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1. Introduction and statement of results

Using the classical weight 3/2 Jacobi theta function [19, Thm. 1.60]

o0

o0
[T -a? =Y (-D)F@k+1)¢ 5" =1-3¢+5¢ —7¢" +...,
n=1 k=0

Ramanujan (in his “lost notebook” [20, p. 369]) defined the sequence of g-series

k(k+1)

12n+1 _ 32n+1q 4 52n+1 3 _ 72n+1q6 S _ ZkZO(_l)k(2k + 1)2n+1q
1—3¢+5¢3—T¢0 +--- Zkzo( 12k +1)g [ICESH]
(1.1)

U2n (q) =

He observed that
1 1
Uy=1, Uy=F,y, U= g(5E§ —2F,), and Us = 5(35E§’ — 42F,Ey + 16Es),

where Fs, E4, and Fjg are the classical Eisenstein series

Es(q) ::1—24§:qu", E4(q) ::1+240§:Zd3 " and

n=1 d|n n=1 d|n

Es(q) == 1 — 504 i > dhq.

n=1 d|n

Ramanujan also conjectured that each Us,(q) is a weight 2n quasimodular form on
SL2(Z), a claim confirmed by Berndt et al. [7,8] in the early 2000s. Answering a question
of Andrews and Berndt (see p. 364 of [5]), Singh and two of the authors recently found
explicit formulas [1] for each Us,(q) as traces of partition Fisenstein series (see (1.8)).
The key to these formulas is the discovery of the generating function (see Th. 3.4 of

[1])!

X2n sinh X 4(sinh? X) ¢
Usan ( = . 11— ———5—1. 1.2
Z Y en+ X E[ (1—¢’)? )

Since Ramanujan’s forms all have even weight, this generating function becomes a device
for producing infinite sequences of quasimodular forms of all nonnegative integer weights,
where the coefficient of X™ has weight n. This method requires minimal additional input:
a choice of a weight 1 modular form, a nonzero complex number «, and a formal power
series

! In [1, Thm. 3.4] we have replaced sin with hyperbolic sinh to eliminate the (—1)" factor.
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= Z a(m)X

m=0

We illustrate this method for the congruence subgroup I'g(4), the elements of the ring
(for example, see [16]) C[0, Eq, E4, Eg| = C[0, Es, E4, Eg, .. .|, where 6(q) is the weight
1/2 theta function

0(q) = [T -+ 1) =1+ 20+ 2¢" +2¢° +2¢"0 + - . (1.3)
k>1

Using the weight 1 modular form 6(q)?, we obtain an infinite sequence of quasimodular
forms, Y, (F, a; q), one for every nonnegative integer weight n. Indeed, the coefficient of
X™ of

3 YalFaia) ) L= FB(a)?  X) - 9(0X) (1.4)

is a weight n quasimodular form on Ty(4). By letting F(X) = ¢X/2 and a = 1/2, we

obtain
Y Yalg) Xn = exp (9(‘1;2)() 0 (%) : (1.5)

n>0

where for convenience, we let Y,,(q) :=Y, (eX/2, 1:9).
Theorem 1.1. For each non-negative integer n, the following are true.

(1) We have that Y,,(q) = n+_1 + O(q) is a weight n quasimodular form on Ty(4).
(2) We have that

5]
) = g 2 (1) 20" Ul

Examples. The first few g-series take the form Yy(q) = 1, and

1 1
Yi(g) = 50 = 5 + 20 +20° + 20" +4¢° +20° + 2¢° + ..,

30* + B, 1
Ya(q) = % =3- 8¢* — 24¢® — 32¢'% — 56¢° — 48¢%° — ...,
0% +60%°F, 1
Y3((I):%:1fq—13q2740q3—73q47122q57....

Each Y,(¢) has a canonical symmetric function avatar, which we will relate to a
symmetric polynomial arising from syzygies of numerical semigroups. To this end, we
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make use of recent research by two of the authors that linked [3, Th. 1.5] the sequence
{Usn(q)} to the g—genus of spin manifolds, a special generating function of polynomials,
discovered by Borel and Hirzebruch. This identification is not immediate because the A-
genus is expressed in terms of polynomials in Pontryagin classes [15] and not as g-series.
The connection involves special symmetric function avatars of the sequence {Usz,(q)}, a
result that we will modify and then apply to the {Y,,(¢)} using Theorem 1.1 (2).

These identifications rely on partition FEisenstein series. For a partition A =
(1™, ...,n™) F n, where m; is the multiplicity of j, the partition Eisenstein series
is given by (see [1, (1.5)] or [2, (1.2])

A= (122 ™) B — Ey):=Ey"E™---Ey" (1.6)

2n >

where the classical Eisenstein series (see Chapter 1 of [19]) are defined by

Eo(q) ==1— —— ZU% 1(n)q", (1.7)

and By is the 2kth Bernoulli number and o, (n) := de d. If ¢ is a function on integer
partitions and n is positive integer, then the nth trace of partition Eisenstein series [1,
(1.6)] is defined by

Tro(¢q) == > d(N)

AFn

Singh and two of the authors [1, Th. 1.3 (1)] proved that each Us,(q) is the trace

Uan(q) = Trn(du; q), (1.8)

where we let

n 1 ng m;
du(N) == (2n +1)14"™ - Ul ot ((2])(2])') .

Hence, Theorem 1.1 (2) can be reformulated in terms of traces of partition Eisenstein
series.

Theorem 1.2. If n is a nonnegative integer, then

Lz)
_ 1 n+1 2n—4k .
)= i 2 (2k+ 1)9@) Tri(us q).

Remark. We could have declared 6(q)? as an Eisenstein series allowing us to reformulate
the sums in Theorem 1.2 as partition Eisenstein traces over {0(q)?, Es, E4, Es, . . . }, along
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the lines of recent work by Bringmann, Pandey, and van Ittersum [9]. However, this would
have required unnecessary new notation.

We use these identities to obtain avatars of the Us,(q). The correspondence between
quasimodular forms and symmetric functions is made by substituting” each

Ea1.(q) «— par(®),

in (1.6) and (1.8). Here pog(z) = Y.,o, 22* is the 2kth even power sum symmetric
function, where we let £ = (21,9, ...). In particular, we have

V(Ey) = H U(E)™ = pa(x) where  pa(2) := pa ()™ pa(x)™? - - - pon(x)™",
i=1
(1.9)
which we extend linearly to define the symmetric function representation of ¥ (Us,(q))
using (1.8).

In view of Theorem 1.2, to produce symmetric polynomial avatars of each Y;,(¢q), we
must also define ¥(6(q)?). Although there are no weight 1 modular forms on SLy(Z),
one can “think of” 6(q)? as a proxy for E;(q) for several reasons. First, it has weight 1.
Additionally, by setting k& = 1/2 and replacing og;—1(n) with o.(n) := di(n) — ds(n),
where d;(n) is the number of divisors of n congruent to j modulo 4, in (1.7), we find

2 oo oo
60)" =1=5-D ou(n)g" =144 ouln)g"
n=1 n=1

The only adjustment needed is a minor modification to the divisor function. Therefore,
it is consistent to let W : 6%(q) — p1(x) = z1 + 22 + .. .. Hence, thanks to Theorem 1.2,
we define the symmetric polynomial counterpart to Y;,(q) by

L5
Fate) = G 2 (e o e ¥Onla) (1.10)

The first few examples are as follows:

Yolx)=1, Yi(z)= %pl(z‘), Ya(z) = M7

12
373(1.) _ pi(x)? +1;1 (.vr:)pg(g;)7
Yi(z) = 15p1(2)" + 30p1 (2)2p2() + 5pa2(@)* — 2pa (@)

240

2 This identification is different from [3], where py <— Eay.
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In Section 2.1, we define symmetric functions 7,(z*) (defined in (2.8) using polyno-
mials P, (z*) given by (2.7)), where &% = (1,2, ...,2x). These functions arise from a
study of the alternating power sums of syzygies degrees of numerical semigroups. In [12],
the second author explicitly computed many of these functions, where the first include
the following.

T =1, Ti@)=me"), Db = 3P1<x’“>212+ pa(a")
T3($k) _ pl(xk)B +p81($k)p2($k)’
Ty() = 15p1(z*)* + 30p1 (2%)2pa(z*) + Bpa(2¥)? — 2p4(zk).

240

One immediately notices the similarity between these symmetric functions. It is not an
accident.

Theorem 1.3. For ecvery pair of positive integers k and n, we have Y, (x*) = T, (z").

Remark. The Y, (z) are defined with infinitely many variables = (z1, 22, . ..). In Theo-
rem 1.3, we replace £ by ¥ = (z1,...,2), which is required in the context arising from
numerical semigroups.

Theorem 1.3, which stems from Ramanujan’s Us,,(¢), unexpectedly offers deep insight
into the theory of these symmetric polynomials. This knowledge allows us to solve two
conjectures that the second author [12] formulated about T, (z*). The first is that the
T, (z*) are modified versions of symmetric polynomials f,, (z*) that arise from (restricted)
integer partitions (see (2.11) and (2.12) for the definition and additional properties).

Conjecture 1.4. [Conjecture 2.1 of [12]] If n > 2, then we have

Tn(Pl,PQ,PSaPAh s 7pn) = fn(plv —DP2,P3;, —P4, - - - apn)
Theorem 1.5. Conjecture 1./ is true.

The second conjecture of [12] claimed striking identities. To state the conjecture,® we
require the numbers As; 1, known as the tangent/zig-zag numbers (counting up/down
permutations), which have the exponential generating function
xJ
secx + tanx = ZA]» T

Jj=0

3 We note that we offer a more precise formulation of the conjecture [12, p. 62].
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Conjecture 1.6. [Conjecture 3.1 of [12]] For a positive integer n, we have

Tonia( ﬂ?k B zn: 2n + 1\ Ton—2;(z")
k) & AT T2 (k)

Theorem 1.7. Conjecture 1.6 is true.

These results illustrate the rich mathematics that arises from Ramanujan’s Us,,(q) by
letting F/(X) = exp(X/2) and o = 1/2 in (1.4). Hence, it is natural to ask the following
open-ended questions.

Question 1. In view of Theorem 1.2 and [3, Th. 1.4], it is natural to ask whether the
sequence {T),(z"*)} encodes algebraic information about the Pontryagin classes [15] of
spaces assembled from spin manifolds, perhaps through the framework of syzygies of the
genera of numerical semigroups.

Question 2. Do other choices of weight 1 modular forms and power series F(X) in (1.4)
produce further important sequences of symmetric polynomials that are independent of
the power sum symmetric functions ps, ps, p7,...7

Question 3. Does (1.4) generalize to other families of even weight quasimodular forms
(i-e., replacing Us,(q) and the generating function Q(X))? Is there a general theory,
perhaps arising from the theory of Jacobi forms?

The proofs of these results make use of tools from umbral calculus, Pélya’s cycle
index theorem and involutions on symmetric functions. In Section 2, we recall the nuts
and bolts that we require. Namely, in Subsection 2.1 we offer the required background
on numerical semigroups and the symmetric polynomials 7. (z*) and their algebraic
properties, and in Subsection 2.2, we recall the symmetric functions f,.(d¥) that arise
from restricted integer partitions. Finally, in Section 3 we compile these results to prove
Theorems 1.1, 1.2, 1.3, 1.5, and 1.7.

Acknowledgments

The authors thank Toshiki Matsusaka, Badri Pandey, Ajit Singh for their construc-
tive comments on earlier versions of this paper. T.A. especially thanks Ira Gessel and
Christophe Vignat for valuable discussions. The third author thanks the Thomas Jeffer-
son Fund and the NSF (DMS-2002265 and DMS-2055118).

2. Nuts and bolts
In this section, we recall basic facts about two families of symmetric polynomials,

one arising from numerical semigroups, and the other arising from restricted integer
partitions.
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2.1. Symmetric functions arising from syzygies of numerical semigroups

Let N denote the set of all non-negative integers. A numerical semigroup {(dy, ..., dm)
is a subset S;, C N containing 0, closed under summation, with finite complement in N.
A set of generators {dy, ..., d,} of a numerical semigroup S,, satisfies ged(dy,...,dn) =
1 and is minimal if none of its proper subsets generates the numerical semigroup S,,
[13]. Its generating function is given by

H(Smiz)= » 2, z<1, 0€Spm, (2.1)

s € Sm

and is known as the Hilbert series of S, and has a rational representation (Rep),

Q (Sm; 2)

HE T I =y

(2.2)

where

—

Bm—1 m

B1 B2
m’ — _ 1,5 C,'_._, z m— ,"7
ICHEEED DICERD DTN PR
j=1 j=1 j=1

while Cp; €N, 1<k<m—-1, 1<j<fy, and Ck; and By stand for degrees of the
kth syzygy and partial Betti’s numbers, respectively [23]. Here 3y = 1.

- (-1)*Br =0, (2.3)
k=0

We denote by Cg(S,,) the alternating power sum of syzygy degrees

B1 B2 Bm—1
Ci(Sm) == CF; =Y Chi+...— (=)™ P > Ck . (2.4)
j=1 j=1 j=1

We have that [10, Thm. 1]
Co(Sm) =1, Cr(Sm) =0, 1<r<m-2, Crm—1(Sm) = (=)™ (m — 1) - mpp,

where we let m,, := HZL d;. For r > m, these sums were calculated and furnished in
[11, (22)] as

(=1)™n!
Crn(Sm) = 77 Tm - Kn_m m)s Ki(Sm , t20, 2.
where K;(Sy,) is a linear combination of the genera Go(Sy,), . .., G¢(Sy,) of the semigroup

Sm, and G¢(Sp,) = ZseAmst. Here, A,, := N\ S,,, and G((S,,) = #4A,, denote a set
of gaps and a genus of S,,, respectively.

A special kind of numerical semigroups S,,,, with the first Betti number 5; = m—1, is
called a symmetric complete intersection (CI), where the freedom to choose generators
{dy,...,dy} of the semigroup SS! becomes restricted due to the relations
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Bk = Bmfkfh 61 =m— 17 ﬁmfl = ]-7
Ckyj + Cm—k—l,j =Cm-1,1, min{dl, .. .,dm} >m+ 1.

The rational Rep of its Hilbert series reads

[ (1= 2%)

CrI. ) —
H (55 2) T (= 20)

and ej > 2(m+1). (2.6)

The tuple e~ ! := (ey,...,em_1) presents the m — 1 degrees of the first syzygy for
symmetric CI semigroup S$7.

In contrast to @ (Si,; 2) of (2.2), (2.3)), the numerator in (2.6) is the special symmetric
polynomial P, (e™~!) introduced by the second author [12]:

Pn(xm) = Zl’?— Z (1’j+xr)n+ Z (ij —|—xr+xz)n—
Jj=1 1<5<r 1<j<r<i
- (X 27
j=1

This polynomial allows [12] for the construction of the polynomials T,,(z™) from

(_1)m+ln!

Fu(@™) = (n—m)!

XmLn—m (mm) , Xm = H zj, o (mm) =1, (2'8)
j=1

These polynomials enjoy numerous properties, such as the following.

Proposition 2.1. /12, Lm. 1.3] We have the inequality T, (x1,...,2m) > 0 whenever
T1y.eyTm 20

Remark. From (2.8), one might not expect that these symmetric functions are indepen-
dent of pgj,l(zk), where j > 1, which is a consequence of Theorem 1.3.

For completeness, we remind the reader on the importance of these polynomials
T, (z™). They are conjectured (see Conjecture 2.2 below) to play a central role in the
explicit description of alternating power sums of syzygy degrees for the genera of the
semigroups Sy, .

Conjecture 2.2. If we let o; = > i~ d! and §; = 072—71, then we have

2t+1

K(Sm) = i (i) Ti=r(0)Gr(Sm) +

Tt+1<5>7 (29)



10 T. Amdeberhan et al. / Journal of Combinatorial Theory, Series A 218 (2026) 106123

where T,.(X) := T (X1, ..., X,) stand for symmetric polynomials in the power sums
Xp(z™) = Zwlf for an m-tuple ™ = (x1,...,Zy). (2.10)
j=1

2.2. Symmetric functions arising from partitions

Polynomials T}, (z*) are analogous to another sequence of polynomials { f,,} that arise

in the theory of integer partitions. Given d* := {di,...,dy}, consider the restricted
partition function W(s;d*) (see [4]), which counts integer partitions of s > 0 into k
positive integers (d1,...,dg).

It is well-known (see, for example [10, Section 3.1]) that W (s;d") can be described in
terms of finitely many quasipolynomials Wq(s;dk), each containing a single g-periodic
function with W (s;d*) being a polynomial, given in the form

(s;d") = > Wy(s;db).
ald;
1<i<k

The W, (s;d*)’s are called the Sylvester waves. In particular, Wy (s;d") is referred to as
the first Sylvester wave and has fascinating properties. For example, Wi (s;d*) is the
polynomial part of W (s;d") having an explicit formula [10, (3.16) and (7.1)] given by

1 L R _ k J
Wi(s;d*) = [CEDY z;) < j )fj(dk)3k1j7 fi(d*) = (Ul + X;Bidi> ;
j= i=

(2.11)

where o1 := Z?:l dj and 7, = Hle d;. For our purpose in this paper, we will replace
d* = (di,...,d;) by & = (21,...,24) and o, by the power sum p; in the variables
(21,...,z). By treating the B;’s as independent random variables, the Bernoulli sym-
bolism (B;x;)™ is understood as B'z}* = Bz} where

exp Z Bn

n>0

generates the Bernoulli numbers.

Examples. The first few symmetric polynomials

k n
fn<.’L'k) = <p1 +ZBl$l> = fn(p17~-~7pn)7 (212)
i=1

expanded in power sums (for example, see [10, (7.2)]), are:
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1 3p3 — p2 Pt — pip2
fo(f'?k) =1, f1(~"7k) = 5]917 f2($k) = 1172, f3(~’17k) = 17,
Ky 16p1 — 30pTpa + 5p3 + 2py oy 3p3 — 10p3ps + Bp1p3 + 2p1pa
f4($ ) - ) f5(.’l? ) - )
240 96
folz®) = 63pf — 315pips + 315pip3 + 126pTps — 35p3 — 42paps — 16ps
6 4032 '

Remark. If we set all of the variables to x, then we obtain the convolution Stirling
polynomials studied by Knuth [17]

2 _ 3 _
@) =5 e =20 fene =20

1524 — 302% + 522 + 2z

falz,...,x) = 510 R

which has generating function

z exp
<e) jz:jh )

xp(z

I\

3. Proofs of Theorems 1.1, 1.2, 1.3, 1.5, and 1.7

Here we prove the results from the Introduction using the material in the previous
section.

3.1. Proof of Theorems 1.1 and 1.2

We consider (1.4) for a general power series

= Za(m xm

m=0

Since we have

2tX2t
U. :
Z 2t( 2t+1)!

it follows that

a(m) - nla?t
VR = 3 S 00 V)
m-+2t=n :

Since 0(q) is a weight 1/2 modular form on I'g(4) C SLy(Z) (for example, see Chapter
1 of [19]) and Usz:(q) is a weight 2t quasimodular form on SLy(Z), it follows that each
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0(q)?™Us(q) is a weight m + 2t = n quasimodular form on T'g(4), which in turn implies
that Y,,(F, «; q) is as well.

The proof of Theorem 1.1 (1-2) follows easily from the Taylor expansion of F(X) =
exp(X/2) and direct algebraic manipulation. To obtain Theorem 1.2, one simply substi-
tutes (1.8) (see also [1, Thm. 1.3 (1)]) into the formulas in Theorem 1.1 (2).

3.2. Proof of Theorem 1.5

We require a few elementary facts from probability theory in the context of umbral
calculus (for background on umbral calculus, see [21]).

Lemma 3.1. If we let B™ = B,, (Bernoulli numbers), C,, := (7 )n and Dy, +1, then

for positive integers n in umbral formalism (treating B,C and D as mndom varzables)
the following are true:

(1) (B+D)"=0.

(2) B+O)" =(-1)™.

3) 1+C=D

(4) 1+B=-B.

(5) (=B)" = B" for n # 1 with By = —1.

Proof. Since these claims are straightforward, we only prove two of them. To prove (4),
we recall the generating function

’I’L n

exp(Bz) = ZB" :Z n%:%

n>0 n>0 ’ exp(z)
This implies that

zexp(z) —z

exp((L+8)2) = o —1 ~ expl—z) =1

Similarly, we have that

2" 1 =z exp(z) — 1
exp(Dz):ZD H:Zn—i—lH:T'

Therefore, (1) follows from the identity

exp((B+D)z) = exp(,:) 3 exp(z) —1_ 1 = exp(02),

which means that B and D annihilate each other. O
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Using this lemma, we provide an umbral expression for T}, (z*) in the spirit of (2.12).

Lemma 3.2. IfC; = % is a sequence and k,n € N, then we have

k n
T, (z") = <p1 + ZQ%) :
i=1

Proof. Given a partition A = (A1, Aa,...), let m, denote the associated monomial sym-
metric function [22, Chapter 7] by my defined by

my = E x?lwgw
o

where the sum ranges over all distinct permutations o = (a1, ag, ... ) of the entries of .

For example, m 1y = >, z;x; and mg1,1) = S a2xjxy, with 4, 4, k distinct.

i<j
Given a sequence Uy,Us, ..., we write Uy = U, Uy, ---. From Lemma 3.1 (3), we

(pl + Zw) n = (Z Dixi> ’ :

Then, the multinomial theorem and umbral calculus together gives

obtain

(3:00) = (0 Joom N

We apply (3.1) with D replaced by 1 = (1,1,...) and n replaced by n’ := n + k, while
we rank partitions according to their lengths, to reformulate (2.7) to obtain

P (x)
k
B YEISIED SR
t=1 1<ji< < <n’
k t .
SOICENED SIED DEEED SEENED D (RN LI
t=1 1<j1<-<fe<n/ €=1 1<s;<--<se<n’ pkn’ M1y ey fo

$1,.-,80€{J1,--,t } L()=L

k k /
N S S L P

=1 t=t 1<j1 < <ge<n’ 1<s1<--<s,<n’  pbn/
S1yee0s80€{ 1,5t ) £(p)=¢
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M»

k
(=1t

RS0 E me

1<j1<--<ge<n’ pbn' 1<s1< - <5p<n’
Lp)=¢ S150e,80€{J1,-5Jt }

I
~

For a given ¢, ranging in {1,...,k}, counting the subsets {ji,...,j:} that contain
{s1,...,8¢} leads to

sz: Z (m,”/.M) Z O C T zk: (k 5)

ukn’ 1<s1 < <s¢<n’ t=
f(u) ¢
_ n+k
= (-1)k! Z ( )mu(xl,...,mk)
e N
i1
_1(n+Ek)! n mx(x1,...,Tk)
= (=1)* 1 (n 4 k)t ( ) 1
=1 n ! ”“"’“;l Ay ) O+ D) (O + 1)
(“D)* 1+ B TT 2 (& '
= oy ZDN%‘ ,
=1

where the last equality is due to (3.1). The claim follows by applying (2.8). O

The proof of Theorem 1.5 will also require the following fact about products of formal
power series and the (unique) involution w on symmetric functions, that is determined
by the action w(p,) = (—1)""p, on power sum functions (see, for example [22, Chapter

7).

Lemma 3.3. If f(z) is a formal power series with constant term 1 and g(z) := iEBE
then

Proof. We begin the proof by letting

L(z) =1og f(z ZLkz

k>1

which in turns give log g(z) = —L(—=z). Therefore, we find that

log (H flzzy) > Zlogf (zz;) = Z Zka = ZLkpkzk,
i k

where py, is the kth power sum symmetric function. Applying w, we obtain
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w (log <H f(zxz)>> = Z(—l)k_lLkpkzk = —ZL(—zmi) = Zlogg(zaci).

k

The claimed product formula follows by exponentiation. 0O

Proof of Theorem 1.5. Thanks to Lemma 3.1 (3) and (4), respectively, we have

(pl + Zm) = (Z Diazl)r and <p1 + ZBJ:) = (Z(—Bi)ay)r.

i

By expressing these expressions in terms of the power sum bases for symmetric functions
(utilizing the two umbral representations (2.12) and Lemma 3.2), we obtain

<ZD xl> (phpz,...):ZgAPA(z)

A7

(ZB%) = fr(p1,p2, ) = Y3 pal@)

AbFr

for some coefficients g* and §* where € = (21, %5,...) and B; = —B;.
Next, one employs Lemma 3.3 with the exponential generating functions

exp(z) — 1 and o(z) = z

f(z) = > _Tp(—z)’

and (—1)*By,. By extracting the degree r terms (in z) and
Lpi, we obtain the desired outcome that

respectively, for Dy =
noting that w(pg) = (—

T
1)k-

T (p1,p2:p3: P4, - ) = fr(P1, —P2,P3, —Pa,...). O
3.8. Proof of Theorem 1.3

Recalling (1.8) and the identification ¥(Es,(q)) = p2n(x¥), we define

Uan (27) 1= ¥ (Uzn(q))

and

n

U (T Z du(A H —E;’;J) whenever A = (1™1,2™M2 . n™n"). (3.2)
AFn j=1
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Example. We list the first few of the above two sequences of polynomials:

_ _ _ 5p3 —pa _ 35p3 — 42paps + 16ps
ug = 1, U2 = p2, U4_T7 Ue = 9 .

~ ~ . bp3+ps - 35p3 + 42papa + 16ps
ug =1, uz = —po, Ug =~ U=~ 9 .

Remark. In this section, we make important use of Pélya’s cycle index theorem (PCIT)
[22, Section 5]

co(T45 =S (S (2) )

j>1 n>0 \ AFnj= 1

where we require writing a partition in the frequency notation A\ = (1™t ...t™) F n.
PCIT is deeply intertwined with other key results and methods, offering a consistent
approach to a variety of counting problems that are similar and adjacent to the results
in this paper. Specifically, it provides a method for deriving generating functions for
structures related to generalized Bernoulli and Bell polynomials [18], Bernoulli-Barnes
polynomials [6] (with interesting connection to Fourier Dedekind sums), and it forms a
crucial part of the standard exponential generating functions due to Touchard [22, Eq'n.
(5.30)].

We proceed with some relevant preparatory results. The first of which, Lemma 3.4),
is an explicit and compact umbral representations of wus, and s, (hence of Us,, by
association) in the form of

k

2n k 2n
Uz = (20 + 1) <Z(1 + 2C¢)xi> and  TUgn = (2n+1) <Z(1 + 2Bi)xi> ,

i=1 i=1

where C and B are defined in Lemma 3.1. In this context, observe our use of the umbral
mechanism for a k-tuple of symbol:

BTlBgz ng — BalBlJ,Q o 'Bak7
where a1 +as + -+ +ap = n.

Lemma 3.4. For each nonnegative integer n, we have

if n is even
if n is odd,

Zk: 14 2B;) ' _ 7:7-:1 if n is even
=1 0 if n is odd.
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Proof. We only prove the second assertion, as the first one follows a similarly. To this
end, we recall the series expansion [14, 1.518.1] for the reciprocal of what we call here

the sinhc function sinhc(t) = Smtﬂ (reminiscent of the sinc function) given by
1 4"By,
= -y ) 3.3
sinhe(t) P > (2n)(2n)! (3:3)

n>1

On the other hand, the (usual) exponential generating function for the Bernoulli numbers
takes the form

n? 2
exp(Bz) = Z 5 n! Z Bn n!  exp(z)—1

n>0 n>0
from which it is natural to deduce that

exp((1+2B;)z:2) = > ((1 bR e = 2z em(rz) L gy

= n!  exp(2r;z) —1  sinhe(x;2)

Consequently, (3.4) implies the finite product

k k k "
1 2"
=1 i=1 n>0 i=1
Combining (3.3), (3.5) and Pélya’s cycle index theorem [22, Section 5], we arrive at
P " b 1 4" Bon p
Z 1+28)z; | =] ——— = _ Z Ponbono2n
T;) n! <§( * )x) };[1 sinhe(z;2) P T; (2n)(2n)! :

o L —47By; \™
-2 (s (@) ) v

n>0 An \j=1

Compare the coefficients of 2™ on both sides, together with (3.2), to complete the
proof. O

In [12, (25)]), one of the authors proved the identity

2n+1
fonir = Y <—1>f'“(2”j+ 1) H fonsres. (3.6)
j=1

The next result reproves (3.6) and extends it to all fi,.
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Lemma 3.5. For each positive integer n, we have the recursive formula that

fo = {Z?—l(l)j+1(?)fffn—j if n is odd,

Z;zzl(_l)j+1(?)fffn—j + @]W if n is even.

Proof. Letting f := p; + Zle B;xz; The use of umbral symbolism allows for the more
compact reformulation

(F—f)" = . (3.7)

u

. e
[CEsra if n is even.

{ 0 if n is odd,

It suffices to only consider the case n is even. Recalling (2.12), expand the left-hand side
as

kI 2n k 2n ~

1 1 U2
_ 2"7. — .  — — = — 7 L == —n
f— f1) <p1 + ig_ 1 Biz; 2p1> an <;(1 + 26%)371) (2n + 1)4n’

where the last equality is due to Lemma 3.4. 0O
We have now assembled enough results to help us prove the next instrumental lemma.

Lemma 3.6. For each integer n > 0, we have the representations

L5 L]

1 n—!—l _94 1
Tnzi n—=2j X d =
<n+1>2nz<2j+1>pl vag and I = G

=0 =0

nf3

n+1 p”_z‘jﬂ»
25+ 1)1 %

Proof. We proceed by induction on n. The base cases n = 0 and n = 1 are routine and

hence omitted. If we revert to the umbral mechanics, in the variable u only, the assertion

1 { (pr+@)" T —(p—w)"T! }
(n+1)2n 2u :

amounts to f, =

The case n odd: We know from (3.6) and Lemma 3.5 that

2n+1 ) 27L+ 1 )
fong1 =Y (UJH( i >fff2n+1—j~
=1

In light of this, we may continue using the induction hypothesis and the seed f; = %pl
to obtain

s — 2nz+:1 ((1)j+1(2n]7“1)Pji { (p1 + )2 27 — (py — w)2nt2d }

< (2nt2- )22t 2u
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2n+1 pe
- i (Cpyitt (202 [ o kD (py — )
(2n+2)227 1 A 20

1 { (pl 4 a)2n+2

(pr —w)**2
T (2n+2)220 '

2u

The case n even: The argument is similar. We apply Lemma 3.5 and induction to write

Uan +§‘:( (—1)i+1 <2n+1) ; {(pl L @)T  (py — )2 J}

Y41

f2n:

(2n+1)4n  — (2n+ 1220\ 21
_ 1 (pl 4 ’,J)2n+l _ (101 _ a)2n+1
- (2n+1)22n 21 '

This completes the proof. O

Proof of Theorem 1.3. The proof follows by combining two structural results. The first
one concerning T}, (z*) comes from Lemma 3.6. The other is our principal result from
Theorem 1.2 in regard to Y;,(¢q). Their common formulation is based on (1.10), which is

due to the mapping ¥. 0O
3.4. Proof of Theorem 1.7

In this subsection, we begin by recalling some calculations found in [12, p. 59, (13)],

namely that

T: (.’L‘k) N TQ(xk)

T e >

Ts(x®)  _Tu(zb) Ty (z*)

T e 1 !

Tr(z¥) Ts(=¥) Ty (") Ty (")
Tf(:l:k) = 7Tf3(xk) — 70T14(xk) + 336 (x’f) — 272.

The author [12] also derived a similar formulation for the polynomials f,,(z*). How-
ever, a compact formula is missing from [12, (25)-(26)] and we fill that gap. For integers
n > 1, the modified version of [12, page 61, (25)] is

Jon xk - 2n + 1\ fon (zk)
fznii ]2:; 2j+1 <2n n 1) '162271371](1:16) (3.8)

Theorem 1.7 is then an immediate consequence of Theorem 1.5 and (3.8) above.
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