A Q-SERIES IN DISTANCE GEOMETRY

Tewodros Amdeberhan

Department of Mathematics, Temple University, Philadelphia PA 19122, USA
tewodros@euclid.math.temple.edu

Abstract. We give a short and elementary proof of a result by K. Stolarsky.
K. Stolarsky [S] defined q-sequences having root-mean-square distance

$$
P_{n}(q)=n^{2} q^{2(n-1)}-\sum_{k=1}^{n-1} k q^{2(k-1)}, \quad S_{n}(q)=\frac{\sqrt{P_{n}(q)}}{n}+\sum_{m=1}^{n-1} \frac{\sqrt{P_{m}(q)}}{m(m+1)}
$$

Theorem [S]:

$$
\sum_{k=0}^{n}\left(S_{n}(q)-S_{k}(q)\right)^{2}=n q^{2(n-1)}
$$

Proof: Let us denote $b_{m}:=\sqrt{P_{m}(q)}, S_{n}:=S_{n}(q), g_{n}:=\sum_{k=0}^{n}\left(S_{n}-S_{k}\right), f_{n}:=\sum_{k=0}^{n}\left(S_{n}-S_{k}\right)^{2}$ and $h_{n}:=n q^{2(n-1)}$. Now, observe that

$$
\begin{equation*}
S_{n}=\sum_{m=1}^{n} \frac{b_{m}-b_{m-1}}{m}, \quad g_{n+1}-g_{n}=\sum_{k=0}^{n}\left(S_{n+1}-S_{n}\right)=b_{n+1}-b_{n}, \quad \text { hence } \quad g_{n}=b_{n} \tag{1}
\end{equation*}
$$

Consequently, we obtain the relations

$$
\begin{align*}
f_{n+1}-f_{n} & =\left(S_{n+1}-S_{n}\right) \sum_{k=0}^{n}\left(\left(S_{n+1}-S_{k}\right)+\left(S_{n}-S_{k}\right)\right)=\frac{b_{n+1}-b_{n}}{n+1}\left(g_{n+1}+g_{n}\right)=\frac{b_{n+1}^{2}-b_{n}^{2}}{n+1} \tag{2}\\
& =\frac{P_{n+1}-P_{n}}{n+1}=\frac{(n+1)^{2} q^{2 n}-n(n+1) q^{2(n-1)}}{n+1}=h_{n+1}-h_{n}
\end{align*}
$$

Hence the theorem is proved since $f_{0}=h_{0}=0$.
REMARKS: The argument used in the proof above is clearly valid for any sequence b_{m}. Hence the first line in equation (2) is basically the content of the Lemma in [S].

References

[S] K. Stolarsky, q-Analogue Triangular Numbers and Distance Geometry, Proc. Amer. Math. Soc. 125 \#1 (1997), 35-39.

