SOLUTION TO PROBLEM \#10663
 PROPOSED BY E. DEUTCH

Shalosh B. Ekhad and Tewodros Amdeberhan
Temple University, Mathematics and DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

PROBLEM: [$\mathbf{P}]$ The Pell sequence is defined by $p_{0}=1, p_{1}=2$, and $p_{n}=2 p_{n-1}+p_{n-2}$ for $n \geq 2$. Show that, for $n \geq 0$,

$$
p_{n}=\sum \frac{(i+j+k)!}{i!j!k!}
$$

where the summation extends over all nonnegative integers i, j, k satisfying $i+j+2 k=n$.
PROOF: Replacing $i+j+k=n-k, i=n-2 k-j$ and denoting the sum in above by a_{n}, we have

$$
\begin{equation*}
a_{n}=\sum_{k}\binom{n-k}{k} \sum_{j}\binom{n-2 k}{j}=\sum_{k}\binom{n-k}{k} 2^{n-2 k} \tag{1}
\end{equation*}
$$

where the binomial identity $\sum_{k}\binom{x}{k}=2^{x}$ has been used.
Now, we employ the amazing Maple package $E K H A D$ on the second sum in (1).
(EKHAD available at http://www.math.temple.edu/zeilberg/programs.html) The result: a_{n} satisfies exactly the same second order recurrence as p_{n} does! The Wilf-Zeilberger "certificate" being

$$
\frac{-4(n+1-k) k}{(n+1-2 k)(n+2-2 k)} .
$$

To prove that $a_{n}=p_{n}$ for all n, it suffices to check at $n=0,1$.

References:

[P] P \#10663, American Mathematical Monthly, (105) \#5, 1998.

