A WZ PROOF OF A DETERMINANT EVALUATION CONJECTURED BY KUPERBERG AND PROPP

Tewodros Amdeberhan

The determinant evaluation:

$$
\begin{equation*}
\operatorname{det}\left[\binom{i+j}{i}\binom{2 n-i-j}{n-i}_{0 \leq i, j \leq n}\right]=\prod_{i=0}^{n}\binom{2 n+1}{i}=\frac{(2 n+1)!^{n+1}}{(2 n+1)!!} \tag{1}
\end{equation*}
$$

was conjectured by G. Kuperberg and J. Propp [P]. Here we present a WZ-style proof of (1) (for WZ methods the reader is highly encouraged to refer to [WZ], [Z]).

Using row operations we transform the above matrix to a lower-right-triangular matrix T. To this end we need only justify the identities:
for $i=0, \ldots, n-s-1$ and $s=0, \ldots, n$:

$$
\begin{gather*}
\sum_{j=0}^{n-s}(-1)^{j}\binom{i+j+s}{j+s}\binom{2 n-i-j-s}{n-j-s}\binom{n+1}{j}=0 \tag{1a}\\
\sum_{j=0}^{n+1}(-1)^{j}\binom{n+j+s}{j+s}\binom{n-j}{s}\binom{n+1}{j}=0
\end{gather*}
$$

Introduce the functions

$$
F:=(-1)^{j+1}\binom{n+j+s-k}{j+s}\binom{n+k-j-s}{n-j-s}\binom{n+1}{j}, \quad F_{1}:=\frac{(n+s+1)!n!(n-s)!}{(n-k+s)!(2 n+1)!} F .
$$

Then, the wonderful package EKHAD accompanying [PWZ] applied to F_{1} produces:

$$
G:=-j(j+s)(n+k-j-s+1) F_{1} Q \text { where }
$$

$$
Q=\frac{n\left[21 n+29+5 n^{2}-3 k n-9 k\right]+13-7 k-j\left[3 n^{2}+8 n-2 k n+5-3 k\right]+s[k n-j n-s n-s+k-j]}{2(n+2-j)(n+1-j-s)(2 n+3)(n-k+1)(n-k+s+1)(n+1)}
$$

such that

$$
\begin{equation*}
F_{1}(n+1, j, k, s)+F_{1}(n, j, k, s)=G(n, j+1, k, s)-G(n, j, k, s) \tag{2}
\end{equation*}
$$

Now, summing over the index j in (2) combined with the initial conditions for $\mathrm{n}=0$ verify (1a) and (1b). But the terms in the product (1) are precisely the elements in the principal diagonal of T. This completes the proof.

Let $\left.M_{n}:=\left[\begin{array}{c}i+j \\ i\end{array}\right)\binom{2 n-i-j}{n-i}_{0 \leq i, j \leq n}\right]$ and define the matrices:

$$
M_{n, m}(a, b):=\left[\binom{i+j+a+b}{i+a}\binom{2 n-i-j-a-b}{n-i-a}_{0 \leq i, j \leq m}\right] .
$$

Remark 1: Noting that $\mathrm{M}_{n}=M_{n, n}(0,0)$, the above reduction process is easily summed up in

$$
\operatorname{det} M_{n}=\operatorname{det} M_{n, n}(0,0)=\operatorname{det} M_{n, n}(1,0)=\cdots=\operatorname{det} M_{n, n}(n+1,0) .
$$

Remark 2: It may also be interesting to see that

$$
\operatorname{det} M_{n, n}(a, b)=(-1)^{a b} \frac{(2 n+1)!^{n+1}}{(2 n+1)!!} \frac{(a+b)!^{2}}{a!^{2} b!^{2}} \frac{n!!^{2} a!!^{2} b!!^{2}(n+a+b)!!(n-a-b)!!}{(a+b)!!^{2}(n-a)!!(n-b)!!(n+a)!!(n+b)!!} .
$$

Remark 3: Similarly, one can show that

$$
\operatorname{det}\left[\binom{i+j}{i}\binom{n+m+1-i-j}{n-i}_{0 \leq i, j \leq n}\right]=\frac{(n+m+1)!^{n+1} m!!}{(n+m+1)!n!!} .
$$

References

[P] J. Propp E-mail message to D. Zeilberger, dated 1 July 1996, 15:47:56 (EDT).
[PWZ] M. Petkovšek, H.S. Wilf, D.Zeilberger, " $A=B$ ", A.K. Peters Ltd., 1996.
The package EKHAD is available by the ннн at http://ннн.math.temple.edu/ zeilberg/programs.html
[WZ] H.S. Wilf, D. Zeilberger, Rational functions certify combinatorial identities, Jour. Amer. Math. Soc. 3 (1990), 147-158.
[Z] D. Zeilberger, Closed Form (pun intended!), Contemporary Mathematics 143 (1993), 579-607.

