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1. Introduction and statement of results

Using the classical weight 3/2 Jacobi theta function [19, Thm. 1.60]

∞ ∏︂
n=1

(1 − qn)3 =
∞ ∑︂
k=0

(−1)k(2k + 1)q
k(k+1)

2 = 1 − 3q + 5q3 − 7q6 + . . . ,

Ramanujan (in his ``lost notebook'' [20, p. 369]) defined the sequence of q-series

U2n(q) = 12n+1 − 32n+1q + 52n+1q3 − 72n+1q6 + · · ·
1 − 3q + 5q3 − 7q6 + · · · =

∑︁
k≥0(−1)k(2k + 1)2n+1q

k(k+1)
2 ∑︁

k≥0(−1)k(2k + 1)q
k(k+1)

2 
.

(1.1)
He observed that

U0 = 1, U2 = E2, U4 = 1
3(5E2

2 − 2E4), and U6 = 1
9(35E3

2 − 42E2E4 + 16E6),

where E2, E4, and E6 are the classical Eisenstein series

E2(q) := 1 − 24
∞ ∑︂

n=1

∑︂
d|n 

dqn, E4(q) := 1 + 240
∞ ∑︂

n=1

∑︂
d|n 

d3qn, and

E6(q) := 1 − 504
∞ ∑︂

n=1

∑︂
d|n 

d5qn.

Ramanujan also conjectured that each U2n(q) is a weight 2n quasimodular form on 
SL2(Z), a claim confirmed by Berndt et al. [7,8] in the early 2000s. Answering a question 
of Andrews and Berndt (see p. 364 of [5]), Singh and two of the authors recently found 
explicit formulas [1] for each U2n(q) as traces of partition Eisenstein series (see (1.8)).

The key to these formulas is the discovery of the generating function (see Th. 3.4 of 
[1])1

Ω(X) :=
∞ ∑︂

n=0
U2n(q) · X2n

(2n + 1)! = sinhX

X
·
∏︂
j≥1

[︃
1 − 4(sinh2 X)qj

(1 − qj)2

]︃
. (1.2)

Since Ramanujan’s forms all have even weight, this generating function becomes a device 
for producing infinite sequences of quasimodular forms of all nonnegative integer weights, 
where the coefficient of Xn has weight n. This method requires minimal additional input: 
a choice of a weight 1 modular form, a nonzero complex number α, and a formal power 
series

1 In [1, Thm. 3.4] we have replaced sin with hyperbolic sinh to eliminate the (−1)t factor.
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F (X) =
∞ ∑︂

m=0
a(m)Xm.

We illustrate this method for the congruence subgroup Γ0(4), the elements of the ring 
(for example, see [16]) C[θ, E2, E4, E6] = C[θ, E2, E4, E6, . . . ], where θ(q) is the weight 
1/2 theta function

θ(q) =
∏︂
k≥1

(1 − q2k)(1 + q2k−1)2 = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · . (1.3)

Using the weight 1 modular form θ(q)2, we obtain an infinite sequence of quasimodular 
forms, Yn(F, α; q), one for every nonnegative integer weight n. Indeed, the coefficient of 
Xn of

∞ ∑︂
n=0

Yn(F, α; q) · X
n

n! := F (θ(q)2 ·X) · Ω(αX) (1.4)

is a weight n quasimodular form on Γ0(4). By letting F (X) = eX/2 and α = 1/2, we 
obtain

∑︂
n≥0

Yn(q) · X
n

n! := exp
(︃
θ(q)2X

2 

)︃
· Ω

(︃
X

2 

)︃
, (1.5)

where for convenience, we let Yn(q) := Yn

(︁
eX/2, 1

2 ; q
)︁
.

Theorem 1.1. For each non-negative integer n, the following are true.

(1) We have that Yn(q) = 1 
n+1 + O(q) is a weight n quasimodular form on Γ0(4).

(2) We have that

Yn(q) = 1 
2n(n + 1)

⌊n
2 ⌋ ∑︂

k=0

(︃
n + 1 
2k + 1

)︃
θ(q)2n−4kU2k(q).

Examples. The first few q-series take the form Y0(q) = 1, and

Y1(q) = 1
2θ

2 = 1
2 + 2q + 2q2 + 2q4 + 4q5 + 2q8 + 2q9 + . . . ,

Y2(q) = 3θ4 + E2

12 
= 1

3 − 8q4 − 24q8 − 32q12 − 56q16 − 48q20 − . . . ,

Y3(q) = θ6 + θ2E2

8 
= 1

4 − q − 13q2 − 40q3 − 73q4 − 122q5 − . . . .

Each Yn(q) has a canonical symmetric function avatar, which we will relate to a 
symmetric polynomial arising from syzygies of numerical semigroups. To this end, we 
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make use of recent research by two of the authors that linked [3, Th. 1.5] the sequence 
{U2n(q)} to the ˆ︁A-genus of spin manifolds, a special generating function of polynomials, 
discovered by Borel and Hirzebruch. This identification is not immediate because the ˆ︁A
genus is expressed in terms of polynomials in Pontryagin classes [15] and not as q-series. 
The connection involves special symmetric function avatars of the sequence {U2n(q)}, a 
result that we will modify and then apply to the {Yn(q)} using Theorem 1.1 (2).

These identifications rely on partition Eisenstein series. For a partition λ =
(1m1 , . . . , nmn) ⊢ n, where mj is the multiplicity of j, the partition Eisenstein series 
is given by (see [1, (1.5)] or [2, (1.2])

λ = (1m1 , 2m2 , . . . , nmn) ⊢ n ↦−→ Eλ := Em1
2 Em2

4 · · ·Emn
2n , (1.6)

where the classical Eisenstein series (see Chapter 1 of [19]) are defined by

E2k(q) := 1 − 4k 
B2k

∞ ∑︂
n=1

σ2k−1(n)qn, (1.7)

and B2k is the 2kth Bernoulli number and σv(n) :=
∑︁

d|n d
v. If ϕ is a function on integer 

partitions and n is positive integer, then the nth trace of partition Eisenstein series [1, 
(1.6)] is defined by

Trn(ϕ; q) :=
∑︂
λ⊢n

ϕ(λ)Eλ(q).

Singh and two of the authors [1, Th. 1.3 (1)] proved that each U2n(q) is the trace

U2n(q) = Trn(ϕU ; q), (1.8)

where we let

ϕU (λ) := (2n + 1)! 4n ·
n ∏︂

j=1

1 
mj !

(︃
B2j

(2j)(2j)!

)︃mj

.

Hence, Theorem 1.1 (2) can be reformulated in terms of traces of partition Eisenstein 
series.

Theorem 1.2. If n is a nonnegative integer, then

Yn(q) = 1 
2n(n + 1)

⌊n
2 ⌋ ∑︂

k=0

(︃
n + 1 
2k + 1

)︃
θ(q)2n−4k Trk(ϕU ; q).

Remark. We could have declared θ(q)2 as an Eisenstein series allowing us to reformulate 
the sums in Theorem 1.2 as partition Eisenstein traces over {θ(q)2, E2, E4, E6, . . . }, along 
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the lines of recent work by Bringmann, Pandey, and van Ittersum [9]. However, this would 
have required unnecessary new notation.

We use these identities to obtain avatars of the U2n(q). The correspondence between 
quasimodular forms and symmetric functions is made by substituting2 each

E2k(q) ←→ p2k(xxx),

in (1.6) and (1.8). Here p2k(xxx) =
∑︁

i≥1 x
2k
i is the 2kth even power sum symmetric 

function, where we let xxx = (x1, x2, . . . ). In particular, we have

Ψ(Eλ) =
n ∏︂

i=1
Ψ(E2i)mi = pλ(xxx) where pλ(xxx) := p2(xxx)m1p4(xxx)m2 · · · p2n(xxx)mn ,

(1.9)
which we extend linearly to define the symmetric function representation of Ψ(U2n(q))
using (1.8).

In view of Theorem 1.2, to produce symmetric polynomial avatars of each Yn(q), we 
must also define Ψ(θ(q)2). Although there are no weight 1 modular forms on SL2(Z), 
one can ``think of'' θ(q)2 as a proxy for E1(q) for several reasons. First, it has weight 1. 
Additionally, by setting k = 1/2 and replacing σ2k−1(n) with σ∗(n) := d1(n) − d3(n), 
where dj(n) is the number of divisors of n congruent to j modulo 4, in (1.7), we find

θ(q)2 = 1 − 2 
B1

∞ ∑︂
n=1

σ∗(n)qn = 1 + 4
∞ ∑︂

n=1
σ∗(n)qn.

The only adjustment needed is a minor modification to the divisor function. Therefore, 
it is consistent to let Ψ : θ2(q) ↦→ p1(xxx) = x1 + x2 + . . . . Hence, thanks to Theorem 1.2, 
we define the symmetric polynomial counterpart to Yn(q) by

˜︁Yn(xxx) := 1 
(n + 1)2n

⌊n
2 ⌋ ∑︂

k=0

(︃
n + 1 
2k + 1

)︃
p1(xxx)n−2k · Ψ(U2k(q)). (1.10)

The first few examples are as follows:

˜︁Y0(xxx) = 1, ˜︁Y1(xxx) = 1
2p1(xxx), ˜︁Y2(xxx) = 3p1(xxx)2 + p2(xxx)

12 
,

˜︁Y3(xxx) = p1(xxx)3 + p1(xxx)p2(xxx)
8 

,

˜︁Y4(xxx) = 15p1(xxx)4 + 30p1(xxx)2p2(xxx) + 5p2(xxx)2 − 2p4(xxx)
240 

.

2 This identification is different from [3], where pk ←→ E2k.
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In Section 2.1, we define symmetric functions Tn(xxxk) (defined in (2.8) using polyno
mials Pm(xxxk) given by (2.7)), where xxxk = (x1, x2, . . . , xk). These functions arise from a 
study of the alternating power sums of syzygies degrees of numerical semigroups. In [12], 
the second author explicitly computed many of these functions, where the first include 
the following.

T0(xxxk) = 1, T1(xxxk) = 1
2p1(xxxk), T2(xxxk) = 3p1(xxxk)2 + p2(xxxk)

12 
,

T3(xxxk) = p1(xxxk)3 + p1(xxxk)p2(xxxk)
8 

,

T4(xxxk) = 15p1(xxxk)4 + 30p1(xxxk)2p2(xxxk) + 5p2(xxxk)2 − 2p4(xxxk)
240 

.

One immediately notices the similarity between these symmetric functions. It is not an 
accident.

Theorem 1.3. For every pair of positive integers k and n, we have ˜︁Yn(xxxk) = Tn(xxxk).

Remark. The ˜︁Yn(xxx) are defined with infinitely many variables xxx = (x1, x2, . . . ). In Theo
rem 1.3, we replace xxx by xxxk = (x1, . . . , xk), which is required in the context arising from 
numerical semigroups.

Theorem 1.3, which stems from Ramanujan’s U2n(q), unexpectedly offers deep insight 
into the theory of these symmetric polynomials. This knowledge allows us to solve two 
conjectures that the second author [12] formulated about Tn(xxxk). The first is that the 
Tn(xxxk) are modified versions of symmetric polynomials fn(xxxk) that arise from (restricted) 
integer partitions (see (2.11) and (2.12) for the definition and additional properties).

Conjecture 1.4. [Conjecture 2.1 of [12]] If n ≥ 2, then we have

Tn(p1, p2, p3, p4, . . . , pn) = fn(p1,−p2, p3,−p4, . . . , pn).

Theorem 1.5. Conjecture 1.4 is true.

The second conjecture of [12] claimed striking identities. To state the conjecture,3 we 
require the numbers A2j+1, known as the tangent/zig-zag numbers (counting up/down 
permutations), which have the exponential generating function

secx + tan x =
∑︂
j≥0 

Aj · x
j

j! .

3 We note that we offer a more precise formulation of the conjecture [12, p. 62].
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Conjecture 1.6. [Conjecture 3.1 of [12]] For a positive integer n, we have

T2n+1(xxxk) 
T 2n+1

1 (xxxk)
=

n ∑︂
j=0 

(−1)jA2j+1

(︃
2n + 1
2j + 1 

)︃
T2n−2j(xxxk) 
T 2n−2j

1 (xxxk)
.

Theorem 1.7. Conjecture 1.6 is true.

These results illustrate the rich mathematics that arises from Ramanujan’s U2n(q) by 
letting F (X) = exp(X/2) and α = 1/2 in (1.4). Hence, it is natural to ask the following 
open-ended questions.

Question 1. In view of Theorem 1.2 and [3, Th. 1.4], it is natural to ask whether the 
sequence {Tn(xxxk)} encodes algebraic information about the Pontryagin classes [15] of 
spaces assembled from spin manifolds, perhaps through the framework of syzygies of the 
genera of numerical semigroups.

Question 2. Do other choices of weight 1 modular forms and power series F (X) in (1.4) 
produce further important sequences of symmetric polynomials that are independent of 
the power sum symmetric functions p3, p5, p7, . . . ?

Question 3. Does (1.4) generalize to other families of even weight quasimodular forms 
(i.e., replacing U2n(q) and the generating function Ω(X))? Is there a general theory, 
perhaps arising from the theory of Jacobi forms?

The proofs of these results make use of tools from umbral calculus, Pólya’s cycle 
index theorem and involutions on symmetric functions. In Section 2, we recall the nuts 
and bolts that we require. Namely, in Subsection 2.1 we offer the required background 
on numerical semigroups and the symmetric polynomials Tr(xxxk) and their algebraic 
properties, and in Subsection 2.2, we recall the symmetric functions fr(dk) that arise 
from restricted integer partitions. Finally, in Section 3 we compile these results to prove 
Theorems 1.1, 1.2, 1.3, 1.5, and 1.7.

Acknowledgments

The authors thank Toshiki Matsusaka, Badri Pandey, Ajit Singh for their construc
tive comments on earlier versions of this paper. T.A. especially thanks Ira Gessel and 
Christophe Vignat for valuable discussions. The third author thanks the Thomas Jeffer
son Fund and the NSF (DMS-2002265 and DMS-2055118).

2. Nuts and bolts

In this section, we recall basic facts about two families of symmetric polynomials, 
one arising from numerical semigroups, and the other arising from restricted integer 
partitions.
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2.1. Symmetric functions arising from syzygies of numerical semigroups

Let N denote the set of all non-negative integers. A numerical semigroup ⟨d1, . . . , dm⟩
is a subset Sm ⊂ N containing 0, closed under summation, with finite complement in N. 
A set of generators {d1, . . . , dm} of a numerical semigroup Sm satisfies gcd(d1, . . . , dm) =
1 and is minimal if none of its proper subsets generates the numerical semigroup Sm

[13]. Its generating function is given by

H (Sm; z) =
∑︂

s ∈ Sm

zs, z < 1, 0 ∈ Sm, (2.1)

and is known as the Hilbert series of Sm and has a rational representation (Rep),

H (Sm; z) = Q (Sm; z)∏︁m
i=1 (1 − zdi)

, (2.2)

where

Q (Sm; z) = 1−
β1∑︂
j=1 

zC1,j +
β2∑︂
j=1 

zC2,j − · · · ±
βm−1∑︂
j=1 

zCm−1,j , 
m−1∑︂
k=0 

(−1)kβk = 0, (2.3)

while Ck,j ∈ N, 1 ≤ k ≤ m− 1, 1 ≤ j ≤ βk, and Ck,j and βk stand for degrees of the 
kth syzygy and partial Betti’s numbers, respectively [23]. Here β0 = 1.

We denote by Ck(Sm) the alternating power sum of syzygy degrees

Ck(Sm) :=
β1∑︂
j=1 

Ck
1,j −

β2∑︂
j=1 

Ck
2,j + . . .− (−1)m−1

βm−1∑︂
j=1 

Ck
m−1,j . (2.4)

We have that [10, Thm. 1]

C0(Sm) = 1, Cr(Sm) = 0, 1 ≤ r ≤ m− 2, Cm−1(Sm) = (−1)m(m− 1)! · πm,

where we let πm :=
∏︁m

i=1 di. For r ≥ m, these sums were calculated and furnished in 
[11, (22)] as

Cn(Sm) = (−1)mn! 
(n−m) ! πm ·Kn−m(Sm), Kt(Sm) > 0, t ≥ 0, (2.5)

where Kt(Sm) is a linear combination of the genera G0(Sm), . . . , Gt(Sm) of the semigroup 
Sm, and Gt(Sm) :=

∑︁
s∈Δm

st. Here, Δm := N \ Sm and G0(Sm) = #Δm denote a set 
of gaps and a genus of Sm, respectively.

A special kind of numerical semigroups Sm, with the first Betti number β1 = m−1, is 
called a symmetric complete intersection (CI), where the freedom to choose generators 
{d1, . . . , dm} of the semigroup SCI

m becomes restricted due to the relations
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βk = βm−k−1, β1 = m− 1, βm−1 = 1,

Ck,j + Cm−k−1,j = Cm−1,1, min{d1, . . . , dm} ≥ m + 1.

The rational Rep of its Hilbert series reads

H
(︁
SCI
m ; z

)︁
=

∏︁m−1
j=1 (1 − zej )∏︁m
i=1 (1 − zdi)

and ej ≥ 2(m + 1). (2.6)

The tuple eeem−1 := (e1, . . . , em−1) presents the m − 1 degrees of the first syzygy for 
symmetric CI semigroup SCI

m .
In contrast to Q (Sm; z) of (2.2), (2.3)), the numerator in (2.6) is the special symmetric 

polynomial Pn(em−1) introduced by the second author [12]:

Pn(xxxm) :=
m ∑︂
j=1 

xn
j −

m ∑︂
1≤j<r

(xj + xr)n +
m ∑︂

1≤j<r<i

(xj + xr + xi)n − . . .

− (−1)m
⎛⎝ m ∑︂

j=1 
xj

⎞⎠n

. (2.7)

This polynomial allows [12] for the construction of the polynomials Tn(xxxm) from

Pn(xxxm) = (−1)m+1n!
(n−m)! χmTn−m (xxxm) , χm =

m ∏︂
j=1

xj , T0 (xxxm) = 1, (2.8)

These polynomials enjoy numerous properties, such as the following.

Proposition 2.1. [12, Lm. 1.3] We have the inequality Tn(x1, . . . , xm) ≥ 0 whenever 
x1, . . . , xm ≥ 0.

Remark. From (2.8), one might not expect that these symmetric functions are indepen
dent of p2j−1(xxxk), where j > 1, which is a consequence of Theorem 1.3.

For completeness, we remind the reader on the importance of these polynomials 
Tn(xxxm). They are conjectured (see Conjecture 2.2 below) to play a central role in the 
explicit description of alternating power sums of syzygy degrees for the genera of the 
semigroups Sm.

Conjecture 2.2. If we let σj =
∑︁m

i=1 d
j
i and δj = σj−1

2j , then we have

Kt(Sm) =
t ∑︂

r=0 

(︃
t 
r

)︃
Tt−r(σ)Gr(Sm) + 2t+1

t + 1Tt+1(δ), (2.9)
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where Tr(X) := Tr(X1, . . . , Xr) stand for symmetric polynomials in the power sums

Xk(xxxm) :=
m ∑︂
j=1 

xk
j for an m-tuple xxxm := (x1, . . . , xm). (2.10)

2.2. Symmetric functions arising from partitions

Polynomials Tn(xxxk) are analogous to another sequence of polynomials {fn} that arise 
in the theory of integer partitions. Given dk := {d1, . . . , dk}, consider the restricted 
partition function W (s;dk) (see [4]), which counts integer partitions of s ≥ 0 into k
positive integers (d1, . . . , dk).

It is well-known (see, for example [10, Section 3.1]) that W (s;dddk) can be described in 
terms of finitely many quasipolynomials Wq(s;dddk), each containing a single q-periodic 
function with W1(s;dddk) being a polynomial, given in the form

W (s;dddk) =
∑︂
q|di

1≤i≤k

Wq(s;dddk).

The Wq(s;dddk)’s are called the Sylvester waves. In particular, W1(s;dddk) is referred to as 
the first Sylvester wave and has fascinating properties. For example, W1(s;dddk) is the 
polynomial part of W (s;dddk) having an explicit formula [10, (3.16) and (7.1)] given by

W1(s;dk) = 1 
(k − 1)!πk

k−1∑︂
j=0 

(︃
k − 1
j

)︃
fj(dk)sk−1−j , fj(dk) =

(︄
σ1 +

k∑︂
i=1 

ℬidi

)︄j

,

(2.11)

where σ1 :=
∑︁k

j=1 dj and πk :=
∏︁k

i=1 di. For our purpose in this paper, we will replace 
dddk = (d1, . . . , dk) by xxxk = (x1, . . . , xk) and σj by the power sum pj in the variables 
(x1, . . . , xk). By treating the ℬi’s as independent random variables, the Bernoulli sym
bolism (ℬixi)n is understood as ℬn

i x
n
i = Bnx

n
i where

z

exp(z) − 1 =
∑︂
n≥0

Bn · z
n

n! 

generates the Bernoulli numbers.

Examples. The first few symmetric polynomials

fn(xxxk) :=
(︄
p1 +

k∑︂
i=1 

ℬixi

)︄n

= fn(p1, . . . , pn), (2.12)

expanded in power sums (for example, see [10, (7.2)]), are:
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f0(xxxk) = 1, f1(xxxk) = 1
2p1, f2(xxxk) = 3p2

1 − p2

12 
, f3(xxxk) = p3

1 − p1p2

8 
,

f4(xxxk) = 15p4
1 − 30p2

1p2 + 5p2
2 + 2p4

240 
, f5(xxxk) = 3p5

1 − 10p3
1p2 + 5p1p

2
2 + 2p1p4

96 
,

f6(xxxk) = 63p6
1 − 315p4

1p2 + 315p2
1p

2
2 + 126p2

1p4 − 35p3
2 − 42p2p4 − 16p6

4032 
.

Remark. If we set all of the variables to x, then we obtain the convolution Stirling 
polynomials studied by Knuth [17]

f1(x) = x

2 
, f2(x, x) = 3x2 − x

12 
, f3(x, x, x) = x3 − x2

8 
,

f4(x, . . . , x) = 15x4 − 30x3 + 5x2 + 2x
240 

. . . ,

which has generating function

(︃
z exp(z) 

exp(z) − 1

)︃x

=
∞ ∑︂

n=0
fn(x, . . . , x) · z

n

n! .

3. Proofs of Theorems 1.1, 1.2, 1.3, 1.5, and 1.7

Here we prove the results from the Introduction using the material in the previous 
section.

3.1. Proof of Theorems 1.1 and 1.2

We consider (1.4) for a general power series

F (X) =
∞ ∑︂

m=0
a(m)Xm.

Since we have

Ω(αX) =
∞ ∑︂
t=0 

U2t(q) · α2tX2t

(2t + 1)! ,

it follows that

Yn(F, α; q) =
∑︂

m+2t=n

a(m) · n!α2t

(2t + 1)! · θ(q)2mU2t(q).

Since θ(q) is a weight 1/2 modular form on Γ0(4) ⊆ SL2(Z) (for example, see Chapter 
1 of [19]) and U2t(q) is a weight 2t quasimodular form on SL2(Z), it follows that each 
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θ(q)2mU2t(q) is a weight m+ 2t = n quasimodular form on Γ0(4), which in turn implies 
that Yn(F, α; q) is as well.

The proof of Theorem 1.1 (1-2) follows easily from the Taylor expansion of F (X) =
exp(X/2) and direct algebraic manipulation. To obtain Theorem 1.2, one simply substi
tutes (1.8) (see also [1, Thm. 1.3 (1)]) into the formulas in Theorem 1.1 (2).

3.2. Proof of Theorem 1.5

We require a few elementary facts from probability theory in the context of umbral 
calculus (for background on umbral calculus, see [21]).

Lemma 3.1. If we let ℬn = Bn (Bernoulli numbers), 𝒞n := (−1)n
n+1 and 𝒟n := 1 

n+1 , then 
for positive integers n in umbral formalism (treating ℬ, 𝒞 and 𝒟 as random variables) 
the following are true:

(1) (ℬ + 𝒟)n = 0.
(2) (ℬ + 𝒞)n = (−1)n.
(3) 1 + 𝒞 = 𝒟.
(4) 1 + ℬ = −ℬ.
(5) (−ℬ)n = ℬn for n ̸= 1 with B1 = −1

2 .

Proof. Since these claims are straightforward, we only prove two of them. To prove (4), 
we recall the generating function

exp(ℬz) =
∑︂
n≥0

ℬn · z
n

n! =
∑︂
n≥0

Bn · z
n

n! = z

exp(z) − 1 .

This implies that

exp((1 + ℬ)z) = z exp(z) 
exp(z) − 1 = −z 

exp(−z) − 1 = exp((−ℬ)z).

Similarly, we have that

exp(𝒟z) =
∑︂
n≥0

𝒟n z
n

n! =
∑︂
n≥0

1 
n + 1

zn

n! =
exp(z) − 1

z
.

Therefore, (1) follows from the identity

exp((ℬ + 𝒟)z) = z

exp(z) − 1 · exp(z) − 1
z

= 1 = exp(0z),

which means that ℬ and 𝒟 annihilate each other. □
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Using this lemma, we provide an umbral expression for Tn(xxxk) in the spirit of (2.12).

Lemma 3.2. If 𝒞i = (−1)i
i+1 is a sequence and k, n ∈ N, then we have

Tn(xxxk) =
(︄
p1 +

k∑︂
i=1 

𝒞ixi

)︄n

.

Proof. Given a partition λ = (λ1, λ2, . . . ), let mλ denote the associated monomial sym
metric function [22, Chapter 7] by mλ defined by

mλ :=
∑︂
α 

xα1
1 xα2

2 · · ·

where the sum ranges over all distinct permutations α = (α1, α2, . . . ) of the entries of λ. 
For example, m(1,1) =

∑︁
i<j xixj and m(2,1,1) =

∑︁
x2
ixjxk with i, j, k distinct.

Given a sequence 𝒰1,𝒰2, . . . , we write 𝒰λ = 𝒰λ1𝒰λ2 · · · . From Lemma 3.1 (3), we 
obtain

(︄
p1 +

∑︂
i 

𝒞ixi

)︄n

=
(︄∑︂

i 
𝒟ixi

)︄n

.

Then, the multinomial theorem and umbral calculus together gives

(︄
k∑︂

i=1 
𝒟ixi

)︄n

=
∑︂
λ⊢n

(︃
n 

λ1, λ2, . . .

)︃
𝒟λmλ. (3.1)

We apply (3.1) with 𝒟 replaced by 111 = (1, 1, . . . ) and n replaced by n′ := n + k, while 
we rank partitions according to their lengths, to reformulate (2.7) to obtain

𝒫n′(xxxk)

=
k∑︂

t=1 
(−1)t−1

∑︂
1≤j1<···<jt≤n′

(xj1 + · · · + xjt)n
′

=
k∑︂

t=1 
(−1)t−1

∑︂
1≤j1<···<jt≤n′

t ∑︂
ℓ=1 

∑︂
1≤s1<···<sℓ≤n′

s1,...,sℓ∈{j1,...,jt}

∑︂
μ⊢n′
ℓ(μ)=ℓ

(︃
n 

μ1, . . . , μℓ

)︃
mμ(xs1 , . . . , xsℓ)

=
k∑︂

ℓ=1 

k∑︂
t=ℓ 

(−1)t−1
∑︂

1≤j1<···<jt≤n′

∑︂
1≤s1<···<sℓ≤n′

s1,...,sℓ∈{j1,...,jt}

∑︂
μ⊢n′
ℓ(μ)=ℓ

(︃
n′

μ1, . . . , μℓ

)︃
mμ(xs1 , . . . , xsℓ)
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=
k∑︂

ℓ=1 

k∑︂
t=ℓ 

(−1)t−1
∑︂

1≤j1<···<jt≤n′

∑︂
μ⊢n′
ℓ(μ)=ℓ

(︃
n′

μ1, . . . , μℓ

)︃⎧⎪⎪⎨⎪⎪⎩
∑︂

1≤s1<···<sℓ≤n′
s1,...,sℓ∈{j1,...,jt}

mμ(xs1 , . . . , xsℓ)

⎫⎪⎪⎬⎪⎪⎭ .

For a given t, ranging in {1, . . . , k}, counting the subsets {j1, . . . , jt} that contain 
{s1, . . . , sℓ} leads to

𝒫n′(xxxk) =
k∑︂

ℓ=1 

∑︂
μ⊢n′
ℓ(μ)=ℓ

(︃
n′

μ1, . . . , μℓ

)︃ ∑︂
1≤s1<···<sℓ≤n′

mμ(xs1 , . . . , xsℓ)
k∑︂

t=ℓ 
(−1)t−1

(︃
k − ℓ

t− ℓ 

)︃

= (−1)k−1
∑︂

μ⊢n+k
μi≥1

(︃
n + k 

μ1, . . . , μk

)︃
mμ(x1, . . . , xk)

= (−1)k−1 (n + k)!
n! x1 · · ·xk

∑︂
λ⊢n

(︃
n 

λ1, · · · , λk

)︃
mλ(x1, . . . , xk) 

(λ1 + 1) · · · (λk + 1)

=
(−1)k−1(n + k)! ·∏︁k

j=1 xj

n! 

(︄
k∑︂

i=1 
𝒟ixi

)︄n

,

where the last equality is due to (3.1). The claim follows by applying (2.8). □
The proof of Theorem 1.5 will also require the following fact about products of formal 

power series and the (unique) involution ω on symmetric functions, that is determined 
by the action ω(pn) = (−1)n−1pn on power sum functions (see, for example [22, Chapter 
7]).

Lemma 3.3. If f(z) is a formal power series with constant term 1 and g(z) := 1 
f(−z) , 

then

ω

(︄∏︂
i 
f(zxi)

)︄
=

∏︂
i 
g(zxi).

Proof. We begin the proof by letting

L(z) = log f(z) =
∑︂
k≥1

Lkz
k,

which in turns give log g(z) = −L(−z). Therefore, we find that

log
(︄∏︂

i 
f(zxi)

)︄
=

∑︂
i 

log f(zxi) =
∑︂
i 

∑︂
k

Lkx
k
i z

k =
∑︂
k

Lkpkz
k,

where pk is the kth power sum symmetric function. Applying ω, we obtain
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ω

(︄
log

(︄∏︂
i 
f(zxi)

)︄)︄
=

∑︂
k

(−1)k−1Lkpkz
k = −

∑︂
i 

L(−zxi) =
∑︂
i 

log g(zxi).

The claimed product formula follows by exponentiation. □
Proof of Theorem 1.5. Thanks to Lemma 3.1 (3) and (4), respectively, we have

(︄
p1 +

∑︂
i 

𝒞ixi

)︄r

=
(︄∑︂

i 
𝒟ixi

)︄r

and
(︄
p1 +

∑︂
i 

ℬixi

)︄r

=
(︄∑︂

i 
(−ℬi)xi

)︄r

.

By expressing these expressions in terms of the power sum bases for symmetric functions 
(utilizing the two umbral representations (2.12) and Lemma 3.2), we obtain

(︄∑︂
i 

𝒟ixi

)︄r

= Tr(p1, p2, . . . ) =
∑︂
λ⊢r 

gλpλ(xxx),

(︄∑︂
i 

˜︁ℬixi

)︄r

= fr(p1, p2, . . . ) =
∑︂
λ⊢r 

˜︁gλpλ(xxx),

for some coefficients gλ and ˜︁gλ where xxx = (x1, x2, . . . ) and ˜︁ℬi = −ℬi.
Next, one employs Lemma 3.3 with the exponential generating functions

f(z) = exp(z) − 1
z

and g(z) = z

1 − exp(−z) ,

respectively, for 𝒟k = 1 
k+1 and (−1)kBk. By extracting the degree r terms (in z) and 

noting that ω(pk) = (−1)k−1pk, we obtain the desired outcome that

Tr(p1, p2, p3, p4, . . . ) = fr(p1,−p2, p3,−p4, . . . ). □
3.3. Proof of Theorem 1.3

Recalling (1.8) and the identification Ψ(E2n(q)) = p2n(xxxk), we define

u2n(xxxk) := Ψ(U2n(q))

and

˜︁u2n(xxxk) :=
∑︂
λ⊢n

ϕU (λ) 
n ∏︂

j=1
Ψ(−E

mj

2j ) whenever λ = (1m1 , 2m2 , . . . , nmn). (3.2)
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Example. We list the first few of the above two sequences of polynomials:

u0 = 1, u2 = p2, u4 = 5p2
2 − p4

3 
, u6 = 35p3

2 − 42p2p4 + 16p6

9 
.

˜︁u0 = 1, ˜︁u2 = −p2, ˜︁u4 = 5p2
2 + p4

3 
, ˜︁u6 = −35p3

2 + 42p2p4 + 16p6

9 
.

Remark. In this section, we make important use of Pólya’s cycle index theorem (PCIT) 
[22, Section 5]

exp

⎛⎝∑︂
j≥1 

Zj
wj

j

⎞⎠ =
∑︂
n≥0

⎛⎝∑︂
λ⊢n

n ∏︂
j=1

1 
mj !

(︃
Zj

j

)︃mj

⎞⎠wn,

where we require writing a partition in the frequency notation λ = (1m1 . . . tmn) ⊢ n. 
PCIT is deeply intertwined with other key results and methods, offering a consistent 
approach to a variety of counting problems that are similar and adjacent to the results 
in this paper. Specifically, it provides a method for deriving generating functions for 
structures related to generalized Bernoulli and Bell polynomials [18], Bernoulli-Barnes 
polynomials [6] (with interesting connection to Fourier Dedekind sums), and it forms a 
crucial part of the standard exponential generating functions due to Touchard [22, Eq’n. 
(5.30)].

We proceed with some relevant preparatory results. The first of which, Lemma 3.4), 
is an explicit and compact umbral representations of u2n and ˜︁u2n (hence of U2n, by 
association) in the form of

u2n = (2n + 1)
(︄

k∑︂
i=1 

(1 + 2𝒞i)xi

)︄2n

and ˜︁u2n = (2n + 1)
(︄

k∑︂
i=1 

(1 + 2ℬi)xi

)︄2n

,

where 𝒞 and ℬ are defined in Lemma 3.1. In this context, observe our use of the umbral 
mechanism for a k-tuple of symbol:

ℬa1
1 ℬa2

2 · · · ℬak

k −→ Ba1Ba2 · · ·Bak
,

where a1 + a2 + · · · + ak = n.

Lemma 3.4. For each nonnegative integer n, we have(︄
k∑︂

i=1 
(1 + 2𝒞i)xi

)︄n

=
{︄

un

n+1 if n is even
0 if n is odd,(︄

k∑︂
i=1 

(1 + 2ℬi)xi

)︄n

=
{︄ ˜︁un

n+1 if n is even
0 if n is odd.
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Proof. We only prove the second assertion, as the first one follows a similarly. To this 
end, we recall the series expansion [14, 1.518.1] for the reciprocal of what we call here 
the sinhc function sinhc(t) = sinh(t)

t (reminiscent of the sinc function) given by

1 
sinhc(t) = exp

⎛⎝−
∑︂
n≥1

4nB2n

(2n)(2n)! · t
2n

⎞⎠ . (3.3)

On the other hand, the (usual) exponential generating function for the Bernoulli numbers 
takes the form

exp(ℬz) =
∑︂
n≥0

ℬn z
n

n! =
∑︂
n≥0

Bn
zn

n! =
z

exp(z) − 1

from which it is natural to deduce that

exp((1 + 2ℬi)xiz) =
∑︂
n≥0

((1 + 2ℬi)xi)n
zn

n! = 2xiz · exp(xiz)
exp(2xiz) − 1 

= 1 
sinhc(xiz)

. (3.4)

Consequently, (3.4) implies the finite product

k∏︂
i=1

1 
sinhc(xiz)

= exp
(︄
z

k∑︂
i=1 

(1 + 2ℬi)xi

)︄
=

∑︂
n≥0

zn

n! 

(︄
k∑︂

i=1 
(1 + 2ℬi)xi

)︄n

. (3.5)

Combining (3.3), (3.5) and Pólya’s cycle index theorem [22, Section 5], we arrive at

∑︂
n≥0

zn

n! 

(︄
k∑︂

i=1 
(1 + 2ℬi)xi

)︄n

=
k∏︂

i=1

1 
sinhc(xiz)

= exp

⎛⎝−
∑︂
n≥1

4nB2n p2n

(2n)(2n)! · z
2n

⎞⎠
=

∑︂
n≥0

z2n
∑︂
λ⊢n

⎛⎝ n ∏︂
j=1

1 
mj !

(︃ −4jB2j

(2j)(2j)!

)︃mj

⎞⎠Ψ(Eλ).

Compare the coefficients of zn on both sides, together with (3.2), to complete the 
proof. □

In [12, (25)]), one of the authors proved the identity

f2n+1 =
2n+1∑︂
j=1 

(−1)j+1
(︃

2n + 1
j

)︃
f j
1f2n+1−j . (3.6)

The next result reproves (3.6) and extends it to all fn.
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Lemma 3.5. For each positive integer n, we have the recursive formula that

fn =
{︄∑︁n

j=1(−1)j+1(︁n
j

)︁
f j
1fn−j if n is odd,∑︁n

j=1(−1)j+1(︁n
j

)︁
f j
1fn−j + ˜︁un

(n+1)2n if n is even.

Proof. Letting 𝔣 := p1 +
∑︁k

i=1 ℬixi The use of umbral symbolism allows for the more 
compact reformulation

(𝔣− f1)n =
{︄

0 if n is odd,˜︁un

(n+1)2n if n is even.
(3.7)

It suffices to only consider the case n is even. Recalling (2.12), expand the left-hand side 
as

(𝔣− f1)2n =
(︄
p1 +

k∑︂
i=1 

ℬixi − 1
2p1

)︄2n

= 1 
4n

(︄
k∑︂

i=1 
(1 + 2ℬi)xi

)︄2n

= ˜︁u2n

(2n + 1)4n ,

where the last equality is due to Lemma 3.4. □
We have now assembled enough results to help us prove the next instrumental lemma.

Lemma 3.6. For each integer n ≥ 0, we have the representations

Tn = 1 
(n + 1)2n

⌊n
2 ⌋ ∑︂

j=0 

(︃
n + 1 
2j + 1

)︃
pn−2j
1 u2j and fn = 1 

(n + 1)2n

⌊n
2 ⌋ ∑︂

j=0 

(︃
n + 1 
2j + 1

)︃
pn−2j
1 ˜︁u2j .

Proof. We proceed by induction on n. The base cases n = 0 and n = 1 are routine and 
hence omitted. If we revert to the umbral mechanics, in the variable ˜︁u only, the assertion 
amounts to fn = 1 

(n+1)2n

{︂
(p1+˜︁u)n+1−(p1−˜︁u)n+1

2˜︁u
}︂

.

The case n odd: We know from (3.6) and Lemma 3.5 that

f2n+1 =
2n+1∑︂
j=1 

(−1)j+1
(︃

2n + 1
j

)︃
f j
1f2n+1−j .

In light of this, we may continue using the induction hypothesis and the seed f1 = 1
2p1

to obtain

f2n+1 =
2n+1∑︂
j=1 

(−1)j+1(︁2n+1
j

)︁
pj1

(2n + 2 − j)22n+1

{︃
(p1 + ˜︁u)2n+2−j − (p1 − ˜︁u)2n+2−j

2˜︁u
}︃
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= 1 
(2n + 2)22n+1

2n+1∑︂
j=1 

(−1)j+1
(︃

2n + 2
j

)︃
pj1

{︃
(p1 + ˜︁u)2n+2−j − (p1 − ˜︁u)2n+2−j

2˜︁u
}︃

= 1 
(2n + 2)22n+1

{︃
(p1 + ˜︁u)2n+2 − (p1 − ˜︁u)2n+2

2˜︁u
}︃
.

The case n even: The argument is similar. We apply Lemma 3.5 and induction to write

f2n = ˜︁u2n

(2n + 1)4n +
2n ∑︂
j=1 

(−1)j+1

(2n + 1)22n

(︃
2n + 1

j

)︃
pj1

{︃
(p1 + ˜︁u)2n+1−j − (p1 − ˜︁u)2n+1−j

2˜︁u
}︃

= 1 
(2n + 1)22n

{︃
(p1 + ˜︁u)2n+1 − (p1 − ˜︁u)2n+1

2˜︁u
}︃
.

This completes the proof. □
Proof of Theorem 1.3. The proof follows by combining two structural results. The first 
one concerning Tn(xxxk) comes from Lemma 3.6. The other is our principal result from 
Theorem 1.2 in regard to Yn(q). Their common formulation is based on (1.10), which is 
due to the mapping Ψ. □
3.4. Proof of Theorem 1.7

In this subsection, we begin by recalling some calculations found in [12, p. 59, (13)], 
namely that

T3(xxxk) 
T 3

1 (xxxk) = 3 T2(xxxk) 
T 2

1 (xxxk) − 2,

T5(xxxk) 
T 5

1 (xxxk) = 5 T4(xxxk) 
T 4

1 (xxxk) − 20 T2(xxxk) 
T 2

1 (xxxk) + 16,

T7(xxxk) 
T 7

1 (xxxk) = 7 T6(xxxk) 
T 6

1 (xxxk) − 70 T4(xxxk) 
T 4

1 (xxxk) + 336 T2(xxxk) 
T 2

1 (xxxk) − 272.

The author [12] also derived a similar formulation for the polynomials fn(xxxk). How
ever, a compact formula is missing from [12, (25)-(26)] and we fill that gap. For integers 
n ≥ 1, the modified version of [12, page 61, (25)] is

f2n+1(xxxk) 
f2n+1
1 (xxxk)

=
n ∑︂

j=0 
(−1)jA2j+1

(︃
2n + 1
2j + 1 

)︃
f2n−2j(xxxk) 
f2n−2j
1 (xxxk)

. (3.8)

Theorem 1.7 is then an immediate consequence of Theorem 1.5 and (3.8) above.
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