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PROBLEM: [P] Given n distinct nonzero complex numbers z1; z2; : : : ; zn, show that
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PROOF: Multiply both sides of (1) by (�1)n�1z1z2 � � � zn, and get
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Now, we proceed by induction on n. This is trivial for n = 1, with an empty product in

(2). So, assume equation (2) holds for n and verify it for n+ 1.
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If we could prove that the last two terms add up to 0, the proof is complete. However,

this is equivalent to:
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Dividing out through by the right-hand term in (4), this in turn takes the form:
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Letting �j = zj � zn+1, the last equation immediately follows from the induction

assumption, i.e.
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