SOLUTION TO PROBLEM #11834 OF THE AMERICAN MATHEMATICAL MONTHLY

TEWODROS AMDEBERHAN TAMDEBER@TULANE.EDU

Problem #11834. Proposed by Arkady Alt, San Jose, CA. For nonnegative real numbers u, v, w, let $\Delta(u, v, w) = 2(uv + vw + wu) - (u^2 + v^2 + w^2)$. Say that two lists (a, b, c) and (x, y, z) agree in order if $(a - b)(x - y) \ge 0$, $(b - c)(y - z) \ge 0$, and $(c - a)(z - x) \ge 0$. Prove that if (x, y, z) and (a, b, c) agree in order, then $\Delta(a, b, c)\Delta(x, y, z) \ge 3\Delta(ax, by, cz)$.

Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. Note: the relation agree in order and the inequality are invariant under joint cyclic shifts of (a, b, c) and (x, y, z). In a similar vain (upto cyclic reordering), there are exactly two possibilities:

(i)
$$a \ge b \ge c \ge 0$$
 and $x \ge y \ge z \ge 0$ or (ii) $0 \le a \le b \le c$ and $0 \le x \le y \le z$.

We only consider (i), the second case is similar. Rewrite $\Delta(a,b,c)\Delta(x,y,z) - 3\Delta(ax,by,cz)$ as:

$$\begin{split} \Delta(a,b,c)\Delta(x,y,z) - 3\Delta(ax,by,cz) &= (a-b)^2[4(x-y)^2 + 3(y-z)^2] + 3(b-c)^2(x-y)^2 \\ &\quad + 2(a-b)^2[(x-y)(3y-z) + z(y-z)] \\ &\quad + 2(a-b)[(x-y)^2(3b-c) + (x-y)(3by-cz) + cz(y-z)] \\ &\quad + 2c(b-c)[(x-y)^2 + z(x-z) + z(y-z))] \geq 0, \end{split}$$

because each summand is nonnegative due to (i). The proof is complete. \Box

Remark. The choice (a, b, c) = (x, y, z) recovers a special case of Schur's inequality

$$\Delta(a,b,c)^2 - 3\Delta(a^2,b^2,c^2) = 4[a^2(a-b)(a-c) + b^2(b-c)(b-a) + c^2(c-a)(c-b)] > 0.$$