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Abstract. In his “lost notebook”, Ramanujan used iterated derivatives of two theta func-
tions to define sequences of q-series {U2t(q)} and {V2t(q)} that he claimed to be quasimodular.
We give the first explicit proof of this claim by expressing them in terms of “partition Eisen-
stein series”, extensions of the classical Eisenstein series E2k(q) defined by

λ = (1m1 , 2m2 , . . . , nmn) ` n 7−→ Eλ(q) := E2(q)m1E4(q)m2 · · ·E2n(q)mn .

For functions φ : P 7→ C on partitions, the weight 2n partition Eisenstein trace is

Trn(φ; q) :=
∑
λ`n

φ(λ)Eλ(q).

For all t, we prove that U2t(q) = Trt(φu; q) and V2t(q) = Trt(φv; q), where φu and φv are
natural partition weights, giving the first explicit quasimodular formulas for these series.

1. Introduction and Statement of Results

In his “lost notebook”, Ramanujan considered the [11, page 368] two sequences of q-series:

(1.1) U2t(q) =
12t+1 − 32t+1q + 52t+1q3 − 72t+1q6 + 92n+1q10 − · · ·

1− 3q + 5q3 − 7q6 + 9q10 − · · ·

(1.2) V2t(q) =
12t − 52tq − 72tq2 + 112tq5 + 132tq7 − · · ·

1− q − q2 + q5 + q7 − · · ·
,

and he offered identities such as

U0 = 1, U2 = E2, U4 =
1

3
(5E2

2 − 2E4), U6 =
1

9
(35E3

2 − 42E2E4 + 16E6), . . .

V0 = 1, V2 = E2, V4 = 3E2
2 − 2E4, V6 = 15E2

2 − 30E2E4 + 16E6, . . .

where E2(q), E4(q), and E6(q) are the usual Eisenstein series

E2 := 1− 24
∞∑
n=1

σ1(n)qn, E4 := 1 + 240
∞∑
n=1

σ3(n)qn, and E6 := 1− 504
∞∑
n=1

σ5(n)qn,

where σv(n) :=
∑

d|n d
v. He made the following claim:

“In general U2t and V2t are of the form
∑

K`,m,nE
`
2E

m
4 E

n
6 , where `+ 2m+ 3n = t.”
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Berndt, Chan, Liu, Yee, and Yesilyurt [5, 6] proved this claim using Ramanujan’s identities
[12]

(1.3) D(E2) =
E2

2 − E4

12
, D(E4) =

E2E4 − E6

3
, and D(E6) =

E2E6 − E2
4

2
,

where D := q d
dq
. However, their results are not explicit. Indeed, Andrews and Berndt (see

p. 364 of [3]) proclaim that “...it seems extremely difficult to find a general formula for all
K`,m,n.”

We offer a solution to the general problem of obtaining the first explicit formulas for U2t

and V2t. We note that Ramanujan’s claim is that U2t and V2t are weight 2t quasimodular
forms, as the ring of quasimodular forms is the polynomial ring (for example, see [9])

C[E2, E4, E6] = C[E2, E4, E6, E8, E10, . . . ],

and so our goal is to obtain explicit formulas in terms of the classical sequence of Eisenstein
series (for example, see Chapter 1 of [10])

(1.4) E2k(q) := 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn,

where B2k is the 2kth Bernoulli number and σ2k−1(n) :=
∑

d|n d
2k−1. We express Ramanujan’s

q-series as explicit “traces of partition Eisenstein series.”
As an important step towards this goal, we first derive generating functions for his series.

In terms of Dedekind’s eta-function η(q) := q
1
24

∏∞
n=1(1− qn) and Jacobi-Kronecker quadratic

characters, we have the following result.

Theorem 1.1. As a power series in X, the following are true.
(1) If χ−4(·) =

(−4
·

)
, then we have∑

t≥0

(−1)tU2t(q) ·
X2t+1

(2t+ 1)!
=

1

2η(q)3
·
∑
n∈Z

χ−4(n)q
n2

8 sin(nX).

(2) If χ12(·) =
(
12
·

)
, then we have∑
t≥0

(−1)tV2t(q) ·
X2t

(2t)!
=

1

2η(q)
·
∑
n∈Z

χ12(n)q
n2

24 cos(nX).

Remark. Theorem 1.1 represents two special cases of Theorem 2.1, which pertains to arbitrary
theta functions. Using Theorem 1.1, we obtain Theorem 3.4 that gives two further identities
for these particular generating functions as infinite products in trigonometric functions.

These generating functions shall offer the connection to traces of partition Eisenstein series.
To make this precise, we recall that a partition of n is any nonincreasing sequence of positive
integers λ = (λ1, λ2, . . . , λs) that sum to n, denoted λ ` n. Equivalently, we use the notation
λ = (1m1 , . . . , nmn) ` n, where mj is the multiplicity of j. For such λ, we define the weight
2n partition Eisenstein seriesa

(1.5) λ = (1m1 , 2m2 , . . . , nmn) ` n 7−→ Eλ(q) := E2(q)
m1E4(q)

m2 · · ·E2n(q)mn .

aThese Eλ should not be confused with the partition Eisenstein series introduced by Just and Schneider
[8], which are semi-modular instead of quasimodular.
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The Eisenstein series E2k(q) corresponds to the partition λ = (k), as we have E(k1)(q) =
E2k(q)

1.
To define partition traces, suppose that φ : P 7→ C is a function on partitions. For each

positive integer n, its partition Eisenstein trace is the weight 2n quasimodular form

(1.6) Trn(φ; q) :=
∑
λ`n

φ(λ)Eλ(q).

Such traces arise in recent work on MacMahon’s sums-of-divisors q-series (see Thm. 1.4 of
[1]).

For partitions λ = (1m1 , . . . , nmn) ` n, we require the following functions:

(1.7) φu(λ) := 4n(2n+ 1)! ·
n∏
k=1

1

mk!

(
B2k

(2k) (2k)!

)mk

(1.8) φv(λ) := 4n(2n)! ·
n∏
k=1

1

mk!

(
(4k − 1)B2k

(2k) (2k)!

)mk
.

Ramanujan’s series are weighted traces of partition Eisenstein series of these functions.

Theorem 1.2. If t is a positive integer, then the following are true.
(1) We have that U2t(q) = Trt(φu; q).
(2) We have that V2t(q) = Trt(φv; q).

Examples. Here we offer two examples of Theorem 1.2.
(1) By direct calculation, we find for t = 3 that

φu((3
1)) = 16/9, φu((1

1, 21)) = −42/9, and φu((1
3)) = 35/9.

This reproduces Ramanujan’s identity

Tr3(φu; q) =
1

9
(16E6 − 42E2E4 + 35E3

2) = U6.

(2) By direct calculation, we find for t = 4 that

φv((4
1)) = −272, φv((1

1, 31)) = 448, φv((2
2)) = 140, φv((1

2, 21)) = −420, and φv((1
4)) = 105.

Therefore, we have that

Tr4(v; q) = −272E2
4 + 448E2E6 + 140E2

4 − 420E2
2E4 + 105E4

2 = V8.

In view of these results, it is natural to pose the following problem.

Problem. Determine and characterize further functions φ : P 7→ C for which {Trt(φ; q)} is
a natural and rich family of weight 2t quasimodular forms.

To prove these results, we make use of the Jacobi Triple Product identity, special q-series,
exponential generating functions for Bernoulli numbers, and properties of Pólya’s cycle index
polynomials. In Section 2 we derive a general result for q-series of the form (1.1) and (1.2) (see
Theorem 2.1), which gives Theorem 1.1 as special cases. In Section 3 we prove Theorem 1.2
using these results and properties of Pólya’s cycle index polynomials.
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2. Generating functions for Ramanujan-type q-series

Theorem 1.1 gives two special cases of general generating functions associated to formal
theta functions for Dirichlet characters. If χ modulo N is a Dirichlet character, then let

(2.1) Θ(χ; q) :=
∞∑
n=1

χ(n)naχqn
2

,

where we let

(2.2) aχ :=

{
0 if χ is even,

1 if χ is odd.

Then, in analogy with Ramanujan’s U2t and V2t (see (1.1) and (1.2)), we let

(2.3) R2t(χ; q) :=
Dt (Θ(χ; q))

Θ(χ; q)
=

∑∞
n=1 χ(n)n2t+aχqn

2

Θ(χ; q)
.

Theorem 2.1. Assuming the notation above, as a power series in X we have

∞∑
t=0

(−1)tR2t(χ; q) · X2t+1

(2t+ 1)!
=

1

2iΘ(χ; q)

∑
n∈Z

χ(n)qn
2

naχ−1 · einX .

Remark. Theorem 2.1 holds for periodic functions χ : Z→ C that are either even or odd.

Proof. By direct calculation, we have that

1

2i

∑
n∈Z

χ(n)qn
2

naχ−1 · einX =
1

2i

∞∑
n=1

qn
2

naχ−1
(
χ(n)einX + (−1)aχ−1χ(−n)e−inX

)
.

For all χ, we have that (−1)aχ−1χ(−n) = −χ(n), and so this reduces to

1

2i

∞∑
n=1

χ(n)qn
2

naχ−1
(
einX − e−inX

)
=
∞∑
n=1

χ(n)qn
2

naχ−1 sin(nX).

Using the Taylor series for sin(nX), this gives (after change of summation)

1

2i

∑
n∈Z

χ(n)qn
2

naχ−1 · einX =
∞∑
n=1

χ(n)naχ−1qn
2
∞∑
t=0

(−1)t · (nX)2t+1

(2t+ 1)!

=
∞∑
t=0

(−1)t · X2t+1

(2t+ 1)!
·Dt(Θ(χ; q)).

Thanks to (2.3), we obtain the claimed generating function by dividing through by Θ(χ; q). �
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Proof of Theorem 1.1. To prove claim (1), we consider χ(n) :=
(−4
n

)
, which is the only odd

character modulo 4. In this case we have aχ = 1, and so Theorem 2.1 gives

∞∑
t=0

(−1)tR2t(χ; q) · X2t+1

(2t+ 1)!
=

1

2iΘ(χ; q)

∑
n∈Z

χ(n)qn
2 · einX ,

Furthermore, Jacobi’s classical identity (for example, see p. 17 of [10]) implies that

η(q8)3 = Θ(χ; q) =
∞∑
n=0

(−1)n(2n+ 1)q(2n+1)2 .

Therefore, we have that
∞∑
t=0

(−1)tR2t(χ; q) · X2t+1

(2t+ 1)!
=

1

2iη(q8)3

∑
n∈Z

χ(n)qn
2 · einX .

Claim (1) follows by letting q → q
1
8 , replacing the complex exponential in terms of trigono-

metric functions, followed by taking the real part.
To prove claim (2), we note that Euler’s Pentagonal Number Theorem (see p. 17 of [10])

implies that

η(q24) =
∞∑
n=1

χ12(n)qn
2

,

where χ12(n) =
(
12
n

)
is the unique nontrivial character with conductor 12. Therefore, aχ = 0,

and so Theorem 2.1 gives
∞∑
t=0

(−1)tR2t(χ; q) · X2t+1

(2t+ 1)!
=

1

2iη(q24)

∑
n∈Z

χ12(n)
qn

2

n
· einX .

Claim (2) follows by letting q → q
1
24 , then differentiating in X, followed by taking the real

part as in (1). �

3. Proof of Theorem 1.2

Here we prove Theorem 1.2 using the generating functions in Theorem 1.1. We apply Pólya’s
cycle index polynomials and the exponential generating function for Bernoulli numbers.

3.1. Bernoulli numbers. We derive a convenient generating function for Bernoulli numbers.

Lemma 3.1. If sinc(X) := sinX/X, then we have

1

sinc(X)
= exp

(
−
∑
k≥1

(−4)kB2k

(2k)(2k)!
·X2r

)
.

Proof. We begin with Euler’s product formula for the sinc function

sinc(X) =
∞∏
n=1

(
1− X2

π2n2

)
.
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Recalling that the series expansion for the products of logs

− log
∏
n≥1

(1− zan) =
∑
k≥1

zk

k

∑
n≥1

akn,

and by letting an := 1
π2n2 , z = X2, we obtain

− log(sinc(X)) =
∞∑
k≥1

X2k

k
· ζ(2k)

π2k
.

By Euler’s formula for ζ(s) at the positive even integers (for example, see Th. 12.17 of [4]),

ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
,

we obtain the claimed formula. �

3.2. Pólya’s cycle index polynomials. We require Pólya’s cycle index polynomials in
the case of symmetric groups (for example, see [13]). Namely, recall that given a partition
λ = (λ1, . . . , λ`(λ)) ` t or (1m1 , . . . , tmt) ` t,we have that the number of permutations in St

of cycle type λ is zλ := 1m1 · · · tmtm1! · · ·mt!. The cycle index polynomial for the symmetric
group St is given by

Z(St) =
∑
λ`t

1

zλ

`(λ)∏
i=1

xλi =
∑
λ`n

t∏
k=1

1

mk!

(xk
k

)mk
.(3.1)

We require the following well known generating function in t-aspect.

Lemma 3.2 (Example 5.2.10 of [13]). As a power series in y, the generating function for
the cycle index polynomials satisfies∑

t≥0

Z(St) y
t = exp

(∑
k≥1

xk
yk

k

)
.

Remarks. Here are the first few examples of Pólya’s cycle index polynomials:

Z(S1) = x1, Z(S2) =
1

2!
(x21 + x2), Z(S3) =

1

3!
(x31 + 3x1x2 + 2x3).

More generally, these polynomials enjoy the following properties:

Z(St)(x1 − 1, . . . , xt − 1) = Z(St)(x1, . . . , xt)−
∂

∂x1
Z(St)(x1, . . . , xt)

= Z(St)(x1, . . . , xt)− Z(St−1)(x1, . . . , xt−1),

Z(St) =
1

t

t∑
k=1

xk Z(St−k).
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3.3. Some power series identities. We begin with formulas for the infinite series factors
of the generating functions in Theorem 1.1.

Lemma 3.3. As a power series in X, the following are true.
(1) We have that

q−
1
8

2
·
∑
n∈Z

(
−4

n

)
q
n2

8 sin(nX) = sinX ·
∏
j≥1

(1− qj)(1− 2 cos(2X)qj + q2j).

(2) We have that

q−
1
24

2

∑
n∈Z

(
12

n

)
q
n2

24 cos(nX)

= cosX
∏
n≥1

(1− qn)(1 + 2 cos(2X)qn + q2n)(1− 2 cos(4X)q2n−1 + q4n−2).

Proof. Both claims follow from the Jacobi Triple Product Identity (see Th. 2.8 of [2])

(3.2)
∑
n∈Z

(−1)nq
n2

2 zn =
∏
j≥1

(1− qj)(1− qj−
1
2 z)(1− qj−

1
2 z−1).

To prove (1), we make the substitutions 2i sinX = eiX(1− e−2iX) and z = q
1
2 e2iX to obtain

1

2i

∑
n∈Z

(−1)nq
n2+n

2 e(2n+1)iX = sinX
∏
j≥1

(1− qj)(1− qje2iX)(1− qje−2iX).

To obtain claim (1), we note the following simple reformulation

1

2i

∑
n∈Z

(−1)nq
n2+n

2 e(2n+1)iX =
q−

1
8

2i
·
∑
n∈Z

(
−4

n

)
q
n2

8 einX ,

and then take the real part of both sides.
We now turn to claim (2). We make the change of variables q → q2, z → qz in (3.2) to

form one identity, and we make the substitution q → q4, z → z2 to generate a second identityb.
Multiplying the resulting two identities, we get∑

n∈Z

(−1)nqn
2+nzn

∑
m∈Z

(−1)mq2m
2

z2m

=
∏
n≥1

(1− q2n)(1− zq2n−1)
(
1− z−1q2n−1

)
(1− q4n)(1− z2q4n−2)

(
1− z−2q4n−2

)
.

After routine algebraic manipulation, where
∏

n(1− q4n) cancels from both sides, we obtain∑
n∈Z

qn(3n+1)(z3n − z−3n−1) =
∏
n≥1

(1− q2n)(1− zq2n)

(
1− q2n−2

z

)
(1− z2q4n−2)

(
1− q4n−2

z2

)
.

bThese changes of variable are in the proof [7] of the Quintuple Product Identity by Carlitz and Subbarao.
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By replacing q → q
1
2 , z → −z2, factoring out 1 + z−2 and multiplying through by z, we get∑

n∈Z

(−1)nq
n(3n+1)

2
z6n+1 + z−6n−1

z + z−1
=
∏
n≥1

(1−qn)(1+z2qn)

(
1 +

qn

z2

)
(1−z4q2n−1)

(
1− q2n−1

z4

)
.

After letting z = eiX , we pair up conjugate terms to get∑
n∈Z

(−1)nq
n(3n+1)

2 cos(6n+ 1)X

= cosX
∏
n≥1

(1− qn)(1 + 2 cos(2X)qn + q2n)(1− 2 cos(4X)q2n−1 + q4n−2).

The left hand side of the expression above equals the infinite sum in Lemma 3.3 (2). �

To prove Theorem 1.2, we also require the following power series identities that give
reformulations of the generating functions for U2t and V2t.

Theorem 3.4. The following identities are true.
(1) As power series in X, we have∑

t≥0

(−1)tU2t(q) ·
X2t+1

(2t+ 1)!
= sinX ·

∏
j≥1

[
1 +

4(sin2X)qj

(1− qj)2

]
.

(2) As power series in X, we have∑
t≥0

(−1)tV2t(q) ·
X2t

(2t)!
= cosX ·

∏
j≥1

[
1− 4(sin2X)qj

(1 + qj)2

] [
1 +

4(sin2 2X)q2j−1

(1− q2j−1)2

]
.

Proof. We first prove claim (1). By combining Theorem 1.1 (1) and Lemma 3.3 (1), we obtain∑
t≥0

(−1)tU2t(q) ·
X2t+1

(2t+ 1)!
= sinX ·

∏
j≥1

(1− 2 cos(2X)qj + q2j)

(1− qj)2
.

A straightforward algebraic manipulation with −2 cos(2X) = −2 + 4 sin2X yields∑
t≥0

(−1)tU2t(q) ·
X2t+1

(2t+ 1)!
= sinX ·

∏
j≥1

[
1 +

4(sin2X)qj

(1− qj)2

]
.

Now we turn to claim (2). By combining Theorem 1.1 (2) and Lemma 3.3 (2), we obtain∑
t≥0

(−1)tV2t(q) ·
X2t

(2t)!
= cosX

∏
n≥1

(1 + 2 cos(2X)qn + q2n)(1− 2 cos(4X)q2n−1 + q4n−2)

= cosX
∏
k≥1

(1 + qk)2(1− q2k−1)2
∏
j≥1

[
1− 4(sin2X)qj

(1 + qj)2

] [
1 +

4(sin2 2X)q2j−1

(1− q2j−1)2

]
.

The proof now follows from the simple identity∏
k

(1 + qk) =
∏
n

1

1− q2k−1
.

�
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3.4. Proof of Theorem 1.2. For each positive odd integer j, we consider the Lambert
series

(3.3) Sj(q) :=
∑
m≥1

mjqm

1− qm
=

Bj+1

2(j + 1)
− Bj+1

2(j + 1)
Ej+1(q).

This expression in terms of the Ej+1(q) follows from (1.4). The proof of Theorem 1.2 boils
down to deriving expressions for the power series in Theorem 3.4 in terms of the Sj(q).

Proof of Theorem 1.2. We first prove claim (1) regarding Ramanujan’s U2t series. The key
fact underlying the proof is the following power series identity.

(3.4)
∑
t≥0

(−1)tU2t(q) ·
X2t+1

(2t+ 1)!
= sinx · exp

(
−2
∑
r≥1

S2r−1(q)

(2r)!
(−4X2)r

)
.

Thanks to Lemma 3.4 (1), this identity will follow from

(3.5) exp

(
−2
∑
r≥1

S2r−1(q)

(2r)!
(−4X2)r

)
=
∏
j≥1

[
1 +

4(sin2X)qj

(1− qj)2

]
.

To establish (3.5), we compute the following double-sum in two different ways. First, we use
the Taylor expansion of cos(y) and then interchange the order of summation to get∑

j,k≥1

qkj cos(2kX)

k
=
∑
r≥0

(−4X2)r

(2r)!

∑
k≥1

k2r−1
∑
j≥1

qkj.

By combining the geometric series and the Taylor series for log(1− Y ) with (3.3), we obtain

(3.6)
∑
j,k≥1

qkj cos(2kX)

k
=
∑
r≥0

(−4X2)r

(2r)!

∑
k≥1

k2r−1qk

1− qk
= − log(q)∞ +

∑
r≥1

S2r−1(q)

(2r)!
(−4X2)r,

where (q)∞ :=
∏∞

n=1(1− qn) is the q-Pochhammer symbol.
On the other hand, using 2 cos θ = eiθ + e−iθ and Taylor expansion of log(1− Y ), we find

that ∑
j,k≥1

qkj cos(2kX)

k
=

1

2

∑
j≥1

(∑
k≥1

(e2iXqj)k

k
+
∑
k≥1

(e−2iXqj)k

k

)

= −1

2

∑
j≥1

log
[
1− 2(cos 2X)qj + q2j

]
.

After straightforward algebraic manipulation, we get

(3.7)
∑
j,k≥1

qkj cos(2kX)

k
= − log(q)∞ −

1

2
log

(∏
j≥1

[
1 +

4(sin2X)qj

(1− qj)2

])
.

Identity (3.5) follows by comparing (3.6) and (3.7), and in turn confirms (3.4).
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We now investigate the exponential series in (3.4). Thanks to (3.3), followed by an
application of Lemma 3.1, we obtain

exp

(
−2
∑
k≥1

(−4)kS2k−1(q)

(2k)!
X2k

)

= exp

(
−
∑
k≥1

(−4)kB2k

(2k)(2k)!
X2k

)
· exp

(∑
k≥1

B2k · E2k(q)

(2k)(2k)!
(−4X2)k

)

=
X

sinX
· exp

(∑
k≥1

B2k · E2k(q)

2 (2k)!

(−4X2)k

k

)
.

We recognize this last expression in the context of Pólya’s cycle index polynomials. Namely,
Lemma 3.2 gives the identity (here λ = (1m1 . . . tmt ` t))

exp

(∑
k≥1

Yk
wk

k

)
=
∑
t≥0

(∑
λ`t

t∏
k=1

1

mk!

(
Yk
k

)mk)
wt,

which we apply with Yk = B2k·E2k(q)
2(2k)!

and w = −4X2. This gives

∑
t≥0

(−1)tU2t(q)
X2t+1

(2t+ 1)!
= sinX · exp

(
−2
∑
k≥1

S2k−1(q)

(2k)!
(−4X2)k

)

= sinX · X

sinX
·
∑
t≥0

(∑
λ`t

t∏
k=1

1

mk!

(
B2k · E2k(q)

(2k)(2k)!

)mk)
(−4X2)t.

By comparing the coefficients of X2t+1, we find that

(−1)t
U2t(q)

(2t+ 1)!
= (−4)t

∑
λ`t

t∏
k=1

1

mk!

(
B2k · E2k(q)

(2k)(2k)!

)mk
,

which in turn, thanks to (1.7), proves Theorem 1.2 (1).
We now turn to claim (2) regarding Ramanujan’s V2t whose proof is analogous to the proof

of (1). The main difference follows from the need for the generalized Lambert series

(3.8) A2r−1(q) :=
∑
k≥1

(−1)k−1k2r−1qk

1− qk
= S2r−1(q)− 4rS2r−1(q

2).

The expression in S2r−1 is straightforward. For the sake of brevity, we note that calculations
analogous to the proof of (3.5) gives the identity

∏
n≥1

[
1− 4(sin2X)qn

(1 + qn)2

]
= exp

(
2
∑
r≥1

A2r−1(q)(−4X2)r

(2r)!

)
,
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as well as∏
n≥1

[
1 +

4(sin2 2X)q2n−1

(1− q2n−1)2

]
=
∏
n≥1

[
1 +

4(sin2 2X)qn

(1− qn)2

]
·
∏
n≥1

[
1 +

4(sin2 2X)q2n

(1− q2n)2

]−1

= exp

(
−2
∑
r≥1

S2r−1(q)(−16X2)r

(2r)!

)
exp

(
2
∑
r≥1

S2r−1(q
2)(−16X2)r

(2r)!

)
.

Therefore, combining these two expressions with (3.8), Theorem 3.4 (2) gives∑
t≥0

(−1)tV2t(q) ·
X2t

(2t)!

= cosX · exp

(
−2
∑
r≥1

S2r−1(q)

(2r)!
(−4(2X)2)r

)
exp

(
2
∑
r≥1

S2r−1(q)

(2r)!
(−4X2)r

)
.

As in the proof of (1), we recognize generating functions for Pólya’s cycle index polynomials.
Namely, by applying Lemma 3.1 and Lemma 3.2 we obtain∑

t≥0

(−1)tV2t(q)X
2t

(2t)!
= cosX · 2X

sin(2X)
· exp

(∑
k≥1

4kB2k · E2k(q)

2 (2k)!

(−4X2)k

k

)

× sinX

X
· exp

(∑
k≥1

−B2k · E2k(q)

2 (2k)!

(−4X2)k

k

)

= exp

(∑
k≥1

(4k − 1)B2k · E2k(q)

2 (2k)!

(−4X2)k

k

)

=
∑
t≥0

(∑
λ`t

t∏
k=1

1

mk!

(
(4k − 1)B2k · E2k(q)

(2k)(2k)!

)mk)
(−4X2)t.

By comparing the coefficients of X2t, we deduce that

V2t(q) = 4t (2t)!
∑
λ`t

t∏
k=1

1

mk!

(
(4k − 1)B2k · E2k(q)

(2k)(2k)!

)mk
,

which thanks to (1.8) completes the proof of Theorem 1.2 (2).
�
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