SYLVESTER'S IDENTITY

Tewodros Amdeberhan

Theorem: [B] Let $\mathbf{x}_{n}=\left(x_{1}, \ldots, x_{n}\right)$. Then,

$$
\begin{equation*}
a_{k}\left(\mathbf{x}_{n}\right)=\sum_{m=1}^{n} x_{m}^{n+k-1} \prod_{\substack{i=1 \\ i \neq m}}^{n} \frac{1}{x_{m}-x_{i}}, \quad \text { where } \quad \prod_{i=1}^{n} \frac{1}{1-x_{i} t}=\sum_{k=0}^{\infty} a_{k}\left(\mathbf{x}_{n}\right) t^{k} \tag{1}
\end{equation*}
$$

Lemma: If $P(y):=\sum_{m=1}^{n} f_{m}(y)$, then $P(y) \equiv 1$ where

$$
\begin{equation*}
f_{m}(y):=\prod_{\substack{i=1 \\ i \neq m}}^{n} \frac{1-x_{i} y}{1-x_{i} / x_{m}} \tag{2}
\end{equation*}
$$

Proof: Suppressing other variables, $P(y)$ and the $f_{m}(y)$'s are polynomials of degree $n-1$ in y. Moreover, $f_{m}\left(1 / x_{j}\right)=\delta_{m, j}$ and hence $P\left(1 / x_{j}\right)=1$ for $j=1,2, \ldots, n-1$. So, $P(y)$ is a constant!

Proof of theorem: Induction on n : (1) is trivial for $n=1$. Application of Cauchy's product rule and induction assumption in

$$
\begin{equation*}
\prod_{i=1}^{n+1} \frac{1}{1-x_{i} t}=\frac{1}{1-x_{n+1} t} \prod_{i=1}^{n} \frac{1}{1-x_{i} t}=\sum_{r=0}^{\infty} a_{r}\left(x_{n+1}\right) t^{r} \sum_{s=0}^{\infty} a_{s}\left(\mathbf{x}_{n}\right) t^{s} \tag{3}
\end{equation*}
$$

produces the coefficient $a_{k}\left(\mathbf{x}_{n+1}\right)$ of t^{k} as

$$
\begin{aligned}
\sum_{s=0}^{k} x_{n+1}^{k-s} \sum_{m=1}^{n} x_{m}^{s} \prod_{\substack{i=1 \\
i \neq m}}^{n} \frac{1}{1-x_{i} / x_{m}} & =\sum_{m=1}^{n} x_{n+1}^{k} \prod_{\substack{i=1 \\
i \neq m}}^{n} \frac{1}{1-x_{i} / x_{m}} \sum_{s=0}^{k} x_{m}^{s} x_{n+1}^{-s} \\
& =\sum_{m=1}^{n} x_{n+1}^{k}\left(\frac{x_{m}^{k+1}-x_{n+1}^{n+1}}{x_{m}-x_{n+1}}\right) \prod_{\substack{i=1 \\
i \neq m}}^{n} \frac{1}{1-x_{i} / x_{m}} \\
& =\sum_{m=1}^{n} x_{m}^{k} \prod_{\substack{i=1 \\
i \neq m}}^{n+1} \frac{1}{1-x_{i} / x_{m}}-\sum_{m=1}^{n} \frac{x_{n+1}^{k}}{x_{m} / x_{n+1}-1} \prod_{\substack{i=1 \\
i \neq m}}^{n} \frac{1}{1-x_{i} / x_{m}} .
\end{aligned}
$$

Now use of the above Lemma (with $y=1 / x_{n+1}$) in the second sum of (4) completes the proof.

Reference:

[B] G. Bhatnagar, A short proof of an identity of Sylvester, unpublished.

