SOLUTION TO PROBLEM \#10651
 PROPOSED BY W. K. HAYMAN

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

PROBLEM: [P] If u_{1} and u_{2} are nonconstant real functions of two variables, and if u_{1}, u_{2}, and $u_{1} u_{2}$ are all harmonic in a simply connected domain D, prove that $u_{2}=a v_{1}+b$, where v_{1} is a harmonic conjugate of u_{1} in D, and a and b are real constants.

PROOF: In R^{2}, we write w_{x} and w_{y} for $\partial w / \partial x$ and $\partial w / \partial y$, respectively. Let $f=u_{1}+i v_{1}$. Then f^{2} is analytic, and hence $2 u_{1} v_{1}=\operatorname{Im}\left(f^{2}\right)$ is harmonic.

Using the assumptions and the equations,

$$
\Delta\left(u_{1} u_{2}\right)=\Delta\left(u_{1}\right)+\Delta\left(u_{2}\right)+2 \nabla\left(u_{1}\right) \cdot \nabla\left(u_{2}\right), \quad \Delta\left(u_{1} v_{1}\right)=\Delta\left(u_{1}\right)+\Delta\left(v_{1}\right)+2 \nabla\left(u_{1}\right) \cdot \nabla\left(v_{1}\right)
$$

it follows that both vectors ∇u_{2} and ∇v_{1} are orthogonal to ∇u_{1}, in R^{2}. Thus

$$
\begin{equation*}
\nabla u_{2}=a \nabla v_{1} \tag{1}
\end{equation*}
$$

for some function $a=a(x, y)$. Consequently, $\Delta u_{2}=a \Delta v_{1}+\nabla a \cdot \nabla v_{1}$. Therefore, we obtain

$$
\begin{equation*}
\nabla v_{1} \cdot\left(a_{x}, a_{y}\right)=0 \tag{2}
\end{equation*}
$$

Rewriting equation (1) as: $\left(u_{2}\right)_{x}=a\left(v_{1}\right)_{x},\left(u_{2}\right)_{y}=a\left(v_{1}\right)_{y}$ and differentiating in y and x, respectively gives

$$
\left(u_{2}\right)_{x y}=a_{y}\left(v_{1}\right)_{x}+a\left(v_{1}\right)_{x y}, \quad\left(u_{2}\right)_{y x}=a_{x}\left(v_{1}\right)_{y}+a\left(v_{1}\right)_{y x}
$$

This shows that

$$
\begin{equation*}
\nabla v_{1} \cdot\left(a_{y},-a_{x}\right)=0 \tag{3}
\end{equation*}
$$

Combining equations (2) and (3), we have $\nabla a \equiv 0$, i.e. a is a constant. This in turn implies that $\nabla\left(u_{2}-a v_{1}\right)=\nabla u_{2}-a \nabla v_{1} \equiv 0$, proving that $u_{2}-a v_{1}$ is a constant and completing the proof.

References:

[P] P \#10651, American Mathematical Monthly, (105) \#3, 1998.

