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Abstract. We give a short and elementary proof of a result by K. Stolarsky.

K. Stolarsky [S] de�ned q-sequences having root-mean-square distance
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Consequently, we obtain the relations
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Hence the theorem is proved since f0 = h0 = 0. �

REMARKS: The argument used in the proof above is clearly valid for any sequence bm. Hence the

�rst line in equation (2) is basically the content of the Lemma in [S].
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