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Problem #11821. Proposed by Finbarr Holland and Clause Koester, University College Cork, Cork,
Ireland. Let p be a positive integer. Prove that
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Proof. Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, USA. Denote the
quantity in the limit by f,(n). Rewriting (n — 2k)**2 = (n — 2k)*(n? — 4k(n — k)) and observing
that (n? — 4k(n —k))(}) = n%(}) — 4n(n — 1)(}-2) results in
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which implies fy4+1(n) — ("T_Q)p fo(n=2)=n[fp(n) - (nT_z)p fo(n—2)].

The desired identity is now verified by induction on p. The base case p = 1: since fy(n) = 1 and
from above recurrence, f1(n)— fo(n—2) = n[fo(n) — fo(n—2)]. So, f1(n) = 1. Assume the assertion
holds for p. For n large enough, (1 — %)p ~1-— %p + (’2’)% So, from the above recurrence:
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= nlggon [fo(n) = fp(n —2)] + ZPT}LH;O fp(n—2).
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If S(j,i) denotes Stirling numbers of the second kind and (z); := z(z — 1) --- (. — i+ 1) then
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is a polynomial and f,(n) = Z?io(—l)j (21?’) I, S8(4,4)29""n?~J(n); a Laurent polynomial in 7.
In particular, combined with the induction hypothesis it holds lim,, 00 n[fp(n) — fp(n—2)] = 0. So,

lim,, o0 fp+1(n) = 2p+ 1) limy, oo fp(n —2) = (2p + 1) [[5_1(27 — 1). The identity is proved. O
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