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Theorem: [B] Let xn = (x1; :::; xn). Then,
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Proof: Suppressing other variables, P (y) and the fm(y)'s are polynomials of degree n � 1
in y. Moreover, fm(1=xj) = �m;j and hence P (1=xj) = 1 for j = 1; 2; : : : ; n � 1. So, P (y) is a
constant! �

Proof of theorem: Induction on n: (1) is trivial for n=1. Application of Cauchy's product
rule and induction assumption in
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Now use of the above Lemma (with y = 1=xn+1) in the second sum of (4) completes the proof.
�
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