MONTHLY PROBLEM

Tewodros Amdeberhan and Melkamu Zeleke

Theorem:

Suppose $f(x)$ is a positive convex function. Let $a=\left(a_{1}+a_{2}+\cdots+a_{n}\right) / n$. Then:

$$
\begin{equation*}
f\left(a_{1}\right)^{f\left(a_{1}\right)} f\left(a_{2}\right)^{f\left(a_{1}\right)} \ldots f\left(a_{n}\right)^{f\left(a_{1}\right)} \geq e^{n[f(a)-1]} \tag{1}
\end{equation*}
$$

Proof: Recall that $x \ln (x)-x+1=\int_{1}^{x} \ln (t) d t \geq 0$ and that $f(x)$ is convex. It follows that

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right) \ln \left(f\left(a_{i}\right)\right) \geq \frac{1}{n} \sum_{1}^{n}\left[f\left(a_{i}\right)-1\right] \geq[f(a)-1]
$$

where the last inequality follows by Jensen's inequality. Multiplying by n and exponentiating gives the desired inequality.

Remark: In particular, this proves $[\mathrm{P}]$ with $f(x)=,(x)$.

Reference:

[P] American Mathematical Monthly - Problem \#10549, (103) \# 8, 1996.

