SOLUTION TO PROBLEM \#10714
 PROPOSED BY JET WIMP

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

PROBLEM: [P] For $a \in(-\pi / 2, \pi / 2)$, define

$$
c_{n}(t):=\frac{1}{e^{a t} \cos a}\left(\frac{d}{d a}\right)^{n}\left(e^{a t} \cos a\right)
$$

for every nonnegative integer n, so that $c_{n}(t)$ is a monic polynomial of degree n. Let G_{n} denote the $(n+1)$-by- $(n+1)$ determinant $\left|c_{j+k}(t)\right|_{j, k=0,1, \ldots, n}$. Evaluate $G_{n}(t)$.

SOLUTION: Let $D^{n}=\left(\frac{d}{d a}\right)^{n}$ and $z_{ \pm}=e^{a(t \pm i)}$. So, we have $e^{a t} \cos a=\left(z_{+}+z_{-}\right) / 2$ and $D^{n}\left(e^{a t} \cos a\right)=\left((t+i)^{n} z_{+}+(t-i)^{n} z_{-}\right) / 2$. Since $z_{ \pm}$are solutions of the differential equation

$$
\begin{equation*}
D^{2} y-2 t D y+\left(1+t^{2}\right) y=0 \tag{1}
\end{equation*}
$$

so are the functions $D^{n}\left(e^{a t} \cos a\right)$. Thus clearly, equation (1) implies the recurrence

$$
c_{n+2}(t)-2 t c_{n+1}(t)+\left(1+t^{2}\right) c_{n}(t) \equiv 0, \quad \text { for } n \geq 0
$$

It follows that in the Hankel matrix $\left(c_{j+k}(t)\right)_{j, k=0,1, \ldots, n}$, any three consecutive columns are linearly dependant, for $n \geq 2$. Therefore, we get

$$
G_{n}(t)=0 \quad \text { for all } n \geq 2 ; \quad \text { while } \quad G_{0}(t)=1 \quad G_{1}(t)=-\sec ^{2} a .[
$$

References:

[P] P \#10714, American Mathematical Monthly, (106) \#2, February 1999.

