SOLUTION TO PROBLEM \#10697
 PROPOSED BY J. L. DIAZ

Tewodros Amdeberhan

DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

PROBLEM: $[\mathbf{P}]$ Given n distinct nonzero complex numbers $z_{1}, z_{2}, \ldots, z_{n}$, show that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{z_{k}} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{1}{z_{k}-z_{j}}=\frac{(-1)^{n+1}}{z_{1} z_{2} \cdots z_{n}} \tag{1}
\end{equation*}
$$

PROOF: Multiply both sides of (1) by $(-1)^{n-1} z_{1} z_{2} \cdots z_{n}$, and get

$$
\begin{equation*}
\sum_{k=1}^{n} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{z_{j}}{z_{j}-z_{k}}=1 \tag{2}
\end{equation*}
$$

Now, we proceed by induction on n. This is trivial for $n=1$, with an empty product in (2). So, assume equation (2) holds for n and verify it for $n+1$.

$$
\begin{align*}
\sum_{k=1}^{n+1} \prod_{\substack{j=1 \\
j \neq k}}^{n+1} \frac{z_{j}}{z_{j}-z_{k}} & =\sum_{k=1}^{n} \frac{z_{n+1}}{z_{n+1}-z_{k}} \prod_{\substack{j=1 \\
j \neq k}}^{n} \frac{z_{j}}{z_{j}-z_{k}}+\prod_{j=1}^{n} \frac{z_{j}}{z_{j}-z_{n+1}} \\
& =\sum_{k=1}^{n} \prod_{\substack{j=1 \\
j \neq k}}^{n} \frac{z_{j}}{z_{j}-z_{k}}+\sum_{k=1}^{n} \frac{z_{k}}{z_{n+1}-z_{k}} \prod_{\substack{j=1 \\
j \neq k}}^{n} \frac{z_{j}}{z_{j}-z_{k}}+\prod_{j=1}^{n} \frac{z_{j}}{z_{j}-z_{n+1}} . \tag{3}
\end{align*}
$$

If we could prove that the last two terms add up to 0 , the proof is complete. However, this is equivalent to:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{z_{k}}{z_{k}-z_{n+1}} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{z_{j}}{z_{j}-z_{k}}=\prod_{j=1}^{n} \frac{z_{j}}{z_{j}-z_{n+1}} \tag{4}
\end{equation*}
$$

Dividing out through by the right-hand term in (4), this in turn takes the form:

$$
\sum_{k=1}^{n} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{z_{j}-z_{n+1}}{z_{j}-z_{k}}=1
$$

Letting $\alpha_{j}=z_{j}-z_{n+1}$, the last equation immediately follows from the induction assumption, i.e.

$$
\sum_{k=1}^{n} \prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{\alpha_{j}}{\alpha_{j}-\alpha_{k}}=1
$$

References:

[P] P \#10697, American Mathematical Monthly, (105) \#10, December 1998.

