SOLUTION TO PROBLEM \#10762 PROPOSED BY LEROY QUET

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

Proposed by Leroy Quet, Denver, $C O$. Let $x_{1}=1$, and for $m \geq 1$ let
$x_{m+1}=(m+3 / 2)^{-1} \sum_{k=1}^{m} x_{k} x_{m+1-k}$. Evaluate $\lim _{m \rightarrow \infty} x_{m} / x_{m+1}$.
Solution by T. Amdeberhan, DeVry Institute, North Brunswick, NJ. Define the formal series $f(a):=\sum_{m=1}^{\infty} x_{m} a^{m}$. After multiplying the above recurrence by $y^{2 m+2}$ and summing over $m \geq 1$, we obtain

$$
\begin{equation*}
\sum_{m=1}^{\infty}(2 m+3) x_{m+1} y^{2 m+2}=2 \sum_{m=1}^{\infty} y^{2 m+2} \sum_{k=1}^{m} x_{k} x_{m+1-k} \tag{1}
\end{equation*}
$$

Applying Cauchy's product and derivatives, equation (1) takes the form

$$
-3 x_{1} y^{2}+\frac{d}{d y}\left(y \sum_{m=1}^{\infty} x_{m} y^{2 m}\right)=2\left(\sum_{k=1}^{\infty} x_{k} y^{2 k}\right)^{2}
$$

Using $x_{1}=1$ and the definition of f, we obtain the differential equation

$$
\begin{equation*}
2 y^{2} f^{\prime}\left(y^{2}\right)+f\left(y^{2}\right)-3 y^{2}=2 f\left(y^{2}\right)^{2}, \quad f(0)=0 \tag{2}
\end{equation*}
$$

Then, we get the solution

$$
g(y):=f\left(y^{2}\right)=\frac{1}{2}-\frac{y \sqrt{6}}{2} \cot (y \sqrt{6}) .
$$

Clearly, $g(y)$ has radius of convergence $\pi / \sqrt{6}$ about $y=0$ and hence $f(a)$ has $\pi^{2} / 6$. But this implies that

$$
\lim _{m \rightarrow \infty} \frac{x_{m}}{x_{m+1}}=\frac{\pi^{2}}{6}
$$

References:

[P] P \#10762, American Mathematical Monthly, (106) \#9, November 1999.

