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Proposed by Leroy Quet, Denver, CO. Let x1 = 1, and for m � 1 let
xm+1 = (m + 3=2)�1

P
m

k=1
xkxm+1�k: Evaluate limm!1 xm=xm+1:

Solution by T. Amdeberhan, DeVry Institute, North Brunswick, NJ. De�ne the formal series
f(a) :=

P
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m. After multiplying the above recurrence by y2m+2 and summing over m � 1,
we obtain
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Applying Cauchy's product and derivatives, equation (1) takes the form
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Using x1 = 1 and the de�nition of f , we obtain the di�erential equation

(2) 2y2f 0(y2) + f(y2)� 3y2 = 2f(y2)2; f(0) = 0:

Then, we get the solution

g(y) := f(y2) =
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Clearly, g(y) has radius of convergence �=
p
6 about y = 0 and hence f(a) has �2=6. But this implies

that
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