SOLUTION TO PROBLEM \#10739 PROPOSED BY OSCAR CIAURRI

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Proposed by Oscar Caurri, Lograño, Spain. Suppose that $f:[0,1] \rightarrow R$ has a continuous second derivative with $f^{\prime \prime}(x)>0$ on $(0,1)$, and suppose that $f(0)=0$. Choose $a \in(0,1)$, such that $f^{\prime}(a)<f(1)$. Show that there is a unique $b \in(a, 1)$ such that $f^{\prime}(a)=\frac{f(b)}{b}$.

Solution by T. Amdeberhan, De Vry Institute, North Brunswick, NJ. By the Mean Value Theorem for derivatives, there exits $c \in(0, a)$ such that $f^{\prime}(c)=\frac{f(a)}{a} . f^{\prime \prime}(x)>0$ implies that $f^{\prime}(x)$ is 1-1 and increasing, therefore $f^{\prime}(c)<f^{\prime}(a)$. It follows that

$$
\begin{equation*}
\frac{f(a)}{a}<f^{\prime}(a) . \tag{1}
\end{equation*}
$$

Define $g(x):=f(x)-x f^{\prime}(a)$. The choice of a, yields $g(1)=f(1)-f^{\prime}(a)>0$. But $g(a)=$ $f(a)-a f^{\prime}(a)<0$ by (1). Since $g(x)$ is clearly continuous, the Intermediate Value Theorem asserts the existence of $b \in(a, 1)$ such that $g(b)=0$, i.e. $f^{\prime}(a)=\frac{f(b)}{b}$.

Now, since $f^{\prime}(x)$ is strictly increasing and $g(x)$ is differentiable, we have $g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(a)>0$, for $x>a$. Thus $g(x)$ is one-to-one, thereby proving the uniqueness of b.

References:

[P] P \#10739, American Mathematical Monthly, (106) \#6, June-July 1999.

