A WZ PROOF OF A DETERMINANT EVALUATION
CONJECTURED BY KUPERBERG AND PROPP

TEWODROS AMDEBERHAN

The determinant evaluation:
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was conjectured by G. Kuperberg and J. Propp [P]. Here we present a WZ-style proof of (1) (for WZ
methods the reader is highly encouraged to refer to [WZ], [Z]).

Using row operations we transform the above matrix to a lower-right-triangular matrix T. To this end
we need only justify the identities:
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Introduce the functions

Fim (c1p+ n—i—jj—i—s—k n—i—k—.j—s n—ll—l ’ Flzz(n—i—s—i—l)!n!(n—s)!F.
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Then, the wonderful package EKHAD accompanying [PWZ] applied to Fy produces:
G=—jj+s)n+k—j—s+1)F1Q where

Q= n[21n + 29 + 5n? — 3kn — 9k] + 13 — Tk — j[3n? + 8n — 2kn + 5 — 3k] + s[kn — jn — sn — s + k — j]
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such that

(2) Filn+ 1,4,k s)+ Fi(n,j, k,s) =G(n,j+ 1,k,s) — G(n, j, k, s).

Now, summing over the index j in (2) combined with the initial conditions for n=0 verify (1la) and (1b).
But the terms in the product (1) are precisely the elements in the principal diagonal of T. This completes
the proof. O
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Let M, = [(Z-IZ—]) <2nn_—ii_j)0§z’j§n
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Remark 1: Noting that M, = M, »(0,0), the above reduction process is easily summed up in

] and define the matrices:

detM, = detM, ,(0,0) = detM, ,(1,0) = --- = detM, n(n +1,0).
Remark 2: It may also be interesting to see that
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det My n(a,b) = (—1)ab (

Remark 3: Similarly, one can show that

det i+j\/n+m+1—i—j (n+m+ DI"tim!!
e = .
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