

aReaders familiar with [1] should be aware that Θ̃(z; τ) here is slightly different from the one in that paper.
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Remark. The infinite product in (1.5) is taken over relatively prime pairs of integers (m,n)
instead of i = 1, 2, . . . , as in (1.1). This modification does not lose any information. In fact, this

reformulation will allow us to compute Â-genera (and also L-genera) as quasimodular forms
(see Theorem 1.4). Finally, we note that the dependence on s > 0 in the index set Xτ (s) is
required, as we view these series as analytic functions, and the introduction of s guarantees
convergence.

We also consider Hirzebruch’s L-genus [9], which is the case of closed smooth oriented
manifolds. The first few values are

L0 = 1, L1 =
1

3
p1, L2 =

1

45

(
7p2 − p21

)
, L3 =

1

945

(
62p3 − 13p1p2 + 2p31

)
, . . . .

In terms of the characteristic power series

(1.7) QL(z) :=

√
z

tanh(
√
z)

= 1 +
z

3
− z2

45
+

2z3

945
− . . . ,

the infinite product (1.1) gives the generating function

L(p1, p2, . . . ; t) =
∞∑
n=0

Lnt
n =

∞∏
i=1

QL(xit)

= 1 +
1

3
p1t+

1

45
(7p2 − p21)t

2 +
1

945
(62p3 − 13p1p2 + 2p31)t

3 + . . . .(1.8)

We prove that L(p1, p2, . . . ; t), after minor modification, is also essentially a Jacobi form. As

in the case of the Â-genus,, we transform the L-genus into the function

L(Xτ (s); t) :=
∏

x∈Xτ (s)

QL(xt).(1.9)

As a function on C×H, we have the following identitty.

Theorem 1.2. We have that

lim
s→0+

L(Xτ (s); (πiz)
2) = πiz · Θ̃(2z; τ)

Θ̃(z; τ)2
.

Theorems 1.1 and 1.2 connect the Â-genus and L-genus to the theory of elliptic modular

forms. As a corollary to Theorem 1.1, we relate the Â-genus to the characteristic series of the
Witten genus for compact oriented smooth spin manifolds with vanishing first Pontryagin class,
that naturally arises from modularity. To make this precise, for integers k ≥ 1 and ℑ(τ) > 0,
the weight 2k Eisenstein series (see Ch. 1 of [13]) is

(1.10) G2k(τ) := −
B2k

2k
+ 2

∑
n

σ2k−1(n)q
n =

(2k − 1)!

(2πi)2k

∑
ω∈Z⊕Zτ

ω ̸=0

1

ω2k
,

where B2k is the 2k-th Bernoulli number and σν(n) :=
∑

d|n d
ν . The first examples are

G2(τ) = −
1

12
+2

∞∑
n=1

σ1(n)q
n, G4(τ) =

1

120
+2

∞∑
n=1

σ3(n)q
n, G6(τ) = −

1

252
+2

∞∑
n=1

σ5(n)q
n.
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Apart from G2, each G2k is a weight 2k holomorphic modular form on SL2(Z), and the
quasimodular forms are the q-series in the polynomial ring (for example, see [12])

C[G2, G4, G6] = C[G2, G4, G6, G8, G10, . . . ].

The modular Eisenstein series G4, G6, . . . are compiled to form the Witten genus [17] (also
see [10]) via its characteristic series

(1.11) QW (z) = exp

(∑
k≥2

G2k(τ)(2πiz)
2k

(2k)!

)
.

This identity implies that the Witten genus of a 4k dimensional compact oriented smooth
spin manifold, with vanishing first Pontryagin class, is a weight 2k modular form with integral
Fourier coefficients. It is natural to ask about the topological significance of the function that
one obtains by including G2 in this characteristic series. It turns out that one obtains the

Jacobi theta function avatar of the Â-genus.

Corollary 1.3. We have that

lim
s→0+

Â(Xτ (s); (2πiz)
2) = exp

(
(2πiz)2 · G

⋆
2(τ)

2

)
·QW (z),

where G⋆
2(τ) :=

1
4πℑ(τ)

+G2(τ) is the nonholomorphic weight 2 modular Eisenstein series.

As a consequence of both Theorems 1.1 and 1.2, we obtain quasimodular representations of

the Â-genera and L-genera. These forms are given as traces of “partition Eisenstein series,”
which are studied in [1, 2, 3]. To define them, recall that a partition of a non-negative integer k
(see [4] for background on partitions) is any nonincreasing sequence of positive integers

λ = (λ1, λ2, . . . , λs)

that sum to k, denoted λ ⊢ k. Equivalently, we let λ = (1m1 , . . . , kmk) ⊢ k, where mj is the
multiplicity of j. Furthermore, the length of λ is ℓ(λ) := m1 + · · ·+mk. For a partition λ, we
define the weight 2k partition Eisenstein seriesb

(1.12) λ = (1m1 , 2m2 , . . . , kmk) ⊢ k 7−→ Gλ(τ) := G2(τ)
m1G4(τ)

m2 · · ·G2k(τ)
mk .

In particular, the Eisenstein series G2k(τ) corresponds to the partition λ = (k).
If ϕ : P 7→ C is a function on partitions, then for k ≥ 1 we define the partition Eisenstein

trace

(1.13) Trk(ϕ; τ) :=
∑
λ⊢k

ϕ(λ)Gλ(τ),

which is a weight 2k quasimodular form. By convention, for k = 0, we let Tr0(ϕ; τ) := 1.

We give quasimodular representations of the Â-genera and L-genera as partition Eisenstein

traces. To this end, we first note that Â(p1, p2, . . . ; t) and L(p1, p2, . . . ; t) are of the form

F (p1, p2, . . . ; t) = 1 +
∞∑
k=1

bk(F ; p1, p2, . . . )t
k,

bThe Gλ should not be mistaken for the partition Eisenstein series of Just and Schneider [11].
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where each bF (p1, p2, . . . ; k) is a homogeneous polynomial of weighted degree k. In other words,
each monomial pm1

1 pm2
2 . . . pmk

k has weight k = m1 + 2m2 + · · ·+ kmk. This provides the unique
representation

bk(F ; p1, p2, . . . ) = b̃k(F ; s1, s2, . . . ),

where the sj := xj
1 + xj

2 + . . . , are the jth power sum symmetric functions. Clearly, as a

polynomial in s1, s2, . . . , sk, we have that b̃k(F ; s1, s2, . . . ) is also homogeneous of weighted
degree k. We simplify notation by associating partitions with monomials, where

(1.14) sλ := sm1
1 sm2

2 · · · s
mk
k ,

with λ = (1m1 , 2m2 , . . . , kmk) ⊢ k. Therefore, we have a decomposition

bk(F ; p1, p2, . . . ) = b̃k(F ; s1, s2, . . . ) =
∑
λ⊢k

βF (λ) · sλ.

To each bk(F ; p1, p2, . . . ), we associate the weight 2k partition Eisenstein trace

(1.15) Fk(τ) :=
∑
λ⊢k

β⋆
F (λ) ·Gλ(τ),

where we modify the coefficients βF (λ) with a Bernoulli product as follows

(1.16) β⋆
F (λ) := βF (λ) ·

k∏
j=1

(
2j

B2j

)mj

.

By letting F = Â(p1, p2, . . . ; t) (resp. F = L(p1, p2, . . . ; t)), we obtain Âk(τ) (resp. Lk(τ)),

the weight 2k quasimodular avatars of Âk (resp. Lk). To make this explicit, we define the
functions

ϕÂ(λ) :=
k∏

j=1

1

mj!

(
−1
(2j)!

)mj

,(1.17)

ϕL(λ) :=
k∏

j=1

1

mj!

(
4j(4j − 2)

(2j)!

)mk

.(1.18)

The following theorem gives the exact quasimodular expressions for these genera.

Theorem 1.4. If k is a positive integer, then as Fourier series we have

Âk(τ) = Trk(ϕÂ; τ),

Lk(τ) = Trk(ϕL; τ).

Example. It is straightforward to derive the Âk and Lk (see (1.3) and (1.8)) using Theorem 1.4.
One transforms the quasimodular traces Trk(ϕÂ; τ) and Trk(ϕL; τ) into expressions in the power
sum symmetric functions, and then, in turn, into expressions in the elementary symmetric
functions. In view of (1.16), in the first step one replaces each G2j(τ) with B2jsj/2j.

For Â3 and Â4, Theorem 1.4 gives

Â3(τ) = Tr3(ϕÂ; τ) =
1

6!
(−G6 + 15G2G4 − 15G3

2),

Â4(τ) = Tr4(ϕÂ; τ) =
1

8!
(−G8 + 28G2G6 + 35G2

4 − 210G2
2G4 + 105G4

2).
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After making the substitutions G2j 7→ B2jsj/2j, we apply the Newton-Gerard identities

s1 = p1, s2 = p21 − 2p2, s3 = p31 − 3p1p2 + 3p3, s4 = p41 − 4p21p2 + 4p1p3 + 2p22 − 4p4,

and we obtain

Â3(p1, p2, . . . ) =
1

967680
(−16p3 + 44p1p2 − 31p41),

Â4(p1, p2, . . . ) =
1

464486400
(−192p4 + 512p1p3 + 208p22 − 904p21p2 + 381p41).

To our surprise, it turns out that Ramanujan discovered the quasimodular representations

of the Â-genus 100 years ago, decades before Borel and Hirzebruch resdiscovered them in the
context of spin manifolds. In his “lost notebook”, Ramanujan defined the q-series [14, p. 369]

(1.19) U2k(q) =
12k+1 − 32k+1q + 52k+1q3 − 72k+1q6 + · · ·

1− 3q + 5q3 − 7q6 + · · ·
=

∑
n≥0(−1)n(2n+ 1)2k+1q

n(n+1)
2∑

n≥0(−1)n(2n+ 1)q
n(n+1)

2

.

In terms of the renormalized Eisenstein series

(1.20) E2j(τ) :=
2j

B2j

·G2j(τ) = 1− 4j

B2j

∞∑
n=1

σ2j−1(n)q
n,

Ramanujan found that

U0 = 1, U2 = E2, U4 =
1

3
(5E2

2 − 2E4), U6 =
1

9
(35E3

2 − 42E2E4 + 16E6), . . .

and he conjectured that every U2k has such an expression. Two of the authors and Singh proved
(see Theorem 1.2 of [3]) this claim, and offered formulas as traces of partition Eisenstein series.

To relate the Âk(τ) to Ramanujan’s U2k, viewed as q-series, we do not use the expressions in
Theorem 1.4 (1). Instead, we use E-normalized traces of partition Eisenstein series

(1.21) Tr
(E)
k (ϕ; τ) :=

∑
λ⊢k

ϕ(λ)Eλ(τ).

where Eλ is defined as in (1.12), with the Eisenstein series E2j replacing the G2j.

It turns out that the quasimodular Âk(τ) are “partition twists” of the E-traces of the
functionc

ϕU(λ) :=
k∏

j=1

1

mj!

(
B2j

(2j)(2j)!

)mj

,(1.22)

that give Ramanujan’s U2k series.

Theorem 1.5. If k is a positive integer, then as Fourier series the following are true.
(1) We have that

U2k(q) = 4k(2k + 1)! · Tr(E)
k (ϕU ; τ).

(2) We have that

Âk(τ) = (−1)k · Tr(E)
k (|ϕU |; τ).

cFor aesthetics, we slightly alter the function ϕU from [3].
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Two Remarks.
(1) As polynomials in Eλ, the signs in Âk(τ) are the same and are given by (−1)k.
(2) Theorem 1.5 shows that Ramanujan’s U2k(q) and the Âk(τ)-genus agree up to choices of
sign in the monomials and explicit scalar multiplier. In particular, the signs differ precisely for
those monomials that correspond to λ ⊢ k with an odd number of parts.

Example. Ramanujan’s U6 and the Â3-genus are

U6(q) =
16E6 − 42E2E4 + 35E3

2

9
and Â3(τ) =

−16E6 − 42E2E4 − 35E3
2

2903040
.

The signs differ for the monomials E6 and E3
2 , which correspond to the partitions λ = (3) and

λ = (1, 1, 1), the partitions of 3 with an odd number of parts.
Here we offer a few more examples

Â1(τ) = −
E2

24
, Â2(τ) =

2E4 + 5E2
2

5760
, Â3(τ) =

−16E6 − 42E2E4 − 35E3
2

2903040
,

Â4(τ) =
144E8 + 320E2E6 + 84E2

4 + 420E2
2E4 + 175E4

2

1393459200
,

Â5(τ) =
−768E10 − 1584E2E8 − 704E4E6 − 1760E2

2E6 − 924E2E
2
4 − 1540E3

2E4 − 385E5
2

367873228800
.

This paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.2, and
Corollary 1.3 by making use of Weierstrass’ theory of elliptic functions and Jacobi forms. In
Section 3, we prove Theorem 1.4 using Pólya’s identity for cycle index polynomials for the
symmetric group. We also prove Theorem 1.5 by combining these results with the earlier results
from [3].

Acknowledgements
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thank John Shareshian and Richard Stanley for bringing our attention to Hitchin’s article
[8]. The third author thanks the Thomas Jefferson Fund and the NSF (DMS-2002265 and
DMS-2055118).

2. Proof of Theorems 1.1 and 1.2

Here we prove Theorems 1.1 and 1.2 using the theory of elliptic functions and Jacobi forms.
In the next subsection we recall the nuts and bolts that we require about these functions.

2.1. Jacobi forms and elliptic functions. We first recall the definition of a Jacobi form.

Definition. A holomorphic function F (z; τ) on C×H is a Jacobi form for SL2(Z) of weight k
and index m if it satisfies the following conditions:
(1) For all γ = ( a b

c d ) ∈ SL2(Z), we have the modular transformation

F

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)k exp

(
2πi · mcz2

cτ + d

)
F (z; τ).
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(2) For all integers a, b, we have the elliptic transformation

F (z + aτ + b; τ) = exp
(
− 2πim(a2τ + 2az)

)
F (z; τ).

(3) The Fourier expansion of F (z; τ) is given by

F (z; τ) =
∑
n≥0

∑
r2≤4mn

b(n, r)qnur,

where b(n, r) are complex numbers and u := e2πiz.

As stated in the introduction, the theta function

θ(z; τ) =
∑
n∈Z

unqn
2

,

where u := e2πiz and q := e2πiτ is a Jacobi form of weight 1/2 and index 1/2. For our purposes,
we require and then modify the function

Θ(z; τ) := (u1/2 − u−1/2)
∏
n≥1

(1− uqn)(1− u−1qn)

(1− qn)2
.(2.1)

This function is related to both the function Θ̃(z; τ) defined in (1.4), and θ(z; τ), as shown
below.

Proposition 2.1. The following identities are true.
(1) In terms of θ(z; τ) and Dededkind’s eta function η(τ) := q

1
24

∏∞
n=1(1− qn), we have that

Θ(z; τ) =
1

η(τ)3
· u

1
2 q

1
8 · θ

(
z +

τ

2
+

1

2
; τ

)
.

(2) We have that

Θ̃(z; τ) = exp

(
π

2
· z2

ℑ(τ)

)
Θ(z; τ).

Remark. Combining the modular transformation properties of Dedekind’s eta-function η(τ) (for
example, see Chapter 1.4 of [13]) with Proposition 2.1 (1), we have that Θ(z; τ) is a Jacobi
form of weight −1 and index 1/2.

Proof of Proposition 2.1. Claim (1) follows as an easy application of the Jacobi Triple Product
formula (see Theorem 2.8 of [4]), which allows us to write

(u1/2 − u−1/2)
∏
n≥1

(1− uqn)(1− u−1qn)

(1− qn)2
=

1

η(τ)3

∑
n∈Z

(−1)nu
2n+1

2 q
(2n+1)2

2

=
1

η(τ)3
· u1/2q1/8θ(z + τ

2
+ 1

2
; τ).

The second claim follows immediately from (1) and (1.4). □

To prove Theorems 1.1 and 1.2, we require the Weierstrass σ-function,

σ(z, τ) := z
∏
w∈Λτ

ℑ(w)>0 or w>0

(
1− z2

w2

)
exp

(
z2

w2

)
,(2.2)

where Λτ is the lattice Λτ = Zτ + Z. We have the following elementary proposition.
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Proposition 2.2. We have that

σ(z; τ) =
1

2πi
e

G2(τ)
2

(2πiz)2 ·Θ(z; τ).

Proof. The σ-function has a q-series expansion (see Theorem I.6.6.4 of [15]) given by

σ(z; τ) =
1

2πi
e

G2(τ)
2

(2πiz)2(u1/2 − u−1/2)
∏
n≥1

(1− uqn)(1− u−1qn)

(1− qn)2
.

Thus σ is also related to the modified theta function Θ(z; τ), defined by (2.1), as claimed. □

Finally, we will need a lemma giving a slightly nonstandard formula for the weight 2
nonholomorphic weight 2 Eisenstein series G⋆

2(τ) := 1/4πℑ(τ) +G2(τ)

Lemma 2.3. We have that

(2πi)2G⋆
2(τ) = lim

s→0+

∞∑
k=1

∑
m,n∈Z

gcd(m,n)=1

1

k2 · (mτ + n)2|mτ + n|s
.

Proof. The standard application of “Hecke’s trick” (for example, see p. 84 of [6]), to force
convergence of the weight 2 Eisenstein series, gives the formula

(2πi)2G⋆
2(τ) = lim

s→0+

∑
m,n∈Z

(m,n)̸=(0,0)

1

(mτ + n)2|mτ + n|s
.

The expression in the limit factors as∑
m,n∈Z

(m,n)̸=(0,0)

1

(mτ + n)2|mτ + n|s
=

∞∑
k=1

∑
m,n∈Z

gcd(m,n)=1

1

k2+s(mτ + n)2|mτ + n|s

= ζ(2 + s) ·
∑

m,n∈Z
gcd(m,n)=1

1

(mτ + n)2|mτ + n|s
,

where in each term we have factored out k = gcd(m,n), and ζ(s) is the Riemann zeta-function.
Similarly, we have that

∞∑
k=1

∑
m,n∈Z

(m,n)̸=(0,0)

1

k2 · (mτ + n)2|mτ + n|s
= ζ(2) ·

∑
m,n∈Z

gcd(m,n)=1

1

(mτ + n)2|mτ + n|s
.

The lemma follows since ζ(s) is continuous at 2. □

2.2. Proof of Theorem 1.1. We first find the Weierstrass factorization of the characteristic
series (see (1.2))

QÂ(x) =

√
x

sinh(
√
x)

.

The function sin(x)/x has the well-known Weierstrass factorization

sin(x)

x
=

∞∏
k=1

(
1− x2

π2k2

)
.
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This gives the factorization for QÂ(z) by applying the identity sinh(x) = sin(−ix).
Using this factorization, we have that

Â(Xτ (s); (2πiz)
2) =

∞∏
k=1

∏
x∈Xτ (s)

(
1 +

(2πiz)2x

4π2k2

)−1

=
∞∏
k=1

∏
x∈Xτ (s)

(
1− z2 · x

k2

)−1

=
∞∏
k=1

∏
x∈Xτ (s)

(
1− z2 · x

k2

)−1

exp

(
−z2 · x

k2
+

z2 · x
k2

)
.

The last step allows us to break the expression in two parts, which behave differently as s→ 0+.
For the first piece, we may simply evaluate at s = 0 and use Proposition 2.2 to obtain

lim
s→0+

∞∏
k=1

∏
x∈Xτ (s)

(
1− z2 · x

k2

)−1

exp

(
−z2 · x

k2

)

=
∞∏
k=1

∏
(m,n)∈Z2/(±1)
gcd(m,n)=1

(
1− z2

k2(mτ + n)2

)−1

exp

(
− z2

k2 · (mτ + n)2

)

=
z

σ(z; τ)
.

For the second piece, we use Lemma 2.3 to obtain

lim
s→0+

exp

(
z2 · x
k2

)
= lim

s→0+

∞∏
k=1

∏
(m,n)∈Z2/(±1)
gcd(m,n)=1

exp

(
z2

k2 · (mτ + n)2|mτ + n|s

)

= exp

(
1

2
G⋆

2(τ)(2πiz)
2

)
.

Here the 1/2 appears since this expression is a sum over only a half-lattice, whereas this lemma
uses the sum over the full lattice.

Using Proposition 2.2 and Proposition 2.1, we obtain the claimed expression

lim
s→0

Â(Xτ (s); (2πiz)
2) =

2πiz

Θ̃(z; τ)

2.3. Proof of Theorem 1.2. Following the proof of Theorem 1.1, we first find the Weierstraas
factorization of the characteristic series (see (1.7))

QL(x) =

√
z

tanh(
√
z)
.

The function tan(x)/x has Weierstrass factorization

tan(x)

x
=

∏∞
k=1

(
1− x2

π2k2

)
∏∞

k=1

(
1− 4x2

π2(2k−1)2

) .
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Using (1.7), and the fact that tanh(x) = tan(−ix), we have that

L(Xτ (s), (πiz)
2) =

∏
x∈Xτ (s)

∏∞
k=1

(
1 + 4(πiz)2x

π2(2k−1)2

)
∏∞

k=1

(
1 + (πiz)2x

π2k2

)
=

∏
x∈Xτ (s)

∏∞
k=1

(
1− 4z2x

(2k−1)2

)
∏∞

k=1

(
1− z2x

k2

) =
∏

x∈Xτ (s)

∏∞
k=1

(
1− 4z2x

k2

)
∏∞

k=1

(
1− z2x

k2

)2 .
Using the calculations from the previous subsection again, we find that

lim
s→0+

L(Xτ (s), (πiz)
2) = πiz · Θ̃(2z; τ)

Θ̃(z; τ)2
.

2.4. Proof of Corollary 1.3. We note that the Weierstrass σ-function satisfies the limit

σ(z, τ) = lim
s→0+

z
∏
w∈Λτ

ℑ(w)>0 or w>0

(
1− z2

w2|w|2s

)
exp

(
z2

w2|w|2s

)

= lim
s→0+

σs(z, τ) exp

(
(2πiz)2

G⋆
2(τ)

2

)
,

where we let

σs(z; τ) := z
∏

w∈Λτ (s)

(
1− z2

w

)
.

Using “Hecke’s trick” (for example, see p. 84 of [6]) again, we obtain

lim
s→0+

∑
w∈Λτ

ℑ(w)>0 or w>0

1

w2|w|2s
=

1

2
lim
s→0+

∑
w∈Λτ (s)

1

w
= (2πi)2

G⋆
2(τ)

2
.

Furthermore, the logarithmic derivative of the σ-function (with respect to z) has Taylor
expansion

σ′(z; τ)

σ(z; τ)
=

1

z
−
∑
k≥2

G2k(τ)(2πi)
2k

(2k − 1)!
z2k−1

(see Prop. I.5.1 of [15], where we note a difference in notation with our G2k(τ) being
(2k−1)!
(2πi)2k

G2k(Λτ )). This gives us the exponential expansion of σ as

σ(z; τ) = z · exp

(
−
∑
k≥2

G2k(τ)

(2k)!
(2πiz)2k

)
,

Therefore, we find that the characteristic series of the Witten genus is (see (1.11)) satisfies

QW (z) = exp

(∑
k≥2

G2k(τ)(2πiz)
2k

(2k)!

)
=

z

σ(z; τ)
.

Combining Theorem 1.1, Proposition 2.1, and Proposition 2.2 we obtain the claim.
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3. Proof of Theorems 1.4 and 1.5

In this section we prove Theorems 1.4 and 1.5, which express the quasimodular representations

of the Â-genera and L-genera as traces of partition Eisenstein series. To obtain these results,
we make use of exponential generating functions that arose in the previous section. These
generating functions can be reformulated as traces of partition Eisenstein series using special
identities within the framework of Pòlya’s theory of cycle index polynomials.

3.1. Pòlya’s cycle index polynomials. The structure of traces of partition Eisenstein series
arises from the classical theory of the symmetric group, and their connection to integer partitions.
Namely, the key tool is Pólya’s theory of cycle index polynomials (for example, see [16]). Recall
that a partition λ = (λ1, . . . , λℓ(λ)) ⊢ k or (1m1 , . . . , kmk) ⊢ k, labels a conjugacy class by
cycle type. Moreover, the number of permutations in Sk of cycle type λ is is k!/zλ, where
zλ := 1m1 · · · kmkm1! · · ·mk!. The cycle index polynomial for the symmetric group Sk is given
by

Z(Sk) =
∑
λ⊢k

1

zλ

ℓ(λ)∏
j=1

xλj
=
∑
λ⊢k

k∏
j=1

1

mj!

(
xj

j

)mj

.(3.1)

We require the following generating function for these polynomials in k-aspect.

Lemma 3.1 (Example 5.2.10 of [16]). As a power series in y, the generating function for the
cycle index polynomials satisfies

∑
k≥0

Z(Sk) t
k = exp

(∑
k≥1

wk ·
tk

k

)
.

Example. Here are the first few examples of Pólya’s cycle index polynomials:

Z(S1) = x1, Z(S2) =
1

2!
(x2

1 + x2), Z(S3) =
1

3!
(x3

1 + 3x1x2 + 2x3).

3.2. Proof of Theorem 1.4. The characteristic series QÂ(z) (see (1.2)) has a well-known (see
[3, eq. (3.1)]) explicit exponential generating function

(3.2) QÂ(z) =

√
z/2

sinh(
√
z/2)

= exp

(
−

∞∑
j=1

B2jz
j

(2j)(2j)!

)
,

which enables us, by (1.1), to obtain

Â(s1, s2, . . . ; t) =
∞∏
i=1

QÂ(xit) = exp

(
∞∑
k=1

−B2kskt
k

(2k)(2k)!

)
.

Here we see the natural role of the power sum symmetric functions {sk}k.
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To prove the theorem, we invoke Pólya’s formula in Lemma 3.1, with wk

k
= −B2ksk

(2k)(2k)!
. In this

way, we obtain

Â(s1, s2, . . . ; t) =
∑
k≥0

tk
∑
λ⊢k

k∏
j=1

1

mj!

(
−B2jsj
(2j)(2j)!

)mj

=
∑
k≥0

tk
∑
λ⊢k

sλ

k∏
j=1

(
B2j

2j

)mj

·
k∏

j=1

1

mj!

(
−1
(2j)!

)mj

.

Under the identification B2jsj/2j ←→ G2j , we have the desired expression as a trace of partition
Eisenstein series. Namely, we find that

Âk(τ) = Trk(ϕÂ; τ).

Now we turn to the case of the L-genus, which has characteristic series (see (1.7))

QL(z) =

√
z

tanh(
√
z)
.

On the other hand, one may recall the series exapansion (easily derived from that of tanx)

cosh(
√
z) = exp

(
∞∑
j=1

4j(4j − 1)B2jz
j

(2j)(2j)!

)
.

Combining this with formula (3.2) for QÂ(z), we get

QL(z) =

√
z

tanh(
√
z)

=

√
z

sinh(
√
z)
· cosh(

√
z) = exp

(
∞∑
j=1

4j(4j − 2)B2jz
j

(2j)(2j)!

)
.

Arguing as above with (1.1) and Pólya’s Lemma 3.1 mutatis mutandis, we obtain the claimed
conclusion

Lk(τ) = Trk(ϕL; τ).

3.3. Proof of Theorem 1.5. Claim (1) is a simple reformulation of Theorem 1.2 (1) of [3].
The reader merely needs to be aware of the different normalizations of the function ϕU .

The proof of claim (2) is a little more involved. Beginning with (1.17) and Theorem 1.4, we
apply the correspondence G2j ←→ B2jsj/2j to as follows

Âk(τ) =
∑
λ⊢k

Gλ(τ)
k∏

j=1

1

mj!

(
−1
(2j)!

)mj

=
∑
λ⊢k

Eλ(τ)
k∏

j=1

1

mj!

(
−B2j

(2j)(2j)!

)mj

.

Since B2j = (−1)j−1|B2j| (or −B2j = (−1)j|B2j|) and
∑k

j=1 jmj = k, it follows that

Âk(τ) =
∑
λ⊢k

(−1)
∑

j jmjEλ

k∏
j=1

1

mj!

(
|B2j|

(2j)(2j)!

)mj

= (−1)k
∑
λ⊢k

Eλ · |ϕU | = (−1)k Tr(E)
k (|ϕU |; τ).

This proves the desired expression in claim (2) as a twisted E-trace of partition Eisenstein
series.
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