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PROBLEM: [P] Given n distinct nonzero complex numbers z1, 22, . . ., 2, show that
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PROOF: Multiply both sides of (1) by (—=1)" 12125 - z,, and get
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Now, we proceed by induction on n. This is trivial for n = 1, with an empty product in
(2). So, assume equation (2) holds for n and verify it for n + 1.
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If we could prove that the last two terms add up to 0, the proof is complete. However,
this is equivalent to:
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Dividing out through by the right-hand term in (4), this in turn takes the form:
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Letting a; = z; — zp41, the last equation immediately follows from the induction

assumption, i.e.
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