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Proposed by Antal Fekete, Memorial University of Newfoundland, St. John’s, NF, Canada. Show
that
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are integers for every nonnegative integer n.

Solution by Tewodros Amdeberhan, DeVry Institute, North Brunswick, NJ. Consider the two
bases V = (1,z,z(z — 1),z(x — 1)(z - 2),...,z(x —1)---(z —n+1)) and U = (1,z,22,...,2") for
the set of polynomials of degree n or less. In particular, the change of bases transformation matrices
M and M ! (note that Det(M) = 1),

vi=m-v" and UT=Mm1'.-VT

between U and V', are obviously of integer entries. Therefore, the coefficients ar(n) are integrals in

!
= Zak(n) @ f-k)" for integers n > 0.

Replacing x by 2i + 1, we obtain
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Thus, .2, ((22’;11), = A, -sinh(1)+ By, -cosh(1) and Y ° (22’2, = A,,-cosh(1) + B, - sinh(1), where

A, =500 ar(n) and B, := kgéd ay(n). Consequently,
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Analogously,
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Now, 3222, (~1)i 250" — ¢ sin(1) + D,, - cos(1) and 33, (~1)? ((22?)7; = C, -cos(l) — D,, - sin(1),

(2¢41)!
where C,, := Y07 (=1)¥/2a,(n) and D, := 30" (=1)*=1/2q, (n). Consequently,
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Since all the A,,, B,,,C),, and D,, are integers, the proof is complete. [
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