SOLUTION TO PROBLEM #10651 PROPOSED BY W. K. HAYMAN

TEWODROS AMDEBERHAN

DeVry Institute, Mathematics 630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

PROBLEM: [P] If u_1 and u_2 are nonconstant real functions of two variables, and if u_1, u_2 , and u_1u_2 are all harmonic in a simply connected domain D, prove that $u_2 = av_1 + b$, where v_1 is a harmonic conjugate of u_1 in D, and a and b are real constants.

PROOF: In \mathbb{R}^2 , we write w_x and w_y for $\partial w/\partial x$ and $\partial w/\partial y$, respectively. Let $f = u_1 + iv_1$. Then f^2 is analytic, and hence $2u_1v_1 = Im(f^2)$ is harmonic.

Using the assumptions and the equations,

$$\Delta(u_1u_2) = \Delta(u_1) + \Delta(u_2) + 2\nabla(u_1) \cdot \nabla(u_2), \qquad \Delta(u_1v_1) = \Delta(u_1) + \Delta(v_1) + 2\nabla(u_1) \cdot \nabla(v_1)$$

it follows that both vectors ∇u_2 and ∇v_1 are orthogonal to ∇u_1 , in \mathbb{R}^2 . Thus

(1)
$$\nabla u_2 = a \nabla v_1,$$

for some function a = a(x, y). Consequently, $\Delta u_2 = a\Delta v_1 + \nabla a \cdot \nabla v_1$. Therefore, we obtain

(2)
$$\nabla v_1 \cdot (a_x, a_y) = 0.$$

Rewriting equation (1) as: $(u_2)_x = a(v_1)_x$, $(u_2)_y = a(v_1)_y$ and differentiating in y and x, respectively gives

$$(u_2)_{xy} = a_y(v_1)_x + a(v_1)_{xy}, \qquad (u_2)_{yx} = a_x(v_1)_y + a(v_1)_{yx}.$$

This shows that

(3)
$$\nabla v_1 \cdot (a_y, -a_x) = 0.$$

Combining equations (2) and (3), we have $\nabla a \equiv 0$, i.e. *a* is a constant. This in turn implies that $\nabla (u_2 - av_1) = \nabla u_2 - a\nabla v_1 \equiv 0$, proving that $u_2 - av_1$ is a constant and completing the proof. \Box

References:

[**P**] P #10651, American Mathematical Monthly, (105) #3, 1998.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

1